essay on effect of global warming

45,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

essay on effect of global warming

Verification Code

An OTP has been sent to your registered mobile no. Please verify

essay on effect of global warming

Thanks for your comment !

Our team will review it before it's shown to our readers.

essay on effect of global warming

Essay on Global Warming

dulingo

  • Updated on  
  • Apr 27, 2024

essay on effect of global warming

Being able to write an essay is an integral part of mastering any language. Essays form an integral part of many academic and scholastic exams like the SAT, and UPSC amongst many others. It is a crucial evaluative part of English proficiency tests as well like IELTS, TOEFL, etc. Major essays are meant to emphasize public issues of concern that can have significant consequences on the world. To understand the concept of Global Warming and its causes and effects, we must first examine the many factors that influence the planet’s temperature and what this implies for the world’s future. Here’s an unbiased look at the essay on Global Warming and other essential related topics.

Short Essay on Global Warming and Climate Change?

Since the industrial and scientific revolutions, Earth’s resources have been gradually depleted. Furthermore, the start of the world’s population’s exponential expansion is particularly hard on the environment. Simply put, as the population’s need for consumption grows, so does the use of natural resources , as well as the waste generated by that consumption.

Climate change has been one of the most significant long-term consequences of this. Climate change is more than just the rise or fall of global temperatures; it also affects rain cycles, wind patterns, cyclone frequencies, sea levels, and other factors. It has an impact on all major life groupings on the planet.

Also Read: Essay on Yoga Day

Also Read: Speech on Yoga Day

What is Global Warming?

Global warming is the unusually rapid increase in Earth’s average surface temperature over the past century, primarily due to the greenhouse gases released by people burning fossil fuels . The greenhouse gases consist of methane, nitrous oxide, ozone, carbon dioxide, water vapour, and chlorofluorocarbons. The weather prediction has been becoming more complex with every passing year, with seasons more indistinguishable, and the general temperatures hotter.

The number of hurricanes, cyclones, droughts, floods, etc., has risen steadily since the onset of the 21st century. The supervillain behind all these changes is Global Warming. The name is quite self-explanatory; it means the rise in the temperature of the Earth.

Also Read: What is a Natural Disaster?

What are the Causes of Global Warming?

According to recent studies, many scientists believe the following are the primary four causes of global warming:

  • Deforestation 
  • Greenhouse emissions
  • Carbon emissions per capita

Extreme global warming is causing natural disasters , which can be seen all around us. One of the causes of global warming is the extreme release of greenhouse gases that become trapped on the earth’s surface, causing the temperature to rise. Similarly, volcanoes contribute to global warming by spewing excessive CO2 into the atmosphere.

The increase in population is one of the major causes of Global Warming. This increase in population also leads to increased air pollution . Automobiles emit a lot of CO2, which remains in the atmosphere. This increase in population is also causing deforestation, which contributes to global warming.

The earth’s surface emits energy into the atmosphere in the form of heat, keeping the balance with the incoming energy. Global warming depletes the ozone layer, bringing about the end of the world. There is a clear indication that increased global warming will result in the extinction of all life on Earth’s surface.

Also Read: Land, Soil, Water, Natural Vegetation, and Wildlife Resources

Solutions for Global Warming

Of course, industries and multinational conglomerates emit more carbon than the average citizen. Nonetheless, activism and community effort are the only viable ways to slow the worsening effects of global warming. Furthermore, at the state or government level, world leaders must develop concrete plans and step-by-step programmes to ensure that no further harm is done to the environment in general.

Although we are almost too late to slow the rate of global warming, finding the right solution is critical. Everyone, from individuals to governments, must work together to find a solution to Global Warming. Some of the factors to consider are pollution control, population growth, and the use of natural resources.

One very important contribution you can make is to reduce your use of plastic. Plastic is the primary cause of global warming, and recycling it takes years. Another factor to consider is deforestation, which will aid in the control of global warming. More tree planting should be encouraged to green the environment. Certain rules should also govern industrialization. Building industries in green zones that affect plants and species should be prohibited.

Also Read: Essay on Pollution

Effects of Global Warming

Global warming is a real problem that many people want to disprove to gain political advantage. However, as global citizens, we must ensure that only the truth is presented in the media.

This decade has seen a significant impact from global warming. The two most common phenomena observed are glacier retreat and arctic shrinkage. Glaciers are rapidly melting. These are clear manifestations of climate change.

Another significant effect of global warming is the rise in sea level. Flooding is occurring in low-lying areas as a result of sea-level rise. Many countries have experienced extreme weather conditions. Every year, we have unusually heavy rain, extreme heat and cold, wildfires, and other natural disasters.

Similarly, as global warming continues, marine life is being severely impacted. This is causing the extinction of marine species as well as other problems. Furthermore, changes are expected in coral reefs, which will face extinction in the coming years. These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming.

Also Read: Concept of Sustainable Development

Sample Essays on Global Warming

Here are some sample essays on Global Warming:

Essay on Global Warming Paragraph in 100 – 150 words

Global Warming is caused by the increase of carbon dioxide levels in the earth’s atmosphere and is a result of human activities that have been causing harm to our environment for the past few centuries now. Global Warming is something that can’t be ignored and steps have to be taken to tackle the situation globally. The average temperature is constantly rising by 1.5 degrees Celsius over the last few years.

The best method to prevent future damage to the earth, cutting down more forests should be banned and Afforestation should be encouraged. Start by planting trees near your homes and offices, participate in events, and teach the importance of planting trees. It is impossible to undo the damage but it is possible to stop further harm.

Also Read: Social Forestry

Essay on Global Warming in 250 Words

Over a long period, it is observed that the temperature of the earth is increasing. This affected wildlife, animals, humans, and every living organism on earth. Glaciers have been melting, and many countries have started water shortages, flooding, and erosion and all this is because of global warming. 

No one can be blamed for global warming except for humans. Human activities such as gases released from power plants, transportation, and deforestation have increased gases such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere.                                              The main question is how can we control the current situation and build a better world for future generations. It starts with little steps by every individual. 

Start using cloth bags made from sustainable materials for all shopping purposes, instead of using high-watt lights use energy-efficient bulbs, switch off the electricity, don’t waste water, abolish deforestation and encourage planting more trees. Shift the use of energy from petroleum or other fossil fuels to wind and solar energy. Instead of throwing out the old clothes donate them to someone so that it is recycled. 

Donate old books, don’t waste paper.  Above all, spread awareness about global warming. Every little thing a person does towards saving the earth will contribute in big or small amounts. We must learn that 1% effort is better than no effort. Pledge to take care of Mother Nature and speak up about global warming.

Also Read: Types of Water Pollution

Essay on Global Warming in 500 Words

Global warming isn’t a prediction, it is happening! A person denying it or unaware of it is in the most simple terms complicit. Do we have another planet to live on? Unfortunately, we have been bestowed with this one planet only that can sustain life yet over the years we have turned a blind eye to the plight it is in. Global warming is not an abstract concept but a global phenomenon occurring ever so slowly even at this moment. Global Warming is a phenomenon that is occurring every minute resulting in a gradual increase in the Earth’s overall climate. Brought about by greenhouse gases that trap the solar radiation in the atmosphere, global warming can change the entire map of the earth, displacing areas, flooding many countries, and destroying multiple lifeforms. Extreme weather is a direct consequence of global warming but it is not an exhaustive consequence. There are virtually limitless effects of global warming which are all harmful to life on earth. The sea level is increasing by 0.12 inches per year worldwide. This is happening because of the melting of polar ice caps because of global warming. This has increased the frequency of floods in many lowland areas and has caused damage to coral reefs. The Arctic is one of the worst-hit areas affected by global warming. Air quality has been adversely affected and the acidity of the seawater has also increased causing severe damage to marine life forms. Severe natural disasters are brought about by global warming which has had dire effects on life and property. As long as mankind produces greenhouse gases, global warming will continue to accelerate. The consequences are felt at a much smaller scale which will increase to become drastic shortly. The power to save the day lies in the hands of humans, the need is to seize the day. Energy consumption should be reduced on an individual basis. Fuel-efficient cars and other electronics should be encouraged to reduce the wastage of energy sources. This will also improve air quality and reduce the concentration of greenhouse gases in the atmosphere. Global warming is an evil that can only be defeated when fought together. It is better late than never. If we all take steps today, we will have a much brighter future tomorrow. Global warming is the bane of our existence and various policies have come up worldwide to fight it but that is not enough. The actual difference is made when we work at an individual level to fight it. Understanding its import now is crucial before it becomes an irrevocable mistake. Exterminating global warming is of utmost importance and each one of us is as responsible for it as the next.  

Also Read: Essay on Library: 100, 200 and 250 Words

Essay on Global Warming UPSC

Always hear about global warming everywhere, but do we know what it is? The evil of the worst form, global warming is a phenomenon that can affect life more fatally. Global warming refers to the increase in the earth’s temperature as a result of various human activities. The planet is gradually getting hotter and threatening the existence of lifeforms on it. Despite being relentlessly studied and researched, global warming for the majority of the population remains an abstract concept of science. It is this concept that over the years has culminated in making global warming a stark reality and not a concept covered in books. Global warming is not caused by one sole reason that can be curbed. Multifarious factors cause global warming most of which are a part of an individual’s daily existence. Burning of fuels for cooking, in vehicles, and for other conventional uses, a large amount of greenhouse gases like carbon dioxide, and methane amongst many others is produced which accelerates global warming. Rampant deforestation also results in global warming as lesser green cover results in an increased presence of carbon dioxide in the atmosphere which is a greenhouse gas.  Finding a solution to global warming is of immediate importance. Global warming is a phenomenon that has to be fought unitedly. Planting more trees can be the first step that can be taken toward warding off the severe consequences of global warming. Increasing the green cover will result in regulating the carbon cycle. There should be a shift from using nonrenewable energy to renewable energy such as wind or solar energy which causes less pollution and thereby hinder the acceleration of global warming. Reducing energy needs at an individual level and not wasting energy in any form is the most important step to be taken against global warming. The warning bells are tolling to awaken us from the deep slumber of complacency we have slipped into. Humans can fight against nature and it is high time we acknowledged that. With all our scientific progress and technological inventions, fighting off the negative effects of global warming is implausible. We have to remember that we do not inherit the earth from our ancestors but borrow it from our future generations and the responsibility lies on our shoulders to bequeath them a healthy planet for life to exist. 

Also Read: Essay on Disaster Management

Climate Change and Global Warming Essay

Global Warming and Climate Change are two sides of the same coin. Both are interrelated with each other and are two issues of major concern worldwide. Greenhouse gases released such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere cause Global Warming which leads to climate change. Black holes have started to form in the ozone layer that protects the earth from harmful ultraviolet rays. 

Human activities have created climate change and global warming. Industrial waste and fumes are the major contributors to global warming. 

Another factor affecting is the burning of fossil fuels, deforestation and also one of the reasons for climate change.  Global warming has resulted in shrinking mountain glaciers in Antarctica, Greenland, and the Arctic and causing climate change. Switching from the use of fossil fuels to energy sources like wind and solar. 

When buying any electronic appliance buy the best quality with energy savings stars. Don’t waste water and encourage rainwater harvesting in your community. 

Also Read: Essay on Air Pollution

Tips to Write an Essay

Writing an effective essay needs skills that few people possess and even fewer know how to implement. While writing an essay can be an assiduous task that can be unnerving at times, some key pointers can be inculcated to draft a successful essay. These involve focusing on the structure of the essay, planning it out well, and emphasizing crucial details.

Mentioned below are some pointers that can help you write better structure and more thoughtful essays that will get across to your readers:

  • Prepare an outline for the essay to ensure continuity and relevance and no break in the structure of the essay
  • Decide on a thesis statement that will form the basis of your essay. It will be the point of your essay and help readers understand your contention
  • Follow the structure of an introduction, a detailed body followed by a conclusion so that the readers can comprehend the essay in a particular manner without any dissonance.
  • Make your beginning catchy and include solutions in your conclusion to make the essay insightful and lucrative to read
  • Reread before putting it out and add your flair to the essay to make it more personal and thereby unique and intriguing for readers  

Also Read: I Love My India Essay: 100 and 500+ Words in English for School Students

Ans. Both natural and man-made factors contribute to global warming. The natural one also contains methane gas, volcanic eruptions, and greenhouse gases. Deforestation, mining, livestock raising, burning fossil fuels, and other man-made causes are next.

Ans. The government and the general public can work together to stop global warming. Trees must be planted more often, and deforestation must be prohibited. Auto usage needs to be curbed, and recycling needs to be promoted.

Ans. Switching to renewable energy sources , adopting sustainable farming, transportation, and energy methods, and conserving water and other natural resources.

Relevant Blogs

For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Digvijay Singh

Having 2+ years of experience in educational content writing, withholding a Bachelor's in Physical Education and Sports Science and a strong interest in writing educational content for students enrolled in domestic and foreign study abroad programmes. I believe in offering a distinct viewpoint to the table, to help students deal with the complexities of both domestic and foreign educational systems. Through engaging storytelling and insightful analysis, I aim to inspire my readers to embark on their educational journeys, whether abroad or at home, and to make the most of every learning opportunity that comes their way.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

This was really a good essay on global warming… There has been used many unic words..and I really liked it!!!Seriously I had been looking for a essay about Global warming just like this…

Thank you for the comment!

I want to learn how to write essay writing so I joined this page.This page is very useful for everyone.

Hi, we are glad that we could help you to write essays. We have a beginner’s guide to write essays ( https://leverageedu.com/blog/essay-writing/ ) and we think this might help you.

It is not good , to have global warming in our earth .So we all have to afforestation program on all the world.

thank you so much

Very educative , helpful and it is really going to strength my English knowledge to structure my essay in future

Thank you for the comment, please follow our newsletter to get more insights on studying abroad and exams!

Global warming is the increase in 𝓽𝓱𝓮 ᴀᴠᴇʀᴀɢᴇ ᴛᴇᴍᴘᴇʀᴀᴛᴜʀᴇs ᴏғ ᴇᴀʀᴛʜ🌎 ᴀᴛᴍᴏsᴘʜᴇʀᴇ

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

essay on effect of global warming

Resend OTP in

essay on effect of global warming

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

essay on effect of global warming

How would you describe this article ?

Please rate this article

We would like to hear more.

Talk to our experts

1800-120-456-456

  • Essay on Effects of Global Warming

ffImage

Introduction

Our world, as well as all living things such as animals, birds, insects, trees, and plants, were created by nature. They all have the right to live their lives as they see fit, but the human being is the most perplexing of all living creatures. For our own needs and greed, we humans are killing nature, and we will pay the price in the form of catastrophe. Here we have provided both long and short essays on the effects of Global Warming for students of Classes 1 to 12.

Long Effect of Global Warming Essay in English

As carbon dioxide (CO 2 ) and other air pollution and greenhouse gases build up in the atmosphere, they absorb sunlight and solar radiation that has bounced off the earth's surface, resulting in global warming. Normally, this radiation will disperse into space, but these contaminants, which can remain in the atmosphere for years or decades, trap the heat and cause the earth to get hotter. The greenhouse effect is the result of this.

So, What causes Global Warming?

Natural Causes of Global Warming:

For decades, the world has been shifting. The natural rotation of the sun causes global warming by changing the strength of sunlight and bringing it closer to the earth.

Greenhouse emissions are another contributor to global warming. 

Carbon monoxide and sulphur dioxide are greenhouse gases that absorb solar heat rays and prevent them from escaping the earth's surface. The earth's temperature has increased as a result of this.

Another factor that contributes to global warming is volcanic eruptions. A single volcanic eruption, for example, can release a significant amount of carbon dioxide and ash into the atmosphere.

As carbon dioxide levels rise, the earth's temperature rises, and greenhouse gases absorb solar radiation.

Finally, methane is a contributor to global warming. Methane is a greenhouse gas as well. Methane is 20 times more effective than carbon dioxide at trapping heat in the atmosphere. Methane gas can usually be used in a variety of places. Cattle, landfills, natural gas, petroleum systems, coal mining, mobile explosions, and industrial waste processes are only a few examples.

Human Influences on Global Warming:

Humans are more responsible for global warming than natural causes. Because of modern human lifestyles, the earth has been evolving for many years and continues to do so. Industrial production, fossil fuel combustion, mining, cattle rearing, and deforestation are all examples of human activities.

The industrial revolution is the first thing. Industrial devices have been powered by fossil fuels. All we use is made up of fossil fuels. When we purchase a cell phone, for example, the process of manufacturing the phone involves machines, which use fossil fuels, and carbon dioxide is released into the environment during the process. Aside from industry, transportation, such as automobiles, emits carbon dioxide by the exhaust.

Mining is another problem. Methane would be trapped under the earth during the mining process. Furthermore, raising cattle results in the release of methane in the form of manure. Cattle, on the other hand, are noteworthy because they are equally responsible for the occurrence of global warming.

Then there's deforestation, which is by far the most common problem. Humans have been cutting down trees to manufacture documents, wood, build homes, and other things, so deforestation is a human factor.

Humans also emit carbon dioxide as they breathe. As a result, carbon dioxide has been released into the atmosphere by millions of people. If human deforestation continues, the carbon dioxide released by human breathing will remain in the atmosphere.

Effects of Global Warming

Every year, scientists learn more about the effects of global warming, and all agree that if current patterns continue, environmental, economic, and health impacts are likely. Here's a taste of what we can expect in the coming months:

Melting glaciers, early snowmelt, and extreme droughts would intensify water shortages in the American West, raising the risk of wildfires.

Coastal flooding will occur along the Eastern Seaboard, especially in Florida, as well as in other areas such as the Gulf of Mexico.

New pests will wreak havoc on forests, crops, and towns, as will heat waves, heavy rains, and increased flooding.

Many plant and animal species could become extinct if ecosystems such as coral reefs and Alpine meadows are disrupted.

Increased pollen-producing ragweed growth, higher levels of air pollution, and the spread of conditions favorable to pathogens and mosquitoes will make allergies, asthma, and infectious disease outbreaks more likely.

In the above effect of global warming essay in English, we have discussed in depth all the natural causes of global warming and how humans have contributed towards its drastic increase. Below we have provided short effects of the Global Warming essay for students of Classes 1 to 5.

Effect of Global Warming Short Essay

Since hundreds of years ago, greenhouse gases have remained in the atmosphere for several years. Global warming, on the other hand, would have disastrous consequences for the planet. If global warming persists, a slew of negative consequences will emerge. Melting polar ice caps, economic effects, warming oceans, and more storms, disease transmission, and earthquakes are all examples.

The melting of the polar ice caps is the first consequence. The ice at the North Pole will melt as the temperature increases. Since melting glaciers become seas, the first result of ice melting would be an increase in sea levels. “If the ice melted today, the seas will rise about 230 feet,” according to the National Snow and Ice Data Center. Many low-lying areas, such as the Netherlands, are affected. Once the North Pole melts, the Netherlands will be submerged in water. However, that will not happen easily, and the sea level will continue to rise.

Another impact is the loss of habitat for some species. Polar bears and tropical frogs would become extinct as a result of climate change. Furthermore, since animals are not like humans, different birds will migrate to other locations. They are unable to adjust to changes in their climate, such as temperature or living conditions.

The next result is that more hurricanes will occur, with economic implications. Houses are damaged by hurricanes, and the government will have to spend billions of dollars to repair the damage, and people will need places to stay or will be killed. When a disaster strikes, many people die and illnesses spread. Diseases are more serious because they can spread rapidly to other people, allowing more people to catch the disease. Diseases can also become more serious as the weather changes.

Importance of an Essay on Global Warming

The essay on global warming is important because it will help students to understand the effects of global warming and how it impacts life on earth. They will then be aware and likewise, share their knowledge with their fellow beings and make them conscious of the human actions that lead to an increase in global warming.

Climate change is an issue that humans are actually facing, and the ones causing these problems are humans. Although it is difficult to avoid global warming, people can indeed help to mitigate and slow its effects. If no action is taken to address this problem, people will perish as a result of cli mate change and natural disasters. Humans changed the world; now it's time for humans to change themselves.

arrow-right

FAQs on Essay on Effects of Global Warming

1. State Some Ways to Reduce Global Warming ?

We should reduce the emission of greenhouse gases into the atmosphere to reduce global warming. 

We can minimise global warming by reducing our use of oil, electricity, and other practices that contribute to global warming. To save fuel, we should opt for a hybrid vehicle that uses less gasoline. 

Taking public transportation or carpooling to work has the potential to minimise carbon dioxide emissions while still saving money. 

Recycling is another way to help combat global warming. Reusing plastic bags, bottles, documents, or glass may help to minimise waste. 

Finally, open burning should be forbidden, such as the burning of dry leaves or garbage. When garbage is burned with plastic, carbon dioxide and toxic gases are released. Furthermore, since global temperatures are rising, the government should minimise deforestation. Trees will assist in the reduction of global warming.

2. Define Global Warming ?

Global warming is the long-term warming of Earth's climate system that has been observed since the pre-industrial era (between 1850 and 1900) as a result of human activities, mainly fossil fuel combustion, which raises heat-trapping greenhouse gas levels in the atmosphere. The words are sometimes used interchangeably, though the latter applies to both human- and naturally-caused warming, as well as the implications for our world. The average rise in Earth's global surface temperature is the most common metric.

3. How to download the Essay on Effects of Global Warming from the Vedantu Website?

The Vedantu website provides a download of the Essay on Effects of Global Warming, which is accurate and well-structured. Vedantu's official website provides the Essay in PDF version which is available for download for free of cost. Students are advised to download the Essay on Global Warming from the Vedantu website to get an idea of the word limit, sentence construction, and basic understanding of what a good essay consists of. Vedantu essay is concise and apt for school-going, students. It uses simple language, perfect for students with limited vocabulary. Following the Vedantu essay enables students to be sufficiently prepared for any essay topics and guarantees that students will score good marks. To access the Essay on Plastic Ban, click on the link available above.

4. Why is plastic bad for the environment?

Nonrenewable resources such as coal, natural gas, and crude oil are used to make plastics. Because plastic bags take a long time to disintegrate, they have a substantial environmental impact. If toxic compounds are allowed to deteriorate, there is concern that they will leak into the environment. Rather than degrading completely, plastic dissolves into smaller chunks and microscopic particles known as microplastics. Microplastics regularly end up in bodies of water, endangering animals. Furthermore, dangerous chemicals are released into the soil when plastic bags degrade in the sun, and harmful substances are released into the air when plastic bags are burnt, resulting in air pollution. All of these reasons make plastic one of the most harmful materials on the earth for all of these reasons. Plastic is one of the main reasons for Global Warming and thus needs to be eliminated from the world.

5. Is writing an essay hard?

Essay writing is a difficult task that needs a great deal of study, time, and focus. It's also an assignment that you can divide down into manageable chunks such as introduction, main content, and conclusion. Breaking down and focusing on each individually makes essay writing more pleasant. It's natural for students to be concerned about writing an essay. It's one of the most difficult tasks to do, especially for people who aren't confident in their writing abilities. While writing a decent essay is difficult, the secret to being proficient at it is reading a lot of books, conducting extensive research on essential topics, and practicing essay writing diligently.

6. Who prepares the essay on global warming for Vedantu?

The Essay on Effects on Global, designed by Vedantu, is created by a group of experts and experienced teachers. The panel of experts have created the essay after analyzing important essay topics that have been repeatedly asked in various examinations. The Essays that are provided by Vedantu are not only well-structured but also accurate and concise. They are aptly suited for young students with limited vocabulary. For best results, the students are advised to go through multiple essays and practice the topics on their own to inculcate the habits of time management and speed.

7. What will be the impact on the phenomena of Global Warming if we ban plastic and petroleum products?

Plastic and petroleum product bans can undoubtedly aid in the conservation of non-renewable resources that, once gone, may not be recovered. Plastic use has two significant negative consequences: it emits carbon dioxide, which contributes to the greenhouse effect, and it increases rubbish collecting in landfills and seas. Bans should be implemented since they are successful in eliminating large amounts of plastic trash. Plastic can be eliminated; but, it will need advances in engineering and applied science, and the capability to do so currently exists. With each passing year, humanity's reliance on plastic gets greater. Thus, one of the only ways to eliminate or reduce global warming is through the elimination of the use of plastic and petroleum products.

Essay on Global Warming – Causes and Solutions

500+ words essay on global warming.

Global Warming is a term almost everyone is familiar with. But, its meaning is still not clear to most of us. So, Global warming refers to the gradual rise in the overall temperature of the atmosphere of the Earth. There are various activities taking place which have been increasing the temperature gradually. Global warming is melting our ice glaciers rapidly. This is extremely harmful to the earth as well as humans. It is quite challenging to control global warming; however, it is not unmanageable. The first step in solving any problem is identifying the cause of the problem. Therefore, we need to first understand the causes of global warming that will help us proceed further in solving it. In this essay on Global Warming, we will see the causes and solutions of Global Warming.

essay on global warming

Causes of Global Warming

Global warming has become a grave problem which needs undivided attention. It is not happening because of a single cause but several causes. These causes are both natural as well as manmade. The natural causes include the release of greenhouses gases which are not able to escape from earth, causing the temperature to increase.

Get English Important Questions here

Further, volcanic eruptions are also responsible for global warming. That is to say, these eruptions release tons of carbon dioxide which contributes to global warming. Similarly, methane is also one big issue responsible for global warming.

essay on effect of global warming

So, when one of the biggest sources of absorption of carbon dioxide will only disappear, there will be nothing left to regulate the gas. Thus, it will result in global warming. Steps must be taken immediately to stop global warming and make the earth better again.

Get the huge list of more than 500 Essay Topics and Ideas

Global Warming Solutions

As stated earlier, it might be challenging but it is not entirely impossible. Global warming can be stopped when combined efforts are put in. For that, individuals and governments, both have to take steps towards achieving it. We must begin with the reduction of greenhouse gas.

Furthermore, they need to monitor the consumption of gasoline. Switch to a hybrid car and reduce the release of carbon dioxide. Moreover, citizens can choose public transport or carpool together. Subsequently, recycling must also be encouraged.

Read Global Warming Speech here

For instance, when you go shopping, carry your own cloth bag. Another step you can take is to limit the use of electricity which will prevent the release of carbon dioxide. On the government’s part, they must regulate industrial waste and ban them from emitting harmful gases in the air. Deforestation must be stopped immediately and planting of trees must be encouraged.

In short, all of us must realize the fact that our earth is not well. It needs to treatment and we can help it heal. The present generation must take up the responsibility of stopping global warming in order to prevent the suffering of future generations. Therefore, every little step, no matter how small carries a lot of weight and is quite significant in stopping global warming.

हिंदी में ग्लोबल वार्मिंग पर निबंध यहाँ पढ़ें

FAQs on Global Warming

Q.1 List the causes of Global Warming.

A.1 There are various causes of global warming both natural and manmade. The natural one includes a greenhouse gas, volcanic eruption, methane gas and more. Next up, manmade causes are deforestation, mining, cattle rearing, fossil fuel burning and more.

Q.2 How can one stop Global Warming?

A.2 Global warming can be stopped by a joint effort by the individuals and the government. Deforestation must be banned and trees should be planted more. The use of automobiles must be limited and recycling must be encouraged.

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

the silhouette of people can be seen as a giant glowing earth floats on a lake

  • ENVIRONMENT

How global warming is disrupting life on Earth

The signs of global warming are everywhere, and are more complex than just climbing temperatures.

Our planet is getting hotter. Since the Industrial Revolution—an event that spurred the use of fossil fuels in everything from power plants to transportation—Earth has warmed by 1 degree Celsius, about 2 degrees Fahrenheit.  

That may sound insignificant, but 2023 was the hottest year on record , and all 10 of the hottest years on record have occurred in the past decade.  

Global warming and climate change are often used interchangeably as synonyms, but scientists prefer to use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems.  

Climate change encompasses not only rising average temperatures but also natural disasters, shifting wildlife habitats, rising seas , and a range of other impacts. All of these changes are emerging as humans continue to add heat-trapping greenhouse gases , like carbon dioxide and methane, to the atmosphere.

What causes global warming?

When fossil fuel emissions are pumped into the atmosphere, they change the chemistry of our atmosphere, allowing sunlight to reach the Earth but preventing heat from being released into space. This keeps Earth warm, like a greenhouse, and this warming is known as the greenhouse effect .  

Carbon dioxide is the most commonly found greenhouse gas and about 75 percent of all the climate warming pollution in the atmosphere. This gas is a product of producing and burning oil, gas, and coal. About a quarter of Carbon dioxide also results from land cleared for timber or agriculture.  

Methane is another common greenhouse gas. Although it makes up only about 16 percent of emissions, it's roughly 25 times more potent than carbon dioxide and dissipates more quickly. That means methane can cause a large spark in warming, but ending methane pollution can also quickly limit the amount of atmospheric warming. Sources of this gas include agriculture (mostly livestock), leaks from oil and gas production, and waste from landfills.  

What are the effects of global warming?  

One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers. The Arctic is warming four times faster than the rest of the planet. This warming reduces critical ice habitat and it disrupts the flow of the jet stream, creating more unpredictable weather patterns around the globe.  

( Learn more about the jet stream. )

A warmer planet doesn't just raise temperatures. Precipitation is becoming more extreme as the planet heats. For every degree your thermometer rises, the air holds about seven percent more moisture. This increase in moisture in the atmosphere can produce flash floods, more destructive hurricanes, and even paradoxically, stronger snow storms.  

The world's leading scientists regularly gather to review the latest research on how the planet is changing. The results of this review is synthesized in regularly published reports known as the Intergovernmental Panel on Climate Change (IPCC) reports.  

A recent report outlines how disruptive a global rise in temperature can be:

  • Coral reefs are now a highly endangered ecosystem. When corals face environmental stress, such as high heat, they expel their colorful algae and turn a ghostly white, an effect known as coral bleaching . In this weakened state, they more easily die.  
  • Trees are increasingly dying from drought , and this mass mortality is reshaping forest ecosystems.
  • Rising temperatures and changing precipitation patterns are making wildfires more common and more widespread. Research shows they're even moving into the eastern U.S. where fires have historically been less common.
  • Hurricanes are growing more destructive and dumping more rain, an effect that will result in more damage. Some scientists say we even need to be preparing for Cat 6 storms . (The current ranking system ends at Cat 5.)

How can we limit global warming?  

Limiting the rising in global warming is theoretically achievable, but politically, socially, and economically difficult.  

Those same sources of greenhouse gas emissions must be limited to reduce warming. For example, oil and gas used to generate electricity or power industrial manufacturing will need to be replaced by net zero emission technology like wind and solar power. Transportation, another major source of emissions, will need to integrate more electric vehicles, public transportation, and innovative urban design, such as safe bike lanes and walkable cities.  

( Learn more about solutions to limit global warming. )

One global warming solution that was once considered far fetched is now being taken more seriously: geoengineering. This type of technology relies on manipulating the Earth's atmosphere to physically block the warming rays of the sun or by sucking carbon dioxide straight out of the sky.

Restoring nature may also help limit warming. Trees, oceans, wetlands, and other ecosystems help absorb excess carbon—but when they're lost, so too is their potential to fight climate change.  

Ultimately, we'll need to adapt to warming temperatures, building homes to withstand sea level rise for example, or more efficiently cooling homes during heat waves.  

Related Topics

  • CLIMATE CHANGE
  • ENVIRONMENT AND CONSERVATION
  • POLAR REGIONS

You May Also Like

essay on effect of global warming

Why all life on Earth depends on trees

essay on effect of global warming

Life probably exists beyond Earth. So how do we find it?

essay on effect of global warming

Pizzlies, grolars, and narlugas: Why we may soon see more Arctic hybrids

essay on effect of global warming

For Antarctica’s emperor penguins, ‘there is no time left’

essay on effect of global warming

Listen to 30 years of climate change transformed into haunting music

  • Best of the World
  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • Out of Eden Walk
  • Mind, Body, Wonder
  • Here Not There
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

ENCYCLOPEDIC ENTRY

Global warming.

The causes, effects, and complexities of global warming are important to understand so that we can fight for the health of our planet.

Earth Science, Climatology

Tennessee Power Plant

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Photograph by Emory Kristof/ National Geographic

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Global warming is the long-term warming of the planet’s overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels . As the human population has increased, so has the volume of fossil fuels burned. Fossil fuels include coal, oil, and natural gas, and burning them causes what is known as the “greenhouse effect” in Earth’s atmosphere.

The greenhouse effect is when the sun’s rays penetrate the atmosphere, but when that heat is reflected off the surface cannot escape back into space. Gases produced by the burning of fossil fuels prevent the heat from leaving the atmosphere. These greenhouse gasses are carbon dioxide , chlorofluorocarbons, water vapor , methane , and nitrous oxide . The excess heat in the atmosphere has caused the average global temperature to rise overtime, otherwise known as global warming.

Global warming has presented another issue called climate change. Sometimes these phrases are used interchangeably, however, they are different. Climate change refers to changes in weather patterns and growing seasons around the world. It also refers to sea level rise caused by the expansion of warmer seas and melting ice sheets and glaciers . Global warming causes climate change, which poses a serious threat to life on Earth in the forms of widespread flooding and extreme weather. Scientists continue to study global warming and its impact on Earth.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

February 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

Global warming illustration

global warming summary

Learn about the causes and effects of global warming.

essay on effect of global warming

global warming , Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution . In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2–7.2 °F (1.8–4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was now 90 percent certain that most of the warming observed over the previous half century could be attributed to greenhouse gas emissions produced by human activities (i.e., industrial processes and transportation). Many scientists predict that such an increase in temperature would cause polar ice caps and mountain glaciers to melt rapidly, significantly raising the levels of coastal waters, and would produce new patterns and extremes of drought and rainfall, seriously disrupting food production in certain regions. Other scientists maintain that such predictions are overstated. The 1992 Earth Summit and the 1997 Kyoto Protocol to the United Nations Framework Convention on Climate Change attempted to address the issue of global warming, but in both cases the efforts were hindered by conflicting national economic agendas and disputes between developed and developing nations over the cost and consequences of reducing emissions of greenhouse gases.

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

essay on effect of global warming

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions. As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth. 

A farmer and his daughter standing in front of thier honey barn

Heatwaves put bees at risk

Eleven-year-old Markela is a fifth generation beekeeper, but climate change is making it so that she may not be able to carry on the family tradition. Wildfires, heatwaves, and droughts that are increasing in intensity and frequency due to the climate crisis, put bees and the ecosystems at risk.

Two women in Chile plant a tree

Healing Chile’s Huapi Island

On Chile’s Huapi Island, native forests have become fragmented, making the soils poorer and drier and leaving the population vulnerable to the effects of climate change. Now, thanks to the restoration efforts of Indigenous Peoples, native trees are making a comeback.

Workers installing a solar power tower

Early warning systems are saving lives in Central Asia

As Central Asia grapples with the increasing frequency and severity of climate-induced hazards, the importance of robust early warning systems cannot be overstated. However, countries need both technical knowledge and resources to effectively implement these systems on a large scale. Japan has been a reliable ally for countries, helping advance early warning systems and increase resilience in the region.

Facts and figures

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

Global Warming Definition, Causes, Effects, Impacts, Solutions_1.1

Global Warming Definition, Causes, Effects, Impacts, Solutions

Global Warming is a long-term increase in average global temperature. Read about Global Warming Definition, Causes, Effects, Impact on Climate Change & Solutions for the UPSC exam.

Global Warming

Table of Contents

What is Global Warming?

Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post Industrial Revolution , have led to an increase in the rate of this temperature increase. Various Reports published by the International Panel on Climate Change (IPCC) have time and again highlighted that since 1850 human activities have led to an increase of about 1 degree Celsius in average global temperature. Most of this warming has taken place in the second half of the 20th century. The fact that 5 of the hottest recorded year have occurred since 2015 can help us better understand the calamitous impact of anthropogenic activities.

Global Warming Causes

Green House Gases also known as GHGs in the atmosphere trap the solar radiations that are reflected by the earth’s surface. Under normal circumstances, most of these radiations escape into outer space. However, the release of GHGs by anthropogenic activities has increased their concentration in the atmosphere. Thus, the earth is getting hotter and hotter. 

Some of the common GHGs include carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and water vapour, among others. The global warming potential of each GHG is different. For example, methane has a 25-time warming potential than carbon dioxide. Similarly, nitrous oxide has more than 250 times the warming potential than carbon dioxide. The top  anthropogenic activities that are responsible for the release of GHGs are shown below.

Global Warming Definition, Causes, Effects, Impacts, Solutions_4.1

Global Warming and Green House Effect

Both phenomena are related to each other. Green House Gases also known as GHGs in the atmosphere trap the solar radiations that are reflected by the earth’s surface. Under normal circumstances, most of these radiations escape into outer space. However, the release of GHGs by anthropogenic activities has increased their concentration in the atmosphere. This is the primary cause of Global Warming . 

Global Warming Effects

Increase in the average temperature of the earth.

According to IPCC reports, human-induced global warming is responsible for nearly 1 degree Celsius temperature rise vis a vis pre-industrial level. Data from NASA suggest that 2016 has been the hottest year on record.

Frequency of Extreme Weather Events is Increasing

Across the globe, extreme weather events have increased in occurrence. For example, forest fires in California have become an annual event. Also, it is increasing in frequency each year. Most recently, we have recorded the phenomena of heat waves in Antarctica. The intensity of cyclones in the Bay of Bengal region has increased. Similarly, the frequency of occurrence of El Niño and La Niña has reduced from once in 8–10 years to once in 3–4 years now. More frequent episodes of floods and drought are being recorded every year across the world.

Melting of Ice

According to IPCC, there is 10% less permafrost in North Hemisphere at present compared to the 1900s. Remote sensing data suggest Arctic ice is melting fast. Experts suggest that not only will the sea level rise with the melting of glaciers, but there is also a danger of new bacteria and viruses being released into the environment which has so far been trapped in ice sheets. This may lead to outbreaks of disease and pandemics which are beyond the control of human medical sciences.

Sea Level Rise and Acidification of Ocean

A report published by WMO, suggests that the rate of sea level rise has doubled for the period between 2013 and 2021 compared to the rate for the period between 1993 and 2002. Earth scientists are suggesting that if this phenomenon continues, many human-inhabited coastal areas will be submerged into the sea in the coming decades. Also, with the concentration of carbon dioxide rising in the atmosphere, oceans are absorbing more of it. This is leading to ocean acidification. The impact of this phenomenon can be disastrous for ocean biodiversity, particularly the coral reefs. 

Adverse Impact on Terrestrial Ecosystems of the Earth

It has been recorded that many flora and fauna species are heading northwards in Northern Hemisphere. Significant changes have been observed in the migratory movements of birds across the world. Early arrival to their summer feeding and breeding grounds is quite evident. Expert biologists suggest that rising temperatures in the tropical and subtropical regions may lead to an outbreak of new diseases, which in turn may render many floral and faunal species extinct.

Social and Economic Impact

A rising number of extreme weather events will have an adverse impact on agriculture and fisheries. Rising global temperatures will have a negative impact on the productivity of human beings, particularly in tropical and subtropical regions of the earth. The impact on life and livelihoods of indigenous people across the world will be even more pronounced. 

Global Warming Solutions

Global cooperation for reduction of emissions.

It is time that the target of containing the global average temperature rise within 1.5 degrees Celsius of pre-industrial levels is taken seriously. Also, global efforts should be based on a spirit of Common But Differentiated Responsibility. This will ensure that historical injustices done to the global south are duly acknowledged, and they have an equal chance to transform themselves into developed countries. Countries must act proactively to achieve Net Zero Emission status at the earliest. 

Transition to Cleaner and Greener Forms of Energy

Thermal power plants based on coal should be made more efficient and inefficient ones should be phased off. Also, mass adoption of renewable forms of energy like solar should be promoted. Similarly, avenues for using hydrogen as energy fuel should be looked into. We must also explore the possibility of Nuclear fusion for energy generation, in addition to making nuclear fission-based energy generation safer.

Changes in Agricultural Practices and Land Use

Agriculture based on the use of nitrogenous fertilizers must be replaced with organic farming techniques. Also, methane gas released from agricultural and cattle waste must be trapped as biogas for domestic usage. Massive afforestation drives must be organized. Urban governments must make it a point to include green spaces in urban planning.

Improving Transportation System

The advent of E-vehicles is a welcome change, but we need to make the batteries used in these vehicles more efficient. Urban planners must make public transportation systems inherent as a benchmark of good urban planning. Also, urban planning should be such that it promotes more walking and cycling habits among the residents. 

Behavioural Changes

All the above discussions will have no meaning if we as individuals are not sensitive enough. We need to make reducing, reusing and recycling a mantra of our living. It should be our civic duty to save water, and wildlife and raise awareness among others. 

Solar Geoengineering

Solar geoengineering, a proposed climate intervention method, aims to counteract global warming by reflecting a portion of the sun’s rays back into space. One prominent approach involves injecting substances like sulphur dioxide into the upper atmosphere to create reflective aerosols. These particles can scatter sunlight, reducing the Earth’s temperature. However, solar geoengineering is a topic of debate, with concerns about its side effects, such as disrupted weather patterns and potential geopolitical risks. Research in this field is ongoing, but it remains a theoretical concept with limited practical implementation.

Can Solar Geoengineering Halt Global Warming?

Solar geoengineering, specifically solar radiation management (SRM), is under scrutiny as a potential method to mitigate global warming. SRM involves reflecting sunlight away from Earth, often by injecting substances like sulphur dioxide into the upper atmosphere to create reflective aerosols. However, its effectiveness remains a subject of debate, with concerns about potential side effects and ethical implications. While research in this field is ongoing, solar geoengineering is currently in a theoretical stage, with limited practical implementation.

Global Warming Conclusion

It is rightly said that “Charity begins at home.” Climate action will be more efficient if we go by this spirit. To begin with, each individual can make sure that what is happening in their house and immediate surroundings is in harmony with the environment. If this can happen, all the policies we are making at the local, national, regional and global levels will give far better results. 

Global Warming UPSC

Each year, we read about rising global temperatures. Also, catching the headlines is the news related to disasters caused by events like cyclones, forest fires, floods and drought. All these phenomena can be attributed to one single cause which is global warming. 

Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post-Industrial Revolution, have led to an increase in the rate of this temperature increase.

Sharing is caring!

Why is global warming a problem?

Global Warming at present rate can lead to disastrous impacts like rising sea level, out break of new diseases, extreme weather events among others.

What are 3 causes of global warming?

Human induced green house gas emission due to activities like agriculture, industrial emissions, transportation are the top 3 causes of global warming.

What are 5 effects of global warming?

Rising sea level, out break of new diseases, extreme weather events, changes in biodiversity and melting of glaciers are top 5 effects of global warming.

Why global warming is important?

Global warming at its natural rate is important to keep up the temperature of earth within the range that makes it habitable. This makes global warming important.

Can we control global warming?

Number of mitigation measures like shifting to cleaning forms of energy and transportation can be taken to control global warming.

Who help with global warming?

Global Warming is a collective challenge for entire humanity. Citizens, civil societies, governments and businesses must act in unison to address it.

Sakshi Gupta

I, Sakshi Gupta, am a content writer to empower students aiming for UPSC, PSC, and other competitive exams. My objective is to provide clear, concise, and informative content that caters to your exam preparation needs. I strive to make my content not only informative but also engaging, keeping you motivated throughout your journey!

Money Market

Leave a comment

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Trending Event

  • TNPSC Group 4 Result 2024
  • KPSC KAS Hall Ticket 2024
  • MPSC Prelims Admit Card 2024

P2I Hinglish

Recent Posts

PSIR Batch

  • UPSC Online Coaching
  • UPSC Exam 2024
  • UPSC Syllabus 2024
  • UPSC Prelims Syllabus 2024
  • UPSC Mains Syllabus 2024
  • UPSC Exam Pattern 2024
  • UPSC Age Limit 2024
  • UPSC Calendar 2024
  • UPSC Syllabus in Hindi
  • UPSC Full Form
  • UPPSC Exam 2024
  • UPPSC Calendar
  • UPPSC Syllabus 2024
  • UPPSC Exam Pattern 2024
  • UPPSC Application Form 2024
  • UPPSC Eligibility Criteria 2024
  • UPPSC Admit card 2024
  • UPPSC Salary And Posts
  • UPPSC Cut Off
  • UPPSC Previous Year Paper

BPSC Exam 2024

  • BPSC 70th Notification
  • BPSC 69th Exam Analysis
  • BPSC Admit Card
  • BPSC Syllabus
  • BPSC Exam Pattern
  • BPSC Cut Off
  • BPSC Question Papers

SSC CGL 2024

  • SSC CGL Exam 2024
  • SSC CGL Syllabus 2024
  • SSC CGL Cut off
  • SSC CGL Apply Online
  • SSC CGL Salary
  • SSC CGL Previous Year Question Paper
  • SSC MTS 2024
  • SSC MTS Apply Online 2024
  • SSC MTS Syllabus 2024
  • SSC MTS Salary 2024
  • SSC MTS Eligibility Criteria 2024
  • SSC MTS Previous Year Paper

SSC Stenographer 2024

  • SSC Stenographer Notification 2024
  • SSC Stenographer Apply Online 2024
  • SSC Stenographer Syllabus 2024
  • SSC Stenographer Salary 2024
  • SSC Stenographer Eligibility Criteria 2024

SSC GD Constable 2025

  • SSC GD Salary 2025
  • SSC GD Constable Syllabus 2025
  • SSC GD Eligibility Criteria 2025

IMPORTANT EXAMS

youtube

  • Terms & Conditions
  • Return & Refund Policy
  • Privacy Policy

A cityscape view with reflections of people on windows and a dramatic cloudy sky in the background.

A problem built into our relationship with energy itself. Photo by Ferdinando Scianna/Magnum

Deep warming

Even if we ‘solve’ global warming, we face an older, slower problem. waste heat could radically alter earth’s future.

by Mark Buchanan   + BIO

The world will be transformed. By 2050, we will be driving electric cars and flying in aircraft running on synthetic fuels produced through solar and wind energy. New energy-efficient technologies, most likely harnessing artificial intelligence, will dominate nearly all human activities from farming to heavy industry. The fossil fuel industry will be in the final stages of a terminal decline. Nuclear fusion and other new energy sources may have become widespread. Perhaps our planet will even be orbited by massive solar arrays capturing cosmic energy from sunlight and generating seemingly endless energy for all our needs.

That is one possible future for humanity. It’s an optimistic view of how radical changes to energy production might help us slow or avoid the worst outcomes of global warming. In a report from 1965, scientists from the US government warned that our ongoing use of fossil fuels would cause global warming with potentially disastrous consequences for Earth’s climate. The report, one of the first government-produced documents to predict a major crisis caused by humanity’s large-scale activities, noted that the likely consequences would include higher global temperatures, the melting of the ice caps and rising sea levels. ‘Through his worldwide industrial civilisation,’ the report concluded, ‘Man is unwittingly conducting a vast geophysical experiment’ – an experiment with a highly uncertain outcome, but clear and important risks for life on Earth.

Since then, we’ve dithered and doubted and argued about what to do, but still have not managed to take serious action to reduce greenhouse gas emissions, which continue to rise. Governments around the planet have promised to phase out emissions in the coming decades and transition to ‘green energy’. But global temperatures may be rising faster than we expected: some climate scientists worry that rapid rises could create new problems and positive feedback loops that may accelerate climate destabilisation and make parts of the world uninhabitable long before a hoped-for transition is possible.

Despite this bleak vision of the future, there are reasons for optimists to hope due to progress on cleaner sources of renewable energy, especially solar power. Around 2010, solar energy generation accounted for less than 1 per cent of the electricity generated by humanity. But experts believe that, by 2027, due to falling costs, better technology and exponential growth in new installations, solar power will become the largest global energy source for producing electricity. If progress on renewables continues, we might find a way to resolve the warming problem linked to greenhouse gas emissions. By 2050, large-scale societal and ecological changes might have helped us avoid the worst consequences of our extensive use of fossil fuels.

It’s a momentous challenge. And it won’t be easy. But this story of transformation only hints at the true depth of the future problems humanity will confront in managing our energy use and its influence over our climate.

As scientists are gradually learning, even if we solve the immediate warming problem linked to the greenhouse effect, there’s another warming problem steadily growing beneath it. Let’s call it the ‘deep warming’ problem. This deeper problem also raises Earth’s surface temperature but, unlike global warming, it has nothing to do with greenhouse gases and our use of fossil fuels. It stems directly from our use of energy in all forms and our tendency to use more energy over time – a problem created by the inevitable waste heat that is generated whenever we use energy to do something. Yes, the world may well be transformed by 2050. Carbon dioxide levels may stabilise or fall thanks to advanced AI-assisted technologies that run on energy harvested from the sun and wind. And the fossil fuel industry may be taking its last breaths. But we will still face a deeper problem. That’s because ‘deep warming’ is not created by the release of greenhouse gases into the atmosphere. It’s a problem built into our relationship with energy itself.

F inding new ways to harness more energy has been a constant theme of human development. The evolution of humanity – from early modes of hunter-gathering to farming and industry – has involved large systematic increases in our per-capita energy use. The British historian and archaeologist Ian Morris estimates, in his book Foragers, Farmers, and Fossil Fuels: How Human Values Evolve (2015), that early human hunter-gatherers, living more than 10,000 years ago, ‘captured’ around 5,000 kcal per person per day by consuming food, burning fuel, making clothing, building shelter, or through other activities. Later, after we turned to farming and enlisted the energies of domesticated animals, we were able to harness as much as 30,000 kcal per day. In the late 17th century , the exploitation of coal and steam power marked another leap: by 1970, the use of fossil fuels allowed humans to consume some 230,000 kcal per person per day. (When we think about humanity writ large as ‘humans’, it’s important to acknowledge that the average person in the wealthiest nations consumes up to 100 times more energy than the average person in the poorest nations.) As the global population has risen and people have invented new energy-dependent technologies, our global energy use has continued to climb.

In many respects, this is great. We can now do more with less effort and achieve things that were unimaginable to the 17th-century inventors of steam engines, let alone to our hominin ancestors. We’ve made powerful mining machines, superfast trains, lasers for use in telecommunications and brain-imaging equipment. But these creations, while helping us, are also subtly heating the planet.

All the energy we humans use – to heat our homes, run our factories, propel our automobiles and aircraft, or to run our electronics – eventually ends up as heat in the environment. In the shorter term, most of the energy we use flows directly into the environment. It gets there through hot exhaust gases, friction between tires and roads, the noises generated by powerful engines, which spread out, dissipate, and eventually end up as heat. However, a small portion of the energy we use gets stored in physical changes, such as in new steel, plastic or concrete. It’s stored in our cities and technologies. In the longer term, as these materials break down, the energy stored inside also finds its way into the environment as heat. This is a direct consequence of the well-tested principles of thermodynamics.

Waste heat will pose a problem that is every bit as serious as global warming from greenhouse gases

In the early decades of the 21st century , this heat created by simply using energy, known as ‘waste heat’, is not so serious. It’s equivalent to roughly 2 per cent of the planetary heating imbalance caused by greenhouse gases – for now. But, with the passing of time, the problem is likely to get much more serious. That’s because humans have a historical tendency to consistently discover and produce things, creating entirely new technologies and industries in the process: domesticated animals for farming; railways and automobiles; global air travel and shipping; personal computers, the internet and mobile phones. The result of such activities is that we end up using more and more energy, despite improved energy efficiency in nearly every area of technology.

During the past two centuries at least (and likely for much longer), our yearly energy use has doubled roughly every 30 to 50 years . Our energy use seems to be growing exponentially, a trend that shows every sign of continuing. We keep finding new things to do and almost everything we invent requires more and more energy: consider the enormous energy demands of cryptocurrency mining or the accelerating energy requirements of AI.

If this historical trend continues, scientists estimate waste heat will pose a problem in roughly 150-200 years that is every bit as serious as the current problem of global warming from greenhouse gases. However, deep heating will be more pernicious as we won’t be able to avoid it by merely shifting from one kind energy to another. A profound problem will loom before us: can we set strict limits on all the energy we use? Can we reign in the seemingly inexorable expansion of our activities to avoid destroying our own environment?

Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the ‘waste heat’ problem around 15 years ago.

O ne of the first people to describe the problem is the Harvard astrophysicist Eric Chaisson, who discussed the issue of waste heat in a paper titled ‘Long-Term Global Heating from Energy Usage’ (2008). He concluded that our technological society may be facing a fundamental limit to growth due to ‘unavoidable global heating … dictated solely by the second law of thermodynamics, a biogeophysical effect often ignored when estimating future planetary warming scenarios’. When I emailed Chaisson to learn more, he told me the history of his thinking on the problem:

It was on a night flight, Paris-Boston [circa] 2006, after a UNESCO meeting on the environment when it dawned on me that the IPCC were overlooking something. While others on the plane slept, I crunched some numbers literally on the back of an envelope … and then hoped I was wrong, that is, hoped that I was incorrect in thinking that the very act of using energy heats the air, however slightly now.

The transformation of energy into heat is among the most ubiquitous processes of physics

Chaisson drafted the idea up as a paper and sent it to an academic journal. Two anonymous reviewers were eager for it to be published. ‘A third tried his damnedest to kill it,’ Chaisson said, the reviewer claiming the findings were ‘irrelevant and distracting’. After it was finally published, the paper got some traction when it was covered by a journalist and ran as a feature story on the front page of The Boston Globe . The numbers Chaisson crunched, predictions of our mounting waste heat, were even run on a supercomputer at the US National Center for Atmospheric Research, by Mark Flanner, a professor of earth system science. Flanner, Chaisson suspected at the time, was likely ‘out to prove it wrong’. But, ‘after his machine crunched for many hours’, he saw the same results that Chaisson had written on the back of an envelope that night in the plane.

Around the same time, also in 2008, two engineers, Nick Cowern and Chihak Ahn, wrote a research paper entirely independent of Chaisson’s work, but with similar conclusions. This was how I first came across the problem. Cowern and Ahn’s study estimated the total amount of waste heat we’re currently releasing to the environment, and found that it is, right now, quite small. But, like Chaisson, they acknowledged that the problem would eventually become serious unless steps were taken to avoid it.

That’s some of the early history of thinking in this area. But these two papers, and a few other analyses since, point to the same unsettling conclusion: what I am calling ‘deep warming’ will be a big problem for humanity at some point in the not-too-distant future. The precise date is far from certain. It might be 150 years , or 400, or 800, but it’s in the relatively near future, not the distant future of, say, thousands or millions of years. This is our future.

T he transformation of energy into heat is among the most ubiquitous processes of physics. As cars drive down roads, trains roar along railways, planes cross the skies and industrial plants turn raw materials into refined products, energy gets turned into heat, which is the scientific word for energy stored in the disorganised motions of molecules at the microscopic level. As a plane flies from Paris to Boston, it burns fuel and thrusts hot gases into the air, generates lots of sound and stirs up contrails. These swirls of air give rise to swirls on smaller scales which in turn make smaller ones until the energy ultimately ends up lost in heat – the air is a little warmer than before, the molecules making it up moving about a little more vigorously. A similar process takes place when energy is used by the tiny electrical currents inside the microchips of computers, silently carrying out computations. Energy used always ends up as heat. Decades ago, research by the IBM physicist Rolf Landauer showed that a computation involving even a single computing bit will release a certain minimum amount of heat to the environment.

How this happens is described by the laws of thermodynamics, which were described in the mid-19th century by scientists including Sadi Carnot in France and Rudolf Clausius in Germany. Two key ‘laws’ summarise its main principles.

The first law of thermodynamics simply states that the total quantity of energy never changes but is conserved. Energy, in other words, never disappears, but only changes form. The energy initially stored in an aircraft’s fuel, for example, can be changed into the energetic motion of the plane. Turn on an electric heater, and energy initially held in electric currents gets turned into heat, which spreads into the air, walls and fabric of your house. The total energy remains the same, but it markedly changes form.

We’re generating waste heat all the time with everything we do

The second law of thermodynamics, equally important, is more subtle and states that, in natural processes, the transformation of energy always moves from more organised and useful forms to less organised and less useful forms. For an aircraft, the energy initially concentrated in jet fuel ends up dissipated in stirred-up winds, sounds and heat spread over vast areas of the atmosphere in a largely invisible way. It’s the same with the electric heater: the organised useful energy in the electric currents gets dissipated and spread into the low-grade warmth of the walls, then leaks into the outside air. Although the amount of energy remains the same, it gradually turns into less organised, less usable forms. The end point of the energy process produces waste heat. And we’re generating it all the time with everything we do.

Data on world energy consumption shows that, collectively, all humans on Earth are currently using about 170,000 terawatt-hours (TWh), which is a lot of energy in absolute terms – a terawatt-hour is the total energy consumed in one hour by any process using energy at a rate of 1 trillion watts. This huge number isn’t surprising, as it represents all the energy being used every day by the billions of cars and homes around the world, as well as by industry, farming, construction, air traffic and so on. But, in the early 21st century , the warming from this energy is still much less than the planetary heating due to greenhouse gases.

Concentrations of greenhouse gases such as CO 2 and methane are quite small, and only make a fractional difference to how much of the Sun’s energy gets trapped in the atmosphere, rather than making it back out to space. Even so, this fractional difference has a huge effect because the stream of energy arriving from the Sun to Earth is so large. Current estimates of this greenhouse energy imbalance come to around 0.87 W per square meter, which translates into a total energy figure about 50 times larger than our waste heat. That’s reassuring. But as Cowern and Ahn wrote in their 2008 paper, things aren’t likely to stay this way over time because our energy usage keeps rising. Unless, that is, we can find some radical way to break the trend of using ever more energy.

O ne common objection to the idea of the deep warming is to claim that the problem won’t really arise. ‘Don’t worry,’ someone might say, ‘with efficient technology, we’re going to find ways to stop using more energy; though we’ll end up doing more things in the future, we’ll use less energy.’ This may sound plausible at first, because we are indeed getting more efficient at using energy in most areas of technology. Our cars, appliances and laptops are all doing more with less energy. If efficiency keeps improving, perhaps we can learn to run these things with almost no energy at all? Not likely, because there are limits to energy efficiency.

Over the past few decades, the efficiency of heating in homes – including oil and gas furnaces, and boilers used to heat water – has increased from less than 50 per cent to well above 90 per cent of what is theoretically possible. That’s good news, but there’s not much more efficiency to be realised in basic heating. The efficiency of lighting has also vastly improved, with modern LED lighting turning something like 70 per cent of the applied electrical energy into light. We will gain some efficiencies as older lighting gets completely replaced by LEDs, but there’s not a lot of room left for future efficiency improvements. Similar efficiency limits arise in the growing or cooking of food; in the manufacturing of cars, bikes and electronic devices; in transportation, as we’re taken from place to place; in the running of search engines, translation software, GPT-4 or other large-language models.

Even if we made significant improvements in the efficiencies of these technologies, we will only have bought a little time. These changes won’t delay by much the date when deep warming becomes a problem we must reckon with.

Optimising efficiencies is just a temporary reprieve, not a radical change in our human future

As a thought experiment, suppose we could immediately improve the energy efficiency of everything we do by a factor of 10 – a fantastically optimistic proposal. That is, imagine the energy output of humans on Earth has been reduced 10 times , from 170,000 TWh to 17,000 TWh . If our energy use keeps expanding, doubling every 30-50 years or so (as it has for centuries), then a 10-fold increase in waste heat will happen in just over three doubling times, which is about 130 years : 17,000 TWh doubles to 34,000 TWh , which doubles to 68,000 TWh , which doubles to 136,000 TWh , and so on. All those improvements in energy efficiency would quickly evaporate. The date when deep warming hits would recede by 130 years or so, but not much more. Optimising efficiencies is just a temporary reprieve, not a radical change in our human future.

Improvements in energy efficiency can also have an inverse effect on our overall energy use. It’s easy to think that if we make a technology more efficient, we’ll then use less energy through the technology. But economists are deeply aware of a paradoxical effect known as ‘rebound’, whereby improved energy efficiency, by making the use of a technology cheaper, actually leads to more widespread use of that technology – and more energy use too. The classic example, as noted by the British economist William Stanley Jevons in his book The Coal Question (1865), is the invention of the steam engine. This new technology could extract energy from burning coal more efficiently, but it also made possible so many new applications that the use of coal increased. A recent study by economists suggests that, across the economy, such rebound effects might easily swallow at least 50 per cent of any efficiency gains in energy use. Something similar has already happened with LED lights, for which people have found thousands of new uses.

If gains in efficiency won’t buy us lots of time, how about other factors, such as a reduction of the global population? Scientists generally believe that the current human population of more than 8 billion people is well beyond the limits of our finite planet, especially if a large fraction of this population aspires to the resource-intensive lifestyles of wealthy nations. Some estimates suggest that a more sustainable population might be more like 2 billion , which could reduce energy use significantly, potentially by a factor of three or four. However, this isn’t a real solution: again, as with the example of improved energy efficiency, a one-time reduction of our energy consumption by a factor of three will quickly be swallowed up by an inexorable rise in energy use. If Earth’s population were suddenly reduced to 2 billion – about a quarter of the current population – our energy gains would initially be enormous. But those gains would be erased in two doubling times, or roughly 60-100 years , as our energy demands would grow fourfold.

S o, why aren’t more people talking about this? The deep warming problem is starting to get more attention. It was recently mentioned on Twitter by the German climate scientist Stefan Rahmstorf, who cautioned that nuclear fusion, despite excitement over recent advances, won’t arrive in time to save us from our waste heat, and might make the problem worse. By providing another cheap source of energy, fusion energy could accelerate both the growth of our energy use and the reckoning of deep warming. A student of Rahmstorf’s, Peter Steiglechner, wrote his master’s thesis on the problem in 2018. Recognition of deep warming and its long-term implications for humanity is spreading. But what can we do about the problem?

Avoiding or delaying deep warming will involve slowing the rise of our waste heat, which means restricting the amount of energy we use and also choosing energy sources that exacerbate the problem as little as possible. Unlike the energy from fossil fuels or nuclear power, which add to our waste energy burden, renewable energy sources intercept energy that is already on its way to Earth, rather than producing additional waste heat. In this sense, the deep warming problem is another reason to pursue renewable energy sources such as solar or wind rather than alternatives such as nuclear fusion, fission or even geothermal power. If we derive energy from any of these sources, we’re unleashing new flows of energy into the Earth system without making a compensating reduction. As a result, all such sources will add to the waste heat problem. However, if renewable sources of energy are deployed correctly, they need not add to our deposition of waste heat in the environment. By using this energy, we produce no more waste heat than would have been created by sunlight in the first place.

Take the example of wind energy. Sunlight first stirs winds into motion by heating parts of the planet unequally, causing vast cells of convection. As wind churns through the atmosphere, blows through trees and over mountains and waves, most of its energy gets turned into heat, ending up in the microscopic motions of molecules. If we harvest some of this wind energy through turbines, it will also be turned into heat in the form of stored energy. But, crucially, no more heat is generated than if there had been no turbines to capture the wind.

The same can hold true for solar energy. In an array of solar cells, if each cell only collects the sunlight falling on it – which would ordinarily have been absorbed by Earth’s surface – then the cells don’t alter how much waste heat gets produced as they generate energy. The light that would have warmed Earth’s surface instead goes into the solar cells, gets used by people for some purpose, and then later ends up as heat. In this way we reduce the amount of heat being absorbed by Earth by precisely the same amount as the energy we are extracting for human use. We are not adding to overall planetary heating. This keeps the waste energy burden unchanged, at least in the relatively near future, even if we go on extracting and using ever larger amounts of energy.

Covering deserts in dark panels would absorb a lot more energy than the desert floor

Chaisson summarised the problem quite clearly in 2008:

I’m now of the opinion … that any energy that’s dug up on Earth – including all fossil fuels of course, but also nuclear and ground-sourced geothermal – will inevitably produce waste heat as a byproduct of humankind’s use of energy. The only exception to that is energy arriving from beyond Earth, this is energy here and now and not dug up, namely the many solar energies (plural) caused by the Sun’s rays landing here daily … The need to avoid waste heat is indeed the single, strongest, scientific argument to embrace solar energies of all types.

But not just any method of gathering solar energy will avoid the deep warming problem. Doing so requires careful engineering. For example, covering deserts with solar panels would add to planetary heating because deserts reflect a lot of incident light back out to space, so it is never absorbed by Earth (and therefore doesn’t produce waste heat). Covering deserts in dark panels would absorb a lot more energy than the desert floor and would heat the planet further.

We’ll also face serious problems in the long run if our energy appetite keeps increasing. Futurists dream of technologies deployed in space where huge panels would absorb sunlight that would otherwise have passed by Earth and never entered our atmosphere. Ultimately, they believe, this energy could be beamed down to Earth. Like nuclear energy, such technologies would add an additional energy source to the planet without any compensating removal of heating from the sunlight currently striking our planet’s surface. Any effort to produce more energy than is normally available from sunlight at Earth’s surface will only make our heating problems worse.

D eep warming is simply a consequence of the laws of physics and our inquisitive nature. It seems to be in our nature to constantly learn and develop new things, changing our environment in the process. For thousands of years, we have harvested and exploited ever greater quantities of energy in this pursuit, and we appear poised to continue along this path with the rapidly expanding use of renewable energy sources – and perhaps even more novel sources such as nuclear fusion. But this path cannot proceed indefinitely without consequences.

The logic that more energy equals more warming sets up a profound dilemma for our future. The laws of physics and the habits ingrained in us from our long evolutionary history are steering us toward trouble. We may have a technological fix for greenhouse gas warming – just shift from fossil fuels to cleaner energy sources – but there is no technical trick to get us out of the deep warming problem. That won’t stop some scientists from trying.

Perhaps, believing that humanity is incapable of reducing its energy usage, we’ll adopt a fantastic scheme to cool the planet, such as planetary-scale refrigeration or using artificially engineered tornadoes to transport heat from Earth’s surface to the upper atmosphere where it can be radiated away to space. As far-fetched as such approaches sound, scientists have given some serious thought to these and other equally bizarre ideas, which seem wholly in the realm of science fiction. They’re schemes that will likely make the problem worse not better.

We will need to transform the human story. It must become a story of doing less, not more

I see several possibilities for how we might ultimately respond. As with greenhouse gas warming, there will probably be an initial period of disbelief, denial and inaction, as we continue with unconstrained technological advance and growing energy use. Our planet will continue warming. Sooner or later, however, such warming will lead to serious disruptions of the Earth environment and its ecosystems. We won’t be able to ignore this for long, and it may provide a natural counterbalance to our energy use, as our technical and social capacity to generate and use ever more energy will be eroded. We may eventually come to some uncomfortable balance in which we just scrabble out a life on a hot, compromised planet because we lack the moral and organisational ability to restrict our energy use enough to maintain a sound environment.

An alternative would require a radical break with our past: using less energy. Finding a way to use less energy would represent a truly fundamental rupture with all of human history, something entirely novel. A rupture of this magnitude won’t come easily. However, if we could learn to view restrictions on our energy use as a non-negotiable element of life on Earth, we may still be able to do many of the things that make us essentially human: learning, discovering, inventing, creating. In this scenario, any helpful new technology that comes into use and begins using lots of energy would require a balancing reduction in energy use elsewhere. In such a way, we might go on with the future being perpetually new, and possibly better.

None of this is easily achieved and will likely mirror our current struggles to come to agreements on greenhouse gas heating. There will be vicious squabbles, arguments and profound polarisation, quite possibly major wars. Humanity will never have faced a challenge of this magnitude, and we won’t face up to it quickly or easily, I expect. But we must. Planetary heating is in our future – the very near future and further out as well. Many people will find this conclusion surprisingly hard to swallow, perhaps because it implies fundamental restrictions on our future here on Earth: we can’t go on forever using more and more energy, and, at the same time, expecting the planet’s climate to remain stable.

The world will likely be transformed by 2050. And, sometime after that, we will need to transform the human story. The narrative arc of humanity must become a tale of continuing innovation and learning, but also one of careful management. It must become a story, in energy terms, of doing less, not more. There’s no technology for entirely escaping waste heat, only techniques.

This is important to remember as we face up to the extremely urgent challenge of heating linked to fossil-fuel use and greenhouse gases. Global warming is just the beginning of our problems. It’s a testing ground to see if we can manage an intelligent and coordinated response. If we can handle this challenge, we might be better prepared, more capable and resilient as a species to tackle an even harder one.

Black-and-white photo of a man in a suit and hat grabbing another man by his collar in front of a bar with bottles.

Political philosophy

C L R James and America

The brilliant Trinidadian thinker is remembered as an admirer of the US but he also warned of its dark political future

Harvey Neptune

A suburban street with mountains in the background, featuring a girl on a bike, parked cars, and old furniture on the sidewalk in front of a house.

Progress and modernity

The great wealth wave

The tide has turned – evidence shows ordinary citizens in the Western world are now richer and more equal than ever before

Daniel Waldenström

Silhouette of a person walking through a spray of water at sunset with cars and buildings in the background.

Neuroscience

The melting brain

It’s not just the planet and not just our health – the impact of a warming climate extends deep into our cortical fissures

Clayton Page Aldern

A brick house with a tiled roof, surrounded by a well-maintained garden with bushes and colourful flowers.

Falling for suburbia

Modernists and historians alike loathed the millions of new houses built in interwar Britain. But their owners loved them

Michael Gilson

Close-up of a person’s hand using a smartphone in a dimly lit room with blurred lights in the background. The phone screen shows the text ‘How can I help you today?’ and a text input field.

Computing and artificial intelligence

Mere imitation

Generative AI has lately set off public euphoria: the machines have learned to think! But just how intelligent is AI?

A black-and-white photo of a person riding a horse in, with a close-up of another horse in the foreground under bright sunlight.

Anthropology

Your body is an archive

If human knowledge can disappear so easily, why have so many cultural practices survived without written records?

Helena Miton

essay on effect of global warming

Lisa Hupp/USFWS

Arctic Match Live Now!

For a limited time, all gifts are being matched to stop Big Oil from blocking a new once-in-a-lifetime opportunity to protect the Arctic.

Global Warming 101

Everything you wanted to know about our changing climate but were too afraid to ask.

Pedestrians use umbrellas and protective clothing for shade in Beijing, China

Temperatures in Beijing rose above 104 degrees Fahrenheit on July 6, 2023.

Jia Tianyong/China News Service/VCG via Getty Images

A headshot of Jeff Turrentine

  • Share this page block

What is global warming?

What causes global warming, how is global warming linked to extreme weather, what are the other effects of global warming, where does the united states stand in terms of global-warming contributors, is the united states doing anything to prevent global warming, is global warming too big a problem for me to help tackle.

A: Since the Industrial Revolution, the global annual temperature has increased in total by a little more than 1 degree Celsius, or about 2 degrees Fahrenheit. Between 1880—the year that accurate recordkeeping began—and 1980, it rose on average by 0.07 degrees Celsius (0.13 degrees Fahrenheit) every 10 years. Since 1981, however, the rate of increase has more than doubled: For the last 40 years, we’ve seen the global annual temperature rise by 0.18 degrees Celsius, or 0.32 degrees Fahrenheit, per decade.

The result? A planet that has never been hotter . Nine of the 10 warmest years since 1880 have occurred since 2005—and the 5 warmest years on record have all occurred since 2015. Climate change deniers have argued that there has been a “pause” or a “slowdown” in rising global temperatures, but numerous studies, including a 2018 paper published in the journal Environmental Research Letters , have disproved this claim. The impacts of global warming are already harming people around the world.

Now climate scientists have concluded that we must limit global warming to 1.5 degrees Celsius by 2040 if we are to avoid a future in which everyday life around the world is marked by its worst, most devastating effects: the extreme droughts, wildfires, floods, tropical storms, and other disasters that we refer to collectively as climate change . These effects are felt by all people in one way or another but are experienced most acutely by the underprivileged, the economically marginalized, and people of color, for whom climate change is often a key driver of poverty, displacement, hunger, and social unrest.

A: Global warming occurs when carbon dioxide (CO 2 ) and other air pollutants collect in the atmosphere and absorb sunlight and solar radiation that have bounced off the earth’s surface. Normally this radiation would escape into space, but these pollutants, which can last for years to centuries in the atmosphere, trap the heat and cause the planet to get hotter. These heat-trapping pollutants—specifically carbon dioxide, methane, nitrous oxide, water vapor, and synthetic fluorinated gases—are known as greenhouse gases, and their impact is called the greenhouse effect.

Though natural cycles and fluctuations have caused the earth’s climate to change several times over the last 800,000 years, our current era of global warming is directly attributable to human activity—specifically to our burning of fossil fuels such as coal, oil, gasoline, and natural gas, which results in the greenhouse effect. In the United States, the largest source of greenhouse gases is transportation (29 percent), followed closely by electricity production (28 percent) and industrial activity (22 percent). Learn about the natural and human causes of climate change .

Curbing dangerous climate change requires very deep cuts in emissions, as well as the use of alternatives to fossil fuels worldwide. The good news is that countries around the globe have formally committed—as part of the 2015 Paris Climate Agreement —to lower their emissions by setting new standards and crafting new policies to meet or even exceed those standards. The not-so-good news is that we’re not working fast enough. To avoid the worst impacts of climate change, scientists tell us that we need to reduce global carbon emissions by as much as 40 percent by 2030. For that to happen, the global community must take immediate, concrete steps: to decarbonize electricity generation by equitably transitioning from fossil fuel–based production to renewable energy sources like wind and solar; to electrify our cars and trucks; and to maximize energy efficiency in our buildings, appliances, and industries.

A: Scientists agree that the earth’s rising temperatures are fueling longer and hotter heat waves , more frequent droughts , heavier rainfall , and more powerful hurricanes .

In 2015, for example, scientists concluded that a lengthy drought in California—the state’s worst water shortage in 1,200 years —had been intensified by 15 to 20 percent by global warming. They also said the odds of similar droughts happening in the future had roughly doubled over the past century. And in 2016, the National Academies of Science, Engineering, and Medicine announced that we can now confidently attribute some extreme weather events, like heat waves, droughts, and heavy precipitation, directly to climate change.

The earth’s ocean temperatures are getting warmer, too—which means that tropical storms can pick up more energy. In other words, global warming has the ability to turn a category 3 storm into a more dangerous category 4 storm. In fact, scientists have found that the frequency of North Atlantic hurricanes has increased since the early 1980s, as has the number of storms that reach categories 4 and 5. The 2020 Atlantic hurricane season included a record-breaking 30 tropical storms, 6 major hurricanes, and 13 hurricanes altogether. With increased intensity come increased damage and death. The United States saw an unprecedented 22 weather and climate disasters that caused at least a billion dollars’ worth of damage in 2020, but, according to NOAA, 2017 was the costliest on record and among the deadliest as well: Taken together, that year's tropical storms (including Hurricanes Harvey, Irma, and Maria) caused nearly $300 billion in damage and led to more than 3,300 fatalities.

The impacts of global warming are being felt everywhere. Extreme heat waves have caused tens of thousands of deaths around the world in recent years. And in an alarming sign of events to come, Antarctica has lost nearly four trillion metric tons of ice since the 1990s. The rate of loss could speed up if we keep burning fossil fuels at our current pace, some experts say, causing sea levels to rise several meters in the next 50 to 150 years and wreaking havoc on coastal communities worldwide.

A: Each year scientists learn more about the consequences of global warming , and each year we also gain new evidence of its devastating impact on people and the planet. As the heat waves, droughts, and floods associated with climate change become more frequent and more intense, communities suffer and death tolls rise. If we’re unable to reduce our emissions, scientists believe that climate change could lead to the deaths of more than 250,000 people around the globe every year and force 100 million people into poverty by 2030.

Global warming is already taking a toll on the United States. And if we aren’t able to get a handle on our emissions, here’s just a smattering of what we can look forward to:

  • Disappearing glaciers, early snowmelt, and severe droughts will cause more dramatic water shortages and continue to increase the risk of wildfires in the American West.
  • Rising sea levels will lead to even more coastal flooding on the Eastern Seaboard, especially in Florida, and in other areas such as the Gulf of Mexico.
  • Forests, farms, and cities will face troublesome new pests , heat waves, heavy downpours, and increased flooding . All of these can damage or destroy agriculture and fisheries.
  • Disruption of habitats such as coral reefs and alpine meadows could drive many plant and animal species to extinction.
  • Allergies, asthma, and infectious disease outbreaks will become more common due to increased growth of pollen-producing ragweed , higher levels of air pollution , and the spread of conditions favorable to pathogens and mosquitoes.

Though everyone is affected by climate change, not everyone is affected equally. Indigenous people, people of color, and the economically marginalized are typically hit the hardest. Inequities built into our housing , health care , and labor systems make these communities more vulnerable to the worst impacts of climate change—even though these same communities have done the least to contribute to it.

A: In recent years, China has taken the lead in global-warming pollution , producing about 26 percent of all CO2 emissions. The United States comes in second. Despite making up just 4 percent of the world’s population, our nation produces a sobering 13 percent of all global CO2 emissions—nearly as much as the European Union and India (third and fourth place) combined. And America is still number one, by far, in cumulative emissions over the past 150 years. As a top contributor to global warming, the United States has an obligation to help propel the world to a cleaner, safer, and more equitable future. Our responsibility matters to other countries, and it should matter to us, too.

A: We’ve started. But in order to avoid the worsening effects of climate change, we need to do a lot more—together with other countries—to reduce our dependence on fossil fuels and transition to clean energy sources.

Under the administration of President Donald Trump (a man who falsely referred to global warming as a “hoax”), the United States withdrew from the Paris Climate Agreement, rolled back or eliminated dozens of clean air protections, and opened up federally managed lands, including culturally sacred national monuments, to fossil fuel development. Although President Biden has pledged to get the country back on track, years of inaction during and before the Trump administration—and our increased understanding of global warming’s serious impacts—mean we must accelerate our efforts to reduce greenhouse gas emissions.

Despite the lack of cooperation from the Trump administration, local and state governments made great strides during this period through efforts like the American Cities Climate Challenge and ongoing collaborations like the Regional Greenhouse Gas Initiative . Meanwhile, industry and business leaders have been working with the public sector, creating and adopting new clean-energy technologies and increasing energy efficiency in buildings, appliances, and industrial processes. 

Today the American automotive industry is finding new ways to produce cars and trucks that are more fuel efficient and is committing itself to putting more and more zero-emission electric vehicles on the road. Developers, cities, and community advocates are coming together to make sure that new affordable housing is built with efficiency in mind , reducing energy consumption and lowering electric and heating bills for residents. And renewable energy continues to surge as the costs associated with its production and distribution keep falling. In 2020 renewable energy sources such as wind and solar provided more electricity than coal for the very first time in U.S. history.

President Biden has made action on global warming a high priority. On his first day in office, he recommitted the United States to the Paris Climate Agreement, sending the world community a strong signal that we were determined to join other nations in cutting our carbon pollution to support the shared goal of preventing the average global temperature from rising more than 1.5 degrees Celsius above preindustrial levels. (Scientists say we must stay below a 2-degree increase to avoid catastrophic climate impacts.) And significantly, the president has assembled a climate team of experts and advocates who have been tasked with pursuing action both abroad and at home while furthering the cause of environmental justice and investing in nature-based solutions.

A: No! While we can’t win the fight without large-scale government action at the national level , we also can’t do it without the help of individuals who are willing to use their voices, hold government and industry leaders to account, and make changes in their daily habits.

Wondering how you can be a part of the fight against global warming? Reduce your own carbon footprint by taking a few easy steps: Make conserving energy a part of your daily routine and your decisions as a consumer. When you shop for new appliances like refrigerators, washers, and dryers, look for products with the government’s ENERGY STAR ® label; they meet a higher standard for energy efficiency than the minimum federal requirements. When you buy a car, look for one with the highest gas mileage and lowest emissions. You can also reduce your emissions by taking public transportation or carpooling when possible.

And while new federal and state standards are a step in the right direction, much more needs to be done. Voice your support of climate-friendly and climate change preparedness policies, and tell your representatives that equitably transitioning from dirty fossil fuels to clean power should be a top priority—because it’s vital to building healthy, more secure communities.

You don’t have to go it alone, either. Movements across the country are showing how climate action can build community , be led by those on the front lines of its impacts, and create a future that’s equitable and just for all .

This story was originally published on March 11, 2016 and has been updated with new information and links.

This NRDC.org story is available for online republication by news media outlets or nonprofits under these conditions: The writer(s) must be credited with a byline; you must note prominently that the story was originally published by NRDC.org and link to the original; the story cannot be edited (beyond simple things such as grammar); you can’t resell the story in any form or grant republishing rights to other outlets; you can’t republish our material wholesale or automatically—you need to select stories individually; you can’t republish the photos or graphics on our site without specific permission; you should drop us a note to let us know when you’ve used one of our stories.

Related Stories

A blurry image of a line of people wading through floodwaters from Tropical Storm Harvey in Beaumont Place, Houston, Texas, 2017

1.5 Degrees of Global Warming—Are We There Yet?

Protesters stand outside P&G headquarters with signs reading, "Charmin: Stop flushing our forests!"

When Customers and Investors Demand Corporate Sustainability

A ship with four large white domes moves through open water

Liquefied Natural Gas 101

When you sign up, you’ll become a member of NRDC’s Activist Network. We will keep you informed with the latest alerts and progress reports.

Newsroom Post

Climate change: a threat to human wellbeing and health of the planet. taking action now can secure our future.

BERLIN, Feb 28 – Human-induced climate change is causing dangerous and widespread disruption in nature and affecting the lives of billions of people around the world, despite efforts to reduce the risks. People and ecosystems least able to cope are being hardest hit, said scientists in the latest Intergovernmental Panel on Climate Change (IPCC) report, released today.

“This report is a dire warning about the consequences of inaction,” said Hoesung Lee, Chair of the IPCC. “It shows that climate change is a grave and mounting threat to our wellbeing and a healthy planet. Our actions today will shape how people adapt and nature responds to increasing climate risks.”

The world faces unavoidable multiple climate hazards over the next two decades with global warming of 1.5°C (2.7°F). Even temporarily exceeding this warming level will result in additional severe impacts, some of which will be irreversible. Risks for society will increase, including to infrastructure and low-lying coastal settlements.

The Summary for Policymakers of the IPCC Working Group II report,  Climate Change 2022: Impacts, Adaptation and Vulnerability was approved on Sunday, February 27 2022, by 195 member governments of the IPCC, through a virtual approval session that was held over two weeks starting on February 14.

Urgent action required to deal with increasing risks

Increased heatwaves, droughts and floods are already exceeding plants’ and animals’ tolerance thresholds, driving mass mortalities in species such as trees and corals. These weather extremes are occurring simultaneously, causing cascading impacts that are increasingly difficult to manage. They have exposed millions of people to acute food and water insecurity, especially in Africa, Asia, Central and South America, on Small Islands and in the Arctic.

To avoid mounting loss of life, biodiversity and infrastructure, ambitious, accelerated action is required to adapt to climate change, at the same time as making rapid, deep cuts in greenhouse gas emissions. So far, progress on adaptation is uneven and there are increasing gaps between action taken and what is needed to deal with the increasing risks, the new report finds. These gaps are largest among lower-income populations. 

The Working Group II report is the second instalment of the IPCC’s Sixth Assessment Report (AR6), which will be completed this year.

“This report recognizes the interdependence of climate, biodiversity and people and integrates natural, social and economic sciences more strongly than earlier IPCC assessments,” said Hoesung Lee. “It emphasizes the urgency of immediate and more ambitious action to address climate risks. Half measures are no longer an option.”

Safeguarding and strengthening nature is key to securing a liveable future

There are options to adapt to a changing climate. This report provides new insights into nature’s potential not only to reduce climate risks but also to improve people’s lives.

“Healthy ecosystems are more resilient to climate change and provide life-critical services such as food and clean water”, said IPCC Working Group II Co-Chair Hans-Otto Pörtner. “By restoring degraded ecosystems and effectively and equitably conserving 30 to 50 per cent of Earth’s land, freshwater and ocean habitats, society can benefit from nature’s capacity to absorb and store carbon, and we can accelerate progress towards sustainable development, but adequate finance and political support are essential.”

Scientists point out that climate change interacts with global trends such as unsustainable use of natural resources, growing urbanization, social inequalities, losses and damages from extreme events and a pandemic, jeopardizing future development.

“Our assessment clearly shows that tackling all these different challenges involves everyone – governments, the private sector, civil society – working together to prioritize risk reduction, as well as equity and justice, in decision-making and investment,” said IPCC Working Group II Co-Chair Debra Roberts.

“In this way, different interests, values and world views can be reconciled. By bringing together scientific and technological know-how as well as Indigenous and local knowledge, solutions will be more effective. Failure to achieve climate resilient and sustainable development will result in a sub-optimal future for people and nature.”

Cities: Hotspots of impacts and risks, but also a crucial part of the solution

This report provides a detailed assessment of climate change impacts, risks and adaptation in cities, where more than half the world’s population lives. People’s health, lives and livelihoods, as well as property and critical infrastructure, including energy and transportation systems, are being increasingly adversely affected by hazards from heatwaves, storms, drought and flooding as well as slow-onset changes, including sea level rise.

“Together, growing urbanization and climate change create complex risks, especially for those cities that already experience poorly planned urban growth, high levels of poverty and unemployment, and a lack of basic services,” Debra Roberts said.

“But cities also provide opportunities for climate action – green buildings, reliable supplies of clean water and renewable energy, and sustainable transport systems that connect urban and rural areas can all lead to a more inclusive, fairer society.”

There is increasing evidence of adaptation that has caused unintended consequences, for example destroying nature, putting peoples’ lives at risk or increasing greenhouse gas emissions. This can be avoided by involving everyone in planning, attention to equity and justice, and drawing on Indigenous and local knowledge.

A narrowing window for action

Climate change is a global challenge that requires local solutions and that’s why the Working Group II contribution to the IPCC’s Sixth Assessment Report (AR6) provides extensive regional information to enable Climate Resilient Development.

The report clearly states Climate Resilient Development is already challenging at current warming levels. It will become more limited if global warming exceeds 1.5°C (2.7°F). In some regions it will be impossible if global warming exceeds 2°C (3.6°F). This key finding underlines the urgency for climate action, focusing on equity and justice. Adequate funding, technology transfer, political commitment and partnership lead to more effective climate change adaptation and emissions reductions.

“The scientific evidence is unequivocal: climate change is a threat to human wellbeing and the health of the planet. Any further delay in concerted global action will miss a brief and rapidly closing window to secure a liveable future,” said Hans-Otto Pörtner.

For more information, please contact:

IPCC Press Office, Email: [email protected]   IPCC Working Group II:  Sina Löschke,  Komila Nabiyeva: [email protected]

Notes for Editors

Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change

The Working Group II report examines the impacts of climate change on nature and people around the globe. It explores future impacts at different levels of warming and the resulting risks and offers options to strengthen nature’s and society’s resilience to ongoing climate change, to fight hunger, poverty, and inequality and keep Earth a place worth living on – for current as well as for future generations. 

Working Group II introduces several new components in its latest report: One is a special section on climate change impacts, risks and options to act for cities and settlements by the sea, tropical forests, mountains, biodiversity hotspots, dryland and deserts, the Mediterranean as well as the polar regions. Another is an atlas that will present data and findings on observed and projected climate change impacts and risks from global to regional scales, thus offering even more insights for decision makers.

The Summary for Policymakers of the Working Group II contribution to the Sixth Assessment Report (AR6) as well as additional materials and information are available at https://www.ipcc.ch/report/ar6/wg2/

Note : Originally scheduled for release in September 2021, the report was delayed for several months by the COVID-19 pandemic, as work in the scientific community including the IPCC shifted online. This is the second time that the IPCC has conducted a virtual approval session for one of its reports.

AR6 Working Group II in numbers

270 authors from 67 countries

  • 47 – coordinating authors
  • 184 – lead authors
  • 39 – review editors
  • 675 – contributing authors

Over 34,000 cited references

A total of 62,418 expert and government review comments

(First Order Draft 16,348; Second Order Draft 40,293; Final Government Distribution: 5,777)

More information about the Sixth Assessment Report can be found  here .

Additional media resources

Assets available after the embargo is lifted on Media Essentials website .

Press conference recording, collection of sound bites from WGII authors, link to presentation slides, B-roll of approval session, link to launch Trello board including press release and video trailer in UN languages, a social media pack.

The website includes  outreach materials  such as videos about the IPCC and video recordings from  outreach events  conducted as webinars or live-streamed events.

Most videos published by the IPCC can be found on our  YouTube  channel. Credit for artwork

About the IPCC

The Intergovernmental Panel on Climate Change (IPCC) is the UN body for assessing the science related to climate change. It was established by the United Nations Environment Programme (UNEP) and the World Meteorological Organization (WMO) in 1988 to provide political leaders with periodic scientific assessments concerning climate change, its implications and risks, as well as to put forward adaptation and mitigation strategies. In the same year the UN General Assembly endorsed the action by the WMO and UNEP in jointly establishing the IPCC. It has 195 member states.

Thousands of people from all over the world contribute to the work of the IPCC. For the assessment reports, IPCC scientists volunteer their time to assess the thousands of scientific papers published each year to provide a comprehensive summary of what is known about the drivers of climate change, its impacts and future risks, and how adaptation and mitigation can reduce those risks.

The IPCC has three working groups:  Working Group I , dealing with the physical science basis of climate change;  Working Group II , dealing with impacts, adaptation and vulnerability; and  Working Group III , dealing with the mitigation of climate change. It also has a  Task Force on National Greenhouse Gas Inventories  that develops methodologies for measuring emissions and removals. As part of the IPCC, a Task Group on Data Support for Climate Change Assessments (TG-Data) provides guidance to the Data Distribution Centre (DDC) on curation, traceability, stability, availability and transparency of data and scenarios related to the reports of the IPCC.

IPCC assessments provide governments, at all levels, with scientific information that they can use to develop climate policies. IPCC assessments are a key input into the international negotiations to tackle climate change. IPCC reports are drafted and reviewed in several stages, thus guaranteeing objectivity and transparency. An IPCC assessment report consists of the contributions of the three working groups and a Synthesis Report. The Synthesis Report integrates the findings of the three working group reports and of any special reports prepared in that assessment cycle.

About the Sixth Assessment Cycle

At its 41st Session in February 2015, the IPCC decided to produce a Sixth Assessment Report (AR6). At its 42nd Session in October 2015 it elected a new Bureau that would oversee the work on this report and the Special Reports to be produced in the assessment cycle.

Global Warming of 1.5°C , an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty  was launched in October 2018.

Climate Change and Land , an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems  was launched in August 2019, and the  Special Report on the Ocean and Cryosphere in a Changing Climate  was released in September 2019.

In May 2019 the IPCC released the  2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories , an update to the methodology used by governments to estimate their greenhouse gas emissions and removals.

In August 2021 the IPCC released the Working Group I contribution to the AR6, Climate Change 2021, the Physical Science Basis

The Working Group III contribution to the AR6 is scheduled for early April 2022.

The Synthesis Report of the Sixth Assessment Report will be completed in the second half of 2022.

For more information go to  www.ipcc.ch

Related Content

Remarks by the ipcc chair during the press conference to present the working group ii contribution to the sixth assessment report.

Monday, 28 February 2022 Distinguished representatives of the media, WMO Secretary-General Petteri, UNEP Executive Director Andersen, We have just heard …

February 2022

Fifty-fifth session of the ipcc (ipcc-55) and twelfth session of working group ii (wgii-12), february 14, 2022, working group report, ar6 climate change 2022: impacts, adaptation and vulnerability.

  • Biology Article
  • Essay on Global Warming

Essay On Global Warming

Essay on global warming is an important topic for students to understand. The essay brings to light the plight of the environment and the repercussion of anthropogenic activities. Continue reading to discover tips and tricks for writing an engaging and interesting essay on global warming.

Essay On Global Warming in 300 Words

Global warming is a phenomenon where the earth’s average temperature rises due to increased amounts of greenhouse gases. Greenhouse gases such as carbon dioxide, methane and ozone trap the incoming radiation from the sun. This effect creates a natural “blanket”, which prevents the heat from escaping back into the atmosphere. This effect is called the greenhouse effect.

Contrary to popular belief, greenhouse gases are not inherently bad. In fact, the greenhouse effect is quite important for life on earth. Without this effect, the sun’s radiation would be reflected back into the atmosphere, freezing the surface and making life impossible. However, when greenhouse gases in excess amounts get trapped, serious repercussions begin to appear. The polar ice caps begin to melt, leading to a rise in sea levels. Furthermore, the greenhouse effect is accelerated when polar ice caps and sea ice melts. This is due to the fact the ice reflects 50% to 70% of the sun’s rays back into space, but without ice, the solar radiation gets absorbed. Seawater reflects only 6% of the sun’s radiation back into space. What’s more frightening is the fact that the poles contain large amounts of carbon dioxide trapped within the ice. If this ice melts, it will significantly contribute to global warming. 

A related scenario when this phenomenon goes out of control is the runaway-greenhouse effect. This scenario is essentially similar to an apocalypse, but it is all too real. Though this has never happened in the earth’s entire history, it is speculated to have occurred on Venus. Millions of years ago, Venus was thought to have an atmosphere similar to that of the earth. But due to the runaway greenhouse effect, surface temperatures around the planet began rising. 

If this occurs on the earth, the runaway greenhouse effect will lead to many unpleasant scenarios – temperatures will rise hot enough for oceans to evaporate. Once the oceans evaporate, the rocks will start to sublimate under heat. In order to prevent such a scenario, proper measures have to be taken to stop climate change.

More to Read: Learn How Greenhouse Effect works

Tips To Writing the Perfect Essay

Consider adopting the following strategies when writing an essay. These are proven methods of securing more marks in an exam or assignment.

  • Begin the essay with an introductory paragraph detailing the history or origin of the given topic.
  • Try to reduce the use of jargons. Use sparingly if the topic requires it.
  • Ensure that the content is presented in bulleted points wherever appropriate.
  • Insert and highlight factual data, such as dates, names and places.
  • Remember to break up the content into smaller paragraphs. 100-120 words per paragraph should suffice.
  • Always conclude the essay with a closing paragraph.

Explore more essays on biology or other related fields at BYJU’S.

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

essay on effect of global warming

Very helpful Byju’s

this app is very useful

Sample essay on global warming

Very nice and helpful⭐️

Amazing essay

This essay is very helpful to every student Thank you Byjus! 😊😊😊

This one is so helpful and easy to understand. Thank you, Byju’s!

essay on effect of global warming

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Gale - A Cengage Company

Global Warming

Long-term warming trends and increases in extreme weather events have the potential to impact all life on Earth. Even though at least 97 percent of climate scientists agree that human activities have contributed to rising global temperatures, the predominance and causes of these phenomena continue to be debated and many Americans deny global warming.

Read the overview below to gain a balanced understanding of the issues and explore the previews of opinion articles that highlight many perspectives on the response to global warming and climate change.

Access Through Your library >>  

Topic Home      |      Social Issues      |      Literature      |      Lifelong Learning & DIY      |      World History

Global warming topic overview.

"Global Warming and Climate Change." Opposing Viewpoints Online Collection , Gale, 2023.

Though the terms global warming and climate change are often used interchangeably, they have different meanings. Climate change describes long-term shifts in Earth's weather patterns that affect temperature, humidity, wind, cloud cover, and precipitation. Global warming refers explicitly to an increase in Earth's average surface temperatures caused by human activities, primarily the burning of fossil fuels. Anthropogenic climate change refers to changes in the climate caused by human activity, particularly industrialization and agricultural practices that release pollutants into the atmosphere.

Overwhelming scientific evidence supports the existence of both global warming and climate change. Through the United Nations' (UN) Intergovernmental Panel on Climate Change (IPCC), thousands of scientists work together to collect and analyze the latest available research related to climate change, its effects, and potential responses. In an interim update to its Sixth Assessment Report (AR6) in 2023, the IPCC estimated that global surface temperatures increased by 1.1°C (1.98°F) between the latter half of the nineteenth century and the first two decades of the twenty-first century. The IPCC has linked climate change and global warming to the increased occurrence and severity of storms, floods, droughts, and wildfires, warning that such disasters will increase further if temperatures continue to rise. The scientists' group also identifies water availability and food production as well as health and wealth being as experiencing observable, widespread, and substantial changes related to climate change. These threats have led scientists to identify global warming and climate change as a climate crisis . The IPCC recognizes human activity, particularly industrialization and certain agricultural practices that release carbon dioxide (CO2), as the primary driver of global warming and climate change.

Despite substantial evidence and a consensus among the scientific community, a vocal minority continues to challenge the science behind climate change. These critics characterize climate change as a natural phenomenon and dispute assertions that human activity has contributed to rising global temperatures. This position may be referred to as climate denial , and those who reject the scientific consensus are considered climate deniers . Fossil fuel companies often provide financial support to politicians, media campaigns, and organizations that promote climate denial.

  • Climate chang e refers to long-term shifts in weather patterns. Global warming is the increase in the planet's average surface temperatures caused by human activities such as the burning of fossil fuels.
  • Causes of climate change related to human activity are referred to as anthropogenic . Natural causes of climate change are called naturogenic .
  • Earth's atmosphere contains several gases that trap heat from the sun and prevent it from escaping into space. These gases are called greenhouse gases (GHGs).
  • July 2023 was the hottest month ever recorded on Earth.
  • Global warming has the potential to cause disruptions in the food supply, harm ecosystems and wildlife habitats, and threaten the planet's biodiversity.
  • Countries that experience the harshest effects of climate change are often low- and middle-income countries who contribute fewer greenhouse gas emissions than wealthier countries that do not experience the effects so intensely.
  • The United States has joined other countries in making commitments to fight climate change, but that commitment has largely depended on the country's leadership.
  • Though the administration of President Joe Biden has taken more aggressive steps to combat the climate crisis, critics question whether these steps will meet the administration's ambitious goals and whether those goals are sufficient.

CAUSES OF CLIMATE CHANGE

Earth's atmosphere contains several gases that trap heat from the sun and prevent it from escaping into space. This phenomenon is known as the greenhouse effect , and the gases are called greenhouse gases (GHGs). The main GHGs in nature are carbon dioxide, methane, and nitrous oxide. Without the greenhouse effect, Earth would be too cold to support life. Over time, the amount of GHGs trapped in Earth's atmosphere has increased significantly, causing worldwide temperatures to rise.

Natural processes on Earth constantly create and destroy GHGs. For example, plant and animal matter decay produce carbon dioxide, which plants then absorb during photosynthesis. This natural cycle stabilizes atmospheric levels of carbon dioxide. Climate change scientists at the National Aeronautics and Space Administration (NASA) and other federal and international agencies recognize that natural factors, including volcanic activity and shifts in the planet's crust, continue to play a role in climate change. However, they generally agree that these factors alone do not explain the substantial rise in Earth's temperature. Natural causes of climate change are referred to as naturogenic , while causes of climate change related to human activity are called anthropogenic .

Earth's vegetation releases and absorbs over two hundred billion metric tons of carbon dioxide annually. Human activities, such as the burning of fossil fuels, add approximately seven billion metric tons per year. Climate scientists believe the cumulative effect of this additional carbon dioxide has had a dramatic impact on the atmosphere. Deforestation has also contributed to this increase by releasing carbon dioxide stored in trees and eliminating forests that would continue to absorb many tons of carbon dioxide. According to the National Oceanic and Atmospheric Administration (NOAA), as of 2023 the amount of carbon dioxide in the atmosphere had increased by 50 percent since the beginning of the Industrial Revolution in Great Britain in the eighteenth century.

Increased levels of other GHGs, such as nitrous oxide and methane, have also resulted from human activity. Several agricultural and industrial processes, such as the use of certain fertilizers in farming, produce extensive amounts nitrous oxide. Methane emissions come from fossil fuel production, landfills, and livestock. Though much smaller quantities of these gases exist in Earth's atmosphere, some scientists believe they cause more harm than carbon dioxide. Methane, for example, is about twenty-one times as potent as carbon dioxide at trapping heat. Humans have also created and released GHGs that do not occur in nature. These include hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF6). These gases, released during industrial processes such as aluminum production and electrical transmission, trap thousands of times more heat in the atmosphere than carbon dioxide.

CLIMATE CHANGE PREDICTIONS

A broad consensus exists in the scientific community that the consequences of climate change may be devastating, though the exact nature of the changes is difficult to predict. No model to chart climate patterns has had complete accuracy. For instance, most climate models failed to predict a slowdown in rising temperatures starting in 1998 and ending in 2012. The slowdown was attributed to volcanic eruptions that blocked out the sun and cooled temperatures, low levels of solar activity, and naturally occurring variability. Similarly, some predictions have underestimated threats.

In its initial assessment of rising sea levels in 1990, the IPCC initially anticipated a sea level rise of 1.9 millimeters per year from that year onward. However, as of 2023, the IPCC reports that sea levels rose at a rate of 3.7 millimeters per year between 2006 and 2018. Sea level rise contributes to increased flooding and the damage caused by extreme storms such as hurricanes in coastal cities. The IPCC predicts that sea level rise could threaten as many as one billion people living in low-lying cities and communities by 2041, noting the threats to livelihoods, cultural heritage, and the existence of many island nations.

US PUBLIC OPINION ON CLIMATE CHANGE

The effects of human activities on global warming and climate change are acknowledged and accepted by most people in the United States. According to annual polls conducted by Gallup since 2001, the public's beliefs in anthropogenic climate change has increased. In 2023, 62 percent of Americans accepted that human activities cause climate change (up from 61 percent in 2001), 60 percent believed that the effects have begun (up from 54 percent), and 46 percent stated that global warming will soon pose a serious threat (up from 31 percent).

Researchers have observed a strong correlation between Americans' political affiliations and their acceptance of climate science and levels of concern about global warming. In 2023, about 85 percent of Democrats believed the effects of global warming were already apparent, and 88 percent believed humans caused them. In comparison, only 33 percent of Republicans agreed with the first statement and 29 percent agreed with the second. Most independents believed both statements (61 and 66 percent, respectively). However, further analysis by Gallup in 2022 revealed that Republicans under age fifty-five expressed greater concern about global warming than those age fifty-five and older but still significantly fewer than Democrats or Independents of any age group.

EFFECTS OF GLOBAL WARMING

The potential consequences of global warming remain an issue of great debate and uncertainty. However, most experts predict dramatic and severe problems for future generations. Warmer oceans could result in stronger and more frequent hurricanes. As temperatures climb, some regions could experience frequent heat waves that bring devastating droughts and wildfires. In the United States, the 2023 summer season experienced a series of heat waves that broke temperature records in different parts of the country, particularly in Washington and Oregon. In July 2023, heat waves also affected many countries in the Northern Hemisphere, including Canada, China, and some European countries. NASA has confirmed that July 2023 was the hottest month ever recorded on Earth by a significant margin, identifying global warming as the principal causal factor.

Climate change has been linked to severe, exceptional droughts across several western states, including Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, and Washington. Climate scientists refer to this phenomenon a "megadrought," and it has contributed to massive wildfires in the first decades of the twenty-first century.

From 2018 to 2021, California and Oregon endured massive wildfires that burned millions of acres and led to the displacement of thousands of residents, widespread destruction of property, and the deaths of dozens of people. California had a record-breaking wildfire season in 2020, including the state's first gigafire —a blaze that burned over one million acres of land. By the end of the year, wildfires burned more than four million acres throughout the state. Though wildfires were less frequent throughout the United States from 2022 to 2023 than in the preceding several years, the effects of global warming and the federal and state governments' lack of emergency preparedness led to one of the deadliest wildfires in recorded history. In August 2023 a small brush fire that a broken powerline may have caused started burning just outside the town of Lahaina on the island of Maui in Hawaii. In just a few minutes, winds blew the fire toward town, devouring wooden buildings, telephone and electric power lines, and water pipes. Without enough water pressure, Lahaina's fire department failed to contain the wildfire, and with the town's communication and power systems down, residents were not immediately alerted. As of September 2023, authorities had confirmed that ninety-seven people had been killed in the wildfire and thirty-one individuals were still missing in what had become the eleventh deadliest wildfire in world history.

A megadrought could also lead to water shortages. For example, the US government issued its first Tier 1 federal water shortage declaration in August 2021 for the Colorado River. The river provides water for several US states and parts of Mexico. The first cuts to state water supplies took effect in October in Arizona and Nevada. Upon revisiting the issue in August 2022, the government intensified its alarm, raising the classification to a Tier 2 federal water shortage and issuing drastic cuts to state water allowances. In August 2023, the government announced that the Colorado River water shortage would return to Tier 1 in 2024 and that water restrictions would be eased. The government's decision came after an unusually high amount of snowpack formed on the mountains near the Colorado River during the 2022–2023 winter season.

Many coastal areas worldwide could also face severe flooding due to rising sea levels. Low-lying islands in the Pacific Ocean would eventually become uninhabitable. From 1880 to 2022, sea levels rose about eight to nine inches worldwide. The hurricane season of 2017 proved to be the costliest hurricane season since 1900, causing over $265 billion of property damage in the United States and more than three thousand deaths in Florida, Texas, and Puerto Rico. The year 2020 experienced thirty named storms, the most to ever occur in a single hurricane season. The first hurricane to make landfall in 2022 was Hurricane Fiona, which struck Puerto Rico and other Caribbean Islands in September. All of Puerto Rico, which was still recovering from devastating hurricanes in 2017, lost power, and several areas suffered flooding and landslides. Though twenty tropical storms affected the United States during the 2023 hurricane season, only three made landfall. One of them, Hurricane Idalia, was the strongest hurricane to hit Florida's Big Bend region since 1950, leaving over $1 billion worth of damages.

Global warming also threatens vulnerable ecosystems and wildlife habitats. Extended periods of drought can turn fertile lands into deserts with little vegetation. Plants and animals may not survive the rapid changes caused by global warming and could become extinct. Over the long term, such changes would negatively affect Earth's biodiversity. Environmental scientists warn that some ecosystems, such as coral reefs and coastal mangrove swamps, will likely disappear entirely.

The climate crisis also threatens to disrupt the global food supply, worsen economic inequality, and create security issues. Some areas might become too dry or too wet to support agriculture. As global warming causes more places to become uninhabitable, such displacement can drive mass migration. Communities struggle to recover from climate disasters, often exacerbating existing problems in those areas. Disputes over access to water have arisen in several states, including those with areas that rely on Colorado River water. Around the world, some water disputes have developed into armed conflicts.

CRITICAL THINKING QUESTIONS

  • For what reasons do you think perceptions of anthropogenic climate change vary among Democrats and Republicans in the United States?
  • What potential long-term consequences of climate change do you think will be the most difficult to manage? Explain your reasoning.
  • In what ways, if at all, do you think the federal government could change its approach to address climate change more effectively? Explain your answer.

INTERNATIONAL RESPONSE AND US POLICY

The scope and global nature of the climate crisis necessitate that countries work together. Because an effective response requires countries to make sacrifices, negotiations to develop a coordinated international response have encountered repeated obstacles. Further, industrialized countries have contributed a disproportionate amount to the crisis. In contrast, less industrialized, lower-income countries have disproportionately felt the effects of the crisis and often lack the resources and infrastructure for climate change mitigation and adaptation.

Since 1995, the UN has hosted annual conferences to discuss climate change as part of its Framework Convention on Climate Change (UNFCCC). In 1997, delegates gathered in Kyoto, Japan, to negotiate an international treaty known as the Kyoto Protocol. This treaty required industrialized countries to reduce their GHG emissions by a certain percentage over five years. As of November 2023, 191 countries and the European Union had ratified the Kyoto Protocol. The United States has not ratified the agreement, citing concerns that it does not impose restrictions on China and India. Canada withdrew in 2011.

In 2015, world leaders set new climate goals at the UNFCCC conference (COP21) in Paris, France. The resultant Paris Agreement aimed to limit the rise in global temperatures to less than 2°C (3.6°F) above preindustrial levels and provide countries with the tools needed to counteract climate change. President Barack Obama played a leading role in brokering the Paris Agreement and pushed for greater environmental restrictions during his presidency. The Paris Agreement went into effect with the commitment of the United States and seventy-three other parties in November 2016. Obama's successor, Donald Trump, announced in 2017 that the United States would withdraw its support. After a required period, the United States officially withdrew from the agreement in November 2020.

Upon taking office in January 2021, President Joe Biden reentered the country in the Paris Agreement. Biden vowed that his administration would prioritize climate policy and issued several executive orders that made sustainability and addressing climate change important considerations across all federal government agencies. In April 2021, the president hosted a virtual climate summit attended by forty world leaders and pledged that the United States would reduce its carbon emissions to half of 2005 levels by 2030. In June 2022, the Biden administration experienced a setback when the Supreme Court ruled in West Virginia v. Environmental Protection Agency (EPA) that the Clean Air Act did not grant the EPA authority to regulate GHG emissions without Congress passing additional legislation.

In August 2022, Biden signed the Inflation Reduction Act, a law promoting a sustainable green economy by incentivizing emissions reductions, supporting clean energy projects, and requiring the wealthiest individuals and corporations to pay more taxes. Though many advocates celebrated the law as the federal government's most aggressive step to combat the climate crisis, the law has also attracted criticism. Some detractors contend that the law remains insufficient to have a meaningful impact on the climate crisis or its other targets, which include health care costs, worker protections, and inflation. Further, Republicans have framed the law as an undue empowerment of the Internal Revenue Service (IRS), the agency responsible for collecting taxes. Public reception of Biden's climate policies has largely split along party lines. A June 2023 Pew Research Center survey revealed that 76 percent of Democrats approved of Biden's climate policies while 82 percent of Republicans disapproved.

More Articles

Global warming and climate change can be stopped if people try harder.

“Nations need to accelerate deployment of existing technologies to lock in and build on the gains of the last three years.”

Dr. Pep Canadell is Executive Director of the Global Carbon Project, Deputy Research Director at Atmosphere and Land Observation Assessment, and a research scientist at CSIRO Marine and Atmospheric Research.

In the following viewpoint, Canadell argues that recent efforts to improve energy efficiency and increase the use of clean energy have contributed to a stalling in fossil fuel emissions. However, Canadell contends that governments will need to increase their efforts to meet the climate goals established in the 2015 Paris Agreement. He compares the successes and shortcomings of China, the United States, India, Australia, and the European Union in reducing emissions. He examines the practice of storing carbon dioxide underground through carbon capture and storage (CCS) and concludes that thousands of CCS facilities will be necessary to meet climate goals.

Politicians Use Climate Change as an Excuse to Limit Personal Freedom

"Repetition is precisely what we are experiencing in the major media, which have selectively interviewed people who promote the climate change myth."

Cal Thomas is a syndicated columnist and the author of several books, including What Works: Common Sense Solutions for a Stronger America .

In the following viewpoint, Thomas argues that politicians use the issue of climate change as an excuse for the government to interfere in the lives of private citizens. Noting that some climate predictions have overestimated the impact of global warming, the author disputes the widely held belief that global temperatures are rising as a result of human activity. He contends that politicians and the mainstream media encourage public outrage and generate panic over climate change by promoting the opinions and predictions of alarmists while ignoring the views of skeptics.

Renewable Energy Sources Benefit Health, Climate, and the Economy

The Union of Concerned Scientists is a membership organization of citizens and scientists who work together to promote the responsible use of science to improve the world.

Renewable energy sources, such as solar, wind, geothermal, hydroelectric, and biomass, each come with their own set of unique costs and benefits, but overall these cleaner energy sources have overwhelmingly positive effects on the climate, human health, and the economy. Renewable energy sources represent a vast and inexhaustible supply of energy, produce little or no global warming emissions, improve public health and environmental quality, help stabilize energy prices, create jobs and other economic benefits, and contribute to a more reliable and resilient energy system. The costs of renewable energy have declined in recent years and are projected to continue decreasing, making renewables more accessible and affordable for consumers than ever.

Biomass Power Plants Produce Just as Much Pollution as Coal-Fired Power Plants

"There is no quicker way to move carbon into the atmosphere—the opposite of what we want—than through utility-scale biomass energy plants that burn millions of trees per year."

In the following viewpoint, Gordon Clark and Mary Booth point out that although biomass energy has been promoted as environmentally friendly, new and proposed biomass power plants emit just as much pollution and carbon dioxide as those using fossil fuels, sometimes even more. The arguments favoring biomass power plants as a renewable energy source are not valid, they say; recent studies have shown this, and some states are eliminating subsidies and tightening regulations requiring efficiency. The authors speculate whether the Environmental Protection Agency will take federal action and formulate rules that make biomass power plants responsible for the greenhouse gases they release. Booth is the director of the Partnership for Policy Integrity, and Clark is its communications director.

Looking for information on other topics?

Access Through Your Library >>

How Close Are the Planet’s Climate Tipping Points?

Earth’s warming could trigger sweeping changes in the natural world that would be hard, if not impossible, to reverse.

By Raymond Zhong and Mira Rojanasakul

Right now, every moment of every day, we humans are reconfiguring Earth’s climate bit by bit. Hotter summers and wetter storms. Higher seas and fiercer wildfires. The steady, upward turn of the dial on a host of threats to our homes, our societies and the environment around us.

We might also be changing the climate in an even bigger way.

For the past two decades, scientists have been raising alarms about great systems in the natural world that warming, caused by carbon emissions, might be pushing toward collapse. These systems are so vast that they can stay somewhat in balance even as temperatures rise. But only to a point.

Once we warm the planet beyond certain levels, this balance might be lost, scientists say. The effects would be sweeping and hard to reverse. Not like the turning of a dial, but the flipping of a switch. One that wouldn’t be easily flipped back.

Mass Death of Coral Reefs

Tipping point possible

Degrees of warming

When corals go ghostly white, they aren’t necessarily dead, and their reefs aren’t necessarily gone forever. Too much heat in the water causes the corals to expel the symbiotic algae living inside their tissues. If conditions improve, they can survive this bleaching. In time, the reefs can bounce back. As the world gets warmer, though, occasional bleaching is becoming regular bleaching. Mild bleaching is becoming severe bleaching.

Scientists’ latest predictions are grim. Even if humanity moves swiftly to rein in global warming, 70 percent to 90 percent of today’s reef-building corals could die in the coming decades. If we don’t, the toll could be 99 percent or more. A reef can look healthy right up until its corals start bleaching and dying. Eventually, it is a graveyard.

This doesn’t necessarily mean reef-building corals will go extinct. Hardier ones might endure in pockets. But the vibrant ecosystems these creatures support will be unrecognizable. There is no bouncing back anytime soon, not in the places corals live today, not at any scale.

When it might happen: It could already be underway.

Abrupt Thawing of Permafrost

In the ground beneath the world’s cold places , the accumulated remains of long-dead plants and animals contain a lot of carbon, roughly twice the amount that’s currently in the atmosphere. As heat, wildfires and rains thaw and destabilize the frozen ground, microbes get to work, converting this carbon into carbon dioxide and methane. These greenhouse gasses worsen the heat and the fire and the rain, which intensifies the thawing.

Like many of these vast, self-propelling shifts in our climate, permafrost thaw is complicated to predict. Large areas have already come unfrozen, in Western Canada, in Alaska, in Siberia. But how quickly the rest of it might defrost, how much that would add to global warming, how much of the carbon might stay trapped down there because the thawing causes new vegetation to sprout up on top of it — all of that is tricky to pin down.

“Because these things are very uncertain, there’s a bias toward not talking about it or dismissing the possibility, even,” said Tapio Schneider, a climate scientist at the California Institute of Technology. “That, I think, is a mistake,” he said. “It’s still important to explore the risks, even if the probability of occurrence in the near future is relatively small.”

When it might happen: The timing will vary place to place. The effects on global warming could accumulate over a century or more.

Collapse of Greenland Ice

The colossal ice sheets that blanket Earth’s poles aren’t melting the way an ice cube melts. Because of their sheer bigness and geometric complexity, a host of factors shapes how quickly the ice sheds its bulk and adds to the rising oceans. Among these factors, scientists are particularly concerned about ones that could start feeding on themselves, causing the melting to accelerate in a way that would be very hard to stop.

In Greenland, the issue is elevation. As the surface of the ice loses height, more of it sits at a balmier altitude, exposed to warmer air. That makes it melt even faster.

Scientists know, from geological evidence, that large parts of Greenland have been ice-free before. They also know that the consequences of another great melt could reverberate worldwide, affecting ocean currents and rainfall down into the tropics and beyond.

When it might happen: Irreversible melting could begin this century and unfold over hundreds, even thousands, of years.

Breakup of West Antarctic Ice

At the other end of the world from Greenland, the ice of western Antarctica is threatened less by warm air than by warm water.

Many West Antarctic glaciers flow out to sea, which means their undersides are exposed to constant bathing by ocean currents. As the water warms, these floating ice shelves melt and weaken from below, particularly where they sit on the seafloor. Like a dancer holding a difficult pose, the shelf starts to lose its footing. With less floating ice to hold it back, more ice from the continent’s interior would slide into the ocean. Eventually, the ice at the water’s edge might fail to support its own weight and crack into pieces.

The West Antarctic ice sheet has probably collapsed before, in Earth’s deep past. How close today’s ice is to suffering the same fate is something scientists are still trying to figure out.

“If you think about the future of the world’s coastlines, 50 percent of the story is going to be the melt of Antarctica,” said David Holland, a New York University scientist who studies polar regions. And yet, he said, when it comes to understanding how the continent’s ice might break apart, “we are at Day Zero.”

When it might happen: As in Greenland, the ice sheet could begin to recede irreversibly in this century.

Sudden Shift in the West African Monsoon

Around 15,000 years ago, the Sahara started turning green. It began when small shifts in Earth’s orbit caused North Africa to be sunnier each summer. This warmed the land, causing the winds to shift and draw in more moist air from over the Atlantic. The moisture fell as monsoon rain, which fed grasses and filled lakes, some as large as the Caspian Sea. Animals flourished: elephants, giraffes, ancestral cattle. So did humans, as engravings and rock paintings from the era attest. Only about 5,000 years ago did the region transform back into the harsh desert we know today.

Scientists now understand that the Sahara has flipped several times over the ages between arid and humid, between barren and temperate. They are less sure about how, and whether, the West African monsoon might shift or intensify in response to today’s warming. (Despite its name, the region’s monsoon unleashes rain over parts of East Africa as well.)

Whatever happens will matter hugely to an area of the world where many people’s nutrition and livelihoods depend on the skies.

When it might happen: Hard to predict.

Loss of Amazon Rainforest

Besides being home to hundreds of Indigenous communities, millions of animal and plant species and 400 billion trees; besides containing untold numbers of other living things that have yet to be discovered, named and described; and besides storing an abundance of carbon that might otherwise be warming the planet, the Amazon rainforest plays another big role. It is a living, churning, breathing engine of weather.

The combined exhalations of all those trees give rise to clouds fat with moisture. When this moisture falls, it helps keep the region lush and forested.

Now, though, ranchers and farmers are clearing the trees, and global warming is worsening wildfires and droughts. Scientists worry that once too much more of the forest is gone, this rain machine could break down, causing the rest of the forest to wither and degrade into grassy savanna.

By 2050, as much as half of today’s Amazon forest could be at risk of undergoing this kind of degradation, researchers recently estimated.

When it might happen: Will depend on how rapidly people clear, or protect, the remaining forest.

Shutdown of Atlantic Currents

Sweeping across the Atlantic Ocean, from the western coasts of Africa, round through the Caribbean and up toward Europe before heading down again, a colossal loop of seawater sets temperatures and rainfall for a big part of the globe. Saltier, denser water sinks to the ocean depths while fresher, lighter water rises, keeping this conveyor belt turning.

Now, though, Greenland’s melting ice is upsetting this balance by infusing the North Atlantic with immense new flows of freshwater. Scientists fear that if the motor slows too much, it could stall, upending weather patterns for billions of people in Europe and the tropics.

Scientists have already seen signs of a slowdown in these currents, which go by an unwieldy name: the Atlantic Meridional Overturning Circulation, or AMOC. The hard part is predicting when a slowdown might become a shutdown. At the moment, our data and records are just too limited, said Niklas Boers, a climate scientist at the Technical University of Munich and the Potsdam Institute for Climate Impact Research.

Already, though, we know enough to be sure about one thing, Dr. Boers said. “With every gram of additional CO2 in the atmosphere, we are increasing the likelihood of tipping events,” he said. “The longer we wait” to slash emissions, he said, “the farther we go into dangerous territory.”

When it might happen: Very hard to predict.

Read More on Earth’s Tipping Points

essay on effect of global warming

Heat Raises Fears of ‘Demise’ for Great Barrier Reef Within a Generation

A new study found that temperatures in the Coral Sea have reached their highest levels in at least four centuries.

By Catrin Einhorn

essay on effect of global warming

A Collapse of the Amazon Could Be Coming ‘Faster Than We Thought’

A new study weighed a range of threats and variables in an effort to map out where the rainforest is most vulnerable.

By Manuela Andreoni

essay on effect of global warming

In the Atlantic Ocean, Subtle Shifts Hint at Dramatic Dangers

A warming atmosphere is causing a branch of the ocean’s powerful Gulf Stream to weaken, some scientists fear.

By Moises Velasquez-Manoff and Jeremy White

essay on effect of global warming

How Much Ice Is Greenland Losing? Researchers Found an Answer.

The island is shedding 20 percent more than previously estimated, a study found, potentially threatening ocean currents that help to regulate global temperatures.

By Delger Erdenesanaa

essay on effect of global warming

Rapid Antarctic Melting Looks Certain, Even if Emissions Goals Are Met

It may be too late to halt the decline of the West Antarctic ice shelves, a study found, but climate action could still forestall the gravest sea level rise.

By Raymond Zhong

Methodology

The range of warming levels at which each tipping point might potentially be triggered is from David I. Armstrong McKay et al., Science .

The shaded areas on the maps show the present-day extent of relevant areas for each natural system. They don’t necessarily indicate precisely where large-scale changes could occur if a tipping point is reached.

  • Share full article

Advertisement

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • Open access
  • Published: 13 August 2024

Reducing climate change impacts from the global food system through diet shifts

  • Yanxian Li   ORCID: orcid.org/0000-0002-1947-7541 1 ,
  • Pan He   ORCID: orcid.org/0000-0003-1088-6290 2 , 3 ,
  • Yuli Shan   ORCID: orcid.org/0000-0002-5215-8657 4 ,
  • Ye Hang   ORCID: orcid.org/0000-0002-1368-905X 4 ,
  • Shuai Shao   ORCID: orcid.org/0000-0002-9525-6310 6 ,
  • Franco Ruzzenenti 1 &
  • Klaus Hubacek   ORCID: orcid.org/0000-0003-2561-6090 1  

Nature Climate Change ( 2024 ) Cite this article

6468 Accesses

212 Altmetric

Metrics details

  • Climate-change impacts
  • Climate-change mitigation

How much and what we eat and where it is produced can create huge differences in GHG emissions. On the basis of detailed household-expenditure data, we evaluate the unequal distribution of dietary emissions from 140 food products in 139 countries or areas and further model changes in emissions of global diet shifts. Within countries, consumer groups with higher expenditures generally cause more dietary emissions due to higher red meat and dairy intake. Such inequality is more pronounced in low-income countries. The present global annual dietary emissions would fall by 17% with the worldwide adoption of the EAT-Lancet planetary health diet, primarily attributed to shifts from red meat to legumes and nuts as principal protein sources. More than half (56.9%) of the global population, which is presently overconsuming, would save 32.4% of global emissions through diet shifts, offsetting the 15.4% increase in global emissions from presently underconsuming populations moving towards healthier diets.

Similar content being viewed by others

essay on effect of global warming

Simple dietary substitutions can reduce carbon footprints and improve dietary quality across diverse segments of the US population

essay on effect of global warming

The ongoing nutrition transition thwarts long-term targets for food security, public health and environmental protection

essay on effect of global warming

Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions

Food choices impact both our health and the environment 1 , 2 . The food system is responsible for about one-third of global anthropogenic GHG emissions 3 , 4 and climate goals become unattainable without efforts to reduce food-related emissions 5 , 6 . However, not everyone contributes the same way to food-related emissions because of disparities in lifestyle, food preferences and affordability within and across countries 7 , 8 , 9 . High levels of food consumption (especially animal-based diets), one of the leading causes of obesity and non-communicable diseases 10 , 11 , lead to substantial emissions 9 , 12 . Simultaneously, >800 million people still suffer from hunger and almost 3.1 billion people cannot afford a healthy diet 13 . Ending hunger and malnutrition while feeding the growing population by extending food production will further exacerbate climate change 14 , 15 . Given the notable increase in emissions driven by food consumption despite efficiency gains 16 , changing consumer lifestyles and choices are needed to mitigate climate change 17 .

Research shows that widespread shifts towards healthier diets, aligned with the sustainable development goals (SDGs) of the United Nations 18 , offer solutions to this complex problem by eradicating hunger (SDG 2), ensuring health (SDG 3) and mitigating emissions (SDG 13) 19 , 20 , 21 , 22 . Numerous dietary options have been proposed as guidelines for diet shifts 1 , 23 , 24 . The planetary health diet 12 , proposed by the EAT-Lancet Commission, stands out as a prominent option. It aims to improve health while limiting the impacts of the food system within planetary boundaries by providing reference intake levels for different food categories 9 , 25 . It is flexibly compatible with diversities and preferences of regional and local diets 12 . Previous research has estimated changes in country-specific environmental impacts, including GHG emissions 26 , 27 , 28 and water consumption 25 , resulting from adopting the planetary health diet. However, there is limited evidence on how different population groups will contribute differently in this process 7 .

Food consumption and associated emissions differ as a result of disparities in consumer choices guided by social and cultural preferences, wealth and income 29 . Quantifying food-related emissions along the entire supply chain for different products and population groups provides information for emission mitigation through changing consumer choices 17 . With the improved availability of household consumption data, recent studies have revealed inequality in energy consumption 30 , 31 and carbon emissions 17 , 32 , 33 , 34 . Although there are several studies on income- or expenditure-specific food-related emissions within individual countries based on survey-based data 35 , 36 , 37 , 38 , previous studies have not assessed global food-related emissions with a detailed breakdown into specific products and population groups. Furthermore, reducing the overconsumption of wealthy or otherwise overconsuming groups can increase the availability of resources for reducing hunger and malnutrition 7 . However, it remains unclear how emissions from different population groups would change in response to global diet shifts.

To fill these gaps, this study evaluates GHG emissions (CO 2 , CH 4 and N 2 O) throughout the global food supply chains (including agricultural land use and land-use change, agricultural production and beyond-farm processes) 16 induced by diets, termed ‘dietary emissions’, in 2019 and the potential emission changes of global diet shifts. Food loss and waste during household consumption 25 , 39 , 40 have been subtracted from the national food supply to obtain dietary intake. We quantify dietary emissions of 140 products 16 (classified into 13 food categories 12 ) on the basis of the global consumption-based emissions inventory of detailed food products 16 . By linking detailed food intake amounts to the food consumption patterns of 201 global expenditure groups (grouped according to the per capita total expenditure of each group) from the household-expenditure dataset 41 based on the World Bank Global Consumption Database (WBGCD) 42 , we analyse the unequal distribution of dietary emissions in 139 countries or areas, covering 95% of the global population. Despite limitations, the total expenditure of consumers, which effectively reflects patterns in household income, consumption and asset accumulation, is a useful approximation to represent levels of income and wealth 31 , 43 . Additionally, we build a scenario of shifting from diets in 2019 to the global planetary health diet to estimate emission changes ( Methods ). This study investigates differences in dietary emissions among regions, countries and population groups, identifying areas where efforts are needed to mitigate emissions during the global transition towards a healthier and more planet-friendly diet.

Present dietary emissions across countries

In this study, dietary emissions account for emissions along the entire global food production supply chains, which are allocated to final consumers of diets. We use the term ‘GHG footprints’ to specifically refer to the dietary emissions of an individual over 1 year 17 , 34 . The total dietary emissions and country-average per capita GHG footprints show different distributions across countries in 2019 (Fig. 1a ; for detailed food categories see Supplementary Figs. 1 – 9 ). The present total global dietary emissions reach 11.4 GtCO 2 e (95% confidence interval 8.2–14.7 Gt) (details of uncertainty ranges in Supplementary Tables 1 and 2 ). China (contributing 13.5% of emissions) and India (8.9%), the world’s most populous countries (Supplementary Table 3 ), are the largest contributors to global dietary emissions. Alongside Indonesia, Brazil, the United States, the Democratic Republic of Congo, Pakistan, Russia, Japan and Mexico, the top ten contributors represent 57.3% of global dietary emissions but with very unequal per capita emissions within and between countries. We find the highest country-average per capita footprints in Bolivia, with 6.1 tCO 2 e, followed by Luxembourg, Slovakia, Mongolia, the Netherlands and Namibia, with >5.0 tCO 2 e (Supplementary Discussion 2.1 ). Haiti (0.36 tCO 2 e) and Yemen (0.38 tCO 2 e) have the lowest country-average footprints, followed by Burundi, Ghana and Togo. Insufficient food intake of residents due to limited food affordability 44 , 45 is the root cause of low footprints in these low- and lower-middle-income countries 46 .

figure 1

a , Total and per capita dietary emissions for 139 countries/areas. b , Regional dietary emissions from different food categories and populations. The bar chart (left primary axis) shows the regional emission amounts and the line chart (right secondary axis) shows the number of regional populations. Columns are ordered by the descending per capita GDP of regions (Supplementary Tables 5 and 6 ). USA, United States; AUS, Australia; WE, Western Europe; CAN, Canada; JPN, Japan; RUS, Russia; ROEA, Rest of East Asia; EE, East Europe; CHN, China; ROO, Rest of Oceania; NENA, Near East and North Africa; BRA, Brazil; ROLAC, Rest of Latin America and the Caribbean; ROSEA, Rest of Southeast Asia; IDN, Indonesia; IND, India; ROSA, Rest of South Asia; and SSA, Sub-Saharan Africa. Details for the division and scope of regions are shown in Supplementary Fig. 10 and Supplementary Tables 7 and 8 . Country classification by income levels is based on the World Bank 46 . Credit: World Countries basemap, Esri ( https://hub.arcgis.com/datasets/esri::world-countries/about ).

Source data

While animal-based (52%) and plant-based (48%) products contribute nearly equally to global dietary emissions 4 , 16 , the latter accounts for 87% of calories in global diets (Supplementary Table 4 ). The three main sources of emissions, namely red meat (beef, lamb and pork) (5% of calories), grains (51%) and dairy products (5%), contribute to 29%, 21% and 19% of global emissions, respectively. The substantial emissions from red meat and dairy products are attributed to their considerably higher emissions per unit of calories compared to other categories (Supplementary Table 4 ).

To highlight emission differences at a regional level, we further group the country-level results into 18 regions according to geographical locations and development levels (Fig. 1b and Supplementary Fig. 10 ). In most regions, animal-based products contribute fewer calories (less than a quarter) (Supplementary Data 21 ) but yield more emissions than plant-based products, especially in Australia (84% from animal-based products), the United States (71%) and the region Rest of East Asia (71%) where residents excessively consume both red meat and dairy products. However, the consumption of plant-based products in Indonesia (83% of total calories), Rest of Southeast Asia (92%) and Sub-Saharan Africa (77%) accounts for the most emissions, at 92%, 73% and 64%, respectively. Southeast Asia including Indonesia has a high-emission proportion from grains (42%) due to the prevalent meals dominated by rice. The typical food basket in Sub-Saharan Africa is broadly made up of grains, tubers, legumes and nuts 25 , 47 , representing over half of the regional emissions.

Unequal distribution of dietary emissions within countries

We find substantial differences in per capita GHG footprints within countries and regions. To clearly present the distribution of footprints within each country and region, individuals are sorted in ascending order of their total expenditure levels and then sequentially allocated to ten expenditure deciles with equal population size (Supplementary Fig. 11 and Fig. 2a ). As expenditures increase, individuals tend to have higher levels of footprints, with the largest increase attributed to red meat and dairy products. Richer populations usually have higher per capita footprints related to animal-based products than the poorer in most regions (Fig. 2b ). However, there are differences in per capita footprints within expenditure deciles. For example, even in high-income countries such as Australia and Japan, the dietary intake of red meat for some people in the poorest deciles falls below the recommended levels (Supplementary Data 15 ). Rest of East Asia is one exception, with the poorest decile having high footprints due to a substantial intake of red meat, as seen in Mongolia where beef and mutton are the most common dish 48 .

figure 2

a , GHG footprints from all types of food categories. The size of the bubble refers to the average total expenditure represented by the decile. b , GHG footprints from different food categories. The colours of bubbles in a and b indicate expenditure deciles ranging from the poorest in blue to the wealthiest in red and are comparable only within each region.

Footprints related to plant-based products in specific regions show a different trend from animal-based products as expenditures increase. The middle expenditure groups are responsible for the highest footprints associated with grains in Sub-Saharan Africa and Southeast Asia and the highest footprints of tubers, vegetables and fruits (mainly starchy tropical fruits 49 ) in the Rest of Oceania. These locally produced, high-carbohydrate products are traditional staple foods. In poor countries, agricultural policy primarily targets improving the productivity of staple food, with little investment in the market and facilities for nutrient-rich products 50 , 51 . Consequently, the need for dietary diversity for middle- and low-income people is not adequately addressed 50 , leading to increased consumption of these lower-cost products. However, wealthier consumers can afford more expensive products, such as red meat, reducing their reliance on these staple products.

We use the GHG footprint Gini (GF-Gini) coefficient, calculated on the basis of data from 201 expenditure groups, to measure the dietary emission inequality within a country (Fig. 3 ), with 0 indicating perfect equality and 1 indicating perfect inequality. The inequality of dietary emissions tends to decline with the increase of the per capita GDP of a country, especially for animal-based products. We find the highest inequality of dietary emissions of food products generally in low-income countries, most of which are located in Sub-Saharan Africa. In Sub-Saharan Africa, the highest spending 10% of the population contributes 40% of the regional emissions from red meat, 39% from poultry and 35% from dairy products. In contrast, high-income countries generally have relatively low inequality with high levels of emissions despite country-to-country variations. The GF-Gini coefficients for all types of products of most Western European countries are <0.20 (Supplementary Tables 9 and 10 ), which is lower than for other high-income countries such as the United States, Australia, Canada and Japan.

figure 3

a – j , The x axis represents the country-average per capita GDP, and the y axis represents the national GF-Gini coefficients of all types of ( a ) and different ( b – j ) food categories. b , Beef, lamb and pork. c , Dairy products. d , Poultry, eggs and fish. e , Grains. f , Tubers and starchy vegetables. g , Vegetables and fruits. h , Legumes and nuts. i , Added fats. j , All sugars. Logarithmic regression (red solid line) and locally weighted regression analysis (blue dotted line) are used to determine the relationship between the national GF-Gini coefficient (dependent variable) and the country-average per capita GDP (independent variable). The coefficients of determination ( R 2 ) and the exact P values from the two-sided Student’s t -test for the logarithmic regression are indicated in each subgraph. The error bands (grey shaded areas) represent 95% confidence intervals around the fitted logarithmic regression lines. Blue, orange and green dots represent all types of products, animal-based products and plant-based products, respectively.

Dietary emission shares across consumer groups

There are notable differences in dietary emission shares associated with food categories across expenditure deciles between regions (Fig. 4 ). In high-income countries, expenditure groups have relatively similar patterns of dietary emissions, with large shares of red meat and dairy products contributing the largest amount of emissions. Even poor consumer groups in high-income countries tend to be more likely to be able to afford animal-based products as a result of relatively lower prices for dairy products, eggs, white meat and processed red meat. This contrasts with the high prices of animal-based products due to supply constraints in most low- and lower-middle-income countries 52 , 53 . Except in high-income countries, starchy staple foods (including grains and tubers), with low prices but high-carbohydrate content 44 , 54 , constitute a large proportion of dietary emissions because of the high level of consumption, especially in Southeast Asia and Sub-Saharan Africa. As individuals’ expenditures increase in these countries, emission shares from starchy staple foods in total emissions decrease substantially. These changes demonstrate that as the affordability of food increases, populations tend to adopt instead more diverse diets composed of fewer starchy staple foods and more meat, dairy products, vegetables and fruits. This trend generally aligns with Bennett’s Law 25 , 55 , 56 . For example, research shows that with rapid economic growth, China’s urban or high-income groups increase their intake of non-starchy foods to fulfil their requirements of dietary diversity 35 , while poorer groups, often engaging in strenuous physical jobs, predominantly consume inexpensive starchy staple foods. One exception is Rest of Oceania, where poorer groups have higher percentages of emissions from not only tubers but also vegetables and fruits. Owing to relatively low expenditure on food, poor populations in this island region usually choose locally cultivated tubers and fruits (such as cassava, taro and bananas) 57 , 58 with high intensities of land-use emissions 59 .

figure 4

The numbers at the bottom of each bar represent the expenditure levels of regional expenditure deciles, ranging from the poorest (1) to the wealthiest (10). Food categories are shown in the colour legend. a , United States. b , Australia. c , Western Europe. d , Canada. e , Japan. f , Russia. g , Rest of East Asia. h , Eastern Europe. i , China. j , Rest of Oceania. k , NENA. l , Brazil. m , ROLAC. n , Rest of Southeast Asia. o , Indonesia. p , India. q , Rest of South Asia. r , Sub-Saharan Africa.

Emission changes from adopting the planetary health diet

To estimate the emission changes from a global diet shift, we build a hypothetical scenario by assuming that everyone in all countries adopts the planetary health diet ( Methods ). Results indicate that the global dietary emissions would decrease by 17% (1.94 (1.51–2.39) GtCO 2 e) compared with the 2019 level (details of the uncertainty ranges can be found in Supplementary Tables 11 and 12 ). The presently overconsuming groups (56.9% of the global population) would save 32.4% of global emissions through diet shifts, more than offsetting the 15.4% increase in global emissions from the presently underconsuming groups (43.1% of the global population) as a result of adopting healthier diets (Supplementary Table 13 ). National dietary emissions in 100 countries would decline by 2.88 GtCO 2 e, whereas the other 39 countries (mainly low- and lower-middle-income countries 46 in Sub-Saharan Africa and South Asia) would have an increase in emissions by 938 MtCO 2 e (Fig. 5a ; for detailed food categories see Supplementary Figs. 12 – 20 ).

figure 5

a , Volume changes and percentage changes of national emissions for 139 countries/areas. b , Regional emission changes from different food categories. Abbreviations of 18 regions and the source of the base map are listed in Fig. 1 caption.

Countries would be affected differently regarding emission changes by adopting the planetary health diet, reflected in the percentage change in national emissions (Fig. 5a ). Uzbekistan (−74%), Australia (−70%), Qatar (−67%), Turkey (−65%) and Tajikistan (−64%) would see the largest percentage decrease. In comparison, most of the countries with an estimated considerable percentage increase are located in Sub-Saharan Africa and the Middle East, with the largest percentage increase from Iraq (+155%). Notably, with the increase in per capita GDP, the percentage change in overall dietary emissions of countries shows a shift from a positive to a negative trend, primarily led by changes in animal-based emissions (Supplementary Fig. 21 ).

Global emission reduction would be dominantly driven by red meat and grains (Fig. 5b ). The reduction in meat, eggs and fish would lead to 2.04 GtCO 2 e of emission reduction, of which 94% is driven by the decrease in red meat. China (22%), the United States (15%) and Brazil (14%) would be the largest contributors to emission reduction associated with a decrease in red meat consumption. A decline in grains would result in 914 MtCO 2 e of emission reduction, of which 56% would happen in Asia. A further 240 and 89 MtCO 2 e reduction in emissions would come from reduced sugars and tubers, respectively. However, increased proteins (legumes and nuts and dairy products), added fats and vegetables and fruits would partly offset the above-reduced emissions by 41%. Intake of legumes and nuts would increase in all regions, leading to a further 757 MtCO 2 e of emissions, whereas most of the emission increase related to added fats (largely vegetable oils) (279 Mt) and dairy products (143 Mt) would take place in Sub-Saharan Africa, China and other Asian countries. Global dietary emissions associated with vegetables and fruits would increase by 163 Mt, despite declines in China and Rest of Oceania.

The decline in per capita GHG footprints would be achieved primarily in wealthy consumer groups in high- and upper-middle-income countries, while increased footprints would occur mainly in poor groups in most countries (Fig. 6a ). Results show that the shifts of chief protein sources from animal-based to plant-based proteins according to the planetary health diet 12 would contribute the most to changes in footprints globally (Fig. 6b ). For example, in Australia, Brazil, Canada and the United States where diets are dominated by red meat and dairy products, the top and upper-middle expenditure groups would have notable reductions in footprints. However, most populations in South and Southeast Asia and Sub-Saharan Africa would have a considerable increase in footprints because of the present low levels of red meat intake. Meanwhile, the present intake of plant-based proteins in all countries is below the recommended level 25 . Footprints related to legumes and nuts would increase for most expenditure groups in all regions to meet nutrient demands. This increase is particularly substantial in Rest of Oceania, Brazil, Indonesia and Sub-Saharan Africa, where most of the consumed legumes and nuts are domestically produced with high land-use emission intensities 59 , 60 , assuming the present production and trade patterns remain unchanged.

figure 6

a , Changes in GHG footprints from all types of food categories. The size of the bubble refers to the average total expenditure represented by the decile. b , Changes in GHG footprints from different food categories. The colours of bubbles in a and b indicate expenditure deciles ranging from the poorest in blue to the wealthiest in red and are comparable only within each region.

Discussion and conclusions

This study uncovers the extent of inequality of dietary emissions within countries based on detailed expenditure data 17 , 34 and underlines the dependence of dietary emissions on expenditure and income levels. Emissions aggregated at expenditure deciles may lose some fine-grained information from the 201 expenditure groups. For example, people from the lowest expenditure groups in affluent countries may experience malnutrition or even hunger, which is not adequately captured at a decile level. Nevertheless, the GF-Gini coefficient calculated from 201 groups provides an accurate reflection of emission inequality. Results show that affluent countries consume high-emission diets but show relatively lower levels of inequality, whereas many poor countries tend to have diets with lower emissions but higher levels of inequality.

The objective of the diet shift scenario is to assess the potential implications of emission mitigation of the food system resulting from changing consumer choices. Widespread diet shifts offer dual benefits by moving 43.1% of the global population out of underconsumption and mitigating 17% of global dietary emissions. The simulated changes in the volume of global emissions under the planetary health diet approximate the findings by ref. 26 (Supplementary Discussion 1 ). However, worldwide diet shifts require tailored policies targeted at regions, countries, expenditure groups and products instead of ‘one-size-fits-all’ policies.

We find that, compared to plant-based products, animal-based products, particularly red meat and dairy products, exhibit greater potential for reducing both emission volumes and emission disparities among different expenditure groups. Priorities lie in reducing the overconsumption of specific emission-intensive products in affluent countries (particularly the high-expenditure groups), such as beef in Australia and the United States, to achieve health 9 , 12 and climate benefits 25 , 26 , 28 . Incentives, such as implementing subsidies or taxation on environmental externalities through food or carbon pricing 61 , ecolabelling 62 and expanding the availability of less emission-intensive products (for instance, menu design for diverse vegetarian foods 63 ), can encourage consumers to make dietary changes. Moreover, a well-designed (primarily urban) food environment can reshape residents’ dietary patterns 35 and the parallel development of urban planning and infrastructure can alleviate the time and financial burdens of shifts to healthier diets 64 . However, in countries such as Mongolia, where diets heavily rely on red meat and dairy products because of their traditional nomadic lifestyle and limited accessibility of diverse foods, especially in rural areas 48 , diet shifts may not be feasible but there is a need to improve national nutritional education 48 .

Low-income countries face more severe challenges in reaching healthier diets. On the one hand, diet shifts require increased food consumption in these countries. For example, in Sub-Saharan Africa, the planetary health diet requires a 3.4-fold increase in dairy consumption for the entire population and a 69-fold increase for the poorest decile (Supplementary Fig. 22 ). However, Sub-Saharan Africa and South and Southeast Asia, which have experienced stagnating agriculture production efficiency for decades 8 , cannot produce domestically nor afford to import the food required for diet shifts 65 . It is crucial to enhance the production efficiency of feed and food crops through various measures such as crop and soil management techniques 8 , 66 and the introduction of high-yielding crop varieties and hybrids 67 , 68 . Moreover, increasing the proportions of nutrient-rich products in food imports 65 and reducing restrictive trade policies which tend to raise food prices 25 , 69 help to address this challenge. On the other hand, poor populations often opt for lower-cost, calorie-dense but less nutritionally beneficial foods. High cost and low affordability remain the largest barriers for these individuals to select healthier diets 44 , 54 , 70 , 71 . Others 44 found that >1.58 billion low-income populations worldwide cannot afford the cost of the planetary health diet. Therefore, policy efforts (for instance, pricing interventions 72 , technical assistance to reduce food production costs 73 and so on) should focus on making food more affordable and accessible, especially for lower expenditure groups 37 , 74 . However, studies indicate that lower food prices may decrease the income of agricultural households 75 , 76 , widen wealth gaps between individuals employed in food- and non-food sectors, especially in low-income agrarian countries and exacerbate rural poverty 1 , 77 . In this sense, policies aimed at promoting diet shifts should be deliberately and cautiously designed with vulnerable groups in mind to reduce inequality 37 , 61 .

Lastly, altered food demand due to diet shifts can induce notable structural adjustments within the global agri-food system. Although this study does not assess the feasibility of countries supplying sufficient food if the planetary health diet was adopted, results indicate that the composition of global food production would change considerably to adapt to the substantial changes in demand 8 , 25 , 77 . The diet shifts would necessitate the global supply (in calorie content) of red meat decrease by 81%, all sugars by 72%, tubers by 76% and grains by 50%, while that of legumes and nuts increase by 438%, added fats by 62% and vegetables and fruits by 28% (Supplementary Data 16 ). Research 77 , 78 confirms that changed food demand could cause fluctuating prices of agricultural products and land in global markets, triggering spillover effects between different food categories or to other non-food sectors (for example, stimulating biofuel production) and partly offsetting the benefits of diet shifts. Therefore, policy-making should focus on alleviating these effects. Incentives such as increased subsidies or tax breaks can generate new economic opportunities and motivations for industries that need to scale up production to meet the heightened demand for products (for example, plant-based proteins). By contrast, for emission-intensive food industries that need to downsize, measures such as gradual crop substitution 25 , 79 could be adopted to optimize production and reduce the costs of production transformations while safeguarding the interests of producers.

In this study, we first assess the GHG emissions from diets comprising 140 products 16 (Supplementary Table 14 ) in 139 countries or areas (we collectively use the term ‘country’ because most of them are individual countries) (Supplementary Data 1 ) in 2019 based on the global consumption-based emission inventory of detailed food products from ref. 16 . The inventory 16 provides data (in mass units) of GHG emissions (including CO 2 , CH 4 and N 2 O) generated during supply chain processes, including agricultural land use and land-use change (LULUC), agricultural activities and beyond-farm processes (excluding emissions from household and end of life) 4 . All emissions are allocated to final consumers of food products. The year 2019 (the latest year before the COVID-19 pandemic) is selected as a baseline year, which can reflect the level of present dietary intake without the interference of the pandemic 80 , 81 . Subsequently, dietary emissions from different expenditure groups are quantified by matching diets with the household-expenditure dataset 42 to reflect the differences and potential inequality of dietary emissions. Finally, to measure the magnitude of the emission impact of the global diet shift, we model the transition from diets in 2019 to the widespread adoption of the planetary health diet. The research framework of this study is shown in Supplementary Fig. 23 .

The following data sources are mainly used in this study. The consumption-based food emissions inventory 16 is based on data derived from the FAOSTAT 82 , comprising national emission accounts of supply chain processes and data on food trade and production. Data on food loss and waste throughout the global supply chain and at the household level as well as food supply data, all used for linking emissions with diets, are obtained from FAOSTAT 83 and previous research 25 , 39 . The household-expenditure data 41 are built on the basis of the WBGCD 42 and further refined and supplemented by consumer expenditure surveys from high-income countries 17 , 41 to bridge the dietary emissions with different expenditure groups. Detailed data sources used for calculation are provided in Supplementary Table 15 . Data processing, assumptions and uncertainties for all calculations are also given.

Dietary energy intake and emissions

Accounting of food consumption and supply chain emissions.

The estimation of the present dietary emissions and the emission changes for adopting the EAT-Lancet planetary health diet 12 is based on the accounting framework designed by ref. 16 . They assess global GHG emissions induced by the consumption of food products in 181 countries based on the physical trade flow approach 84 , 85 . Consumption-based GHG emissions along global supply chains, including local production and international trade, are calculated as follows 16 , 84 :

where E i,r refers to the consumption-based GHG emission of product i in country r . G i / P i represents the vector of direct emission intensity of product i from entire food supply chain processes, of which G i denotes total emissions generated from entire supply chain process of product i , P i is the production vector of product i . \({(I-{A}^{i})}^{-1}\) is the trade structure of product i , of which A i is the matrix of export shares and I is the identity matrix with the same dimension as matrix A i . DMI i refers to the vector of direct material input of product i and DMC i,r is the vector of domestic material consumption of product i in country r with values set to zero for other countries. The DMI of a country is defined as the total inputs of products and the DMC is defined as the amount of products consumed domestically. DMI equals DMC plus exports of products (or production plus imports). F i refers to the vector of total (or consumption-based) emission intensity of product i from food supply chain processes, that is, total emissions induced by per unit of domestic consumption of product i . All variables in equation ( 1 ) are in units of mass (metric tonnes).

Feed products are excluded from diets because emissions from feed crops have been allocated to livestock products that consume feed during production 16 . Food loss and waste (FLW) along supply chains and households are subtracted to quantify the net intake amount of food products from the household stage.

Dietary calorie conversions

We use the annual per capita food supply (FS) quantity of 140 food products from the supply utilization accounts of FAOSTAT 83 and population from the United Nations 86 to calculate the total supply amount of product i in country r (FS i,r , in the unit of mass):

where \({{\rm{FS}}}_{{\rm{per}}}^{i}\) denotes the per capita supply of product i per year and p r refers to the population in country r .

To be consistently matched with the DMC , the FS values should be limited within the coverage of the DMC and values that exceed this range are removed. At the same time, to aggregate food products into food categories and compare their nutritional contents with the reference level from the planetary health diet, we convert the quantity of food consumption or supply into calorie content using product-specific nutritive factors (calories per unit weight of product) 87 , 88 from FAO (Supplementary Table 14 ).

Subtracting food loss and waste at the household level

The food supply derived from FAOSTAT datasets does not exclude FLW that happens during household consumption 25 . FLW before dietary intake can be divided into two parts: the FLW during supply chain processes (including agricultural production, postharvest handling and storage, processing and packaging and distribution) as well as the FLW during the food preparation and supply for household consumption 39 , 40 . The food supply value provided by FAOSTAT only excludes FLW during supply chain processes. Therefore, we exclude household FLW using the method by ref. 25 to calculate the annual dietary intake for each product as follows:

where DI i,r and \({{\rm{DI}}}_{{\rm{per}}}^{i,r}\) refer to the national and per capita caloric intake amount of product i in country r each year, respectively. \({{\rm{FS}}}_{{\rm{energy}}}^{i,r}\) and \({{\rm{FS}}}_{{\rm{energy}\_per}}^{i,r}\) are the national and per capita supply quantity (in calorie content) of product i annually, respectively. Parameter \({f}_{{\rm{FLW}}}^{\;i,r}\) is the FLW factor in the household consumption stage 39 of food product i in country r . Others 39 provide regional FLW factors, expressed as the weight percentage of food that is lost or wasted at different stages of food production and consumption, for different food categories. As a result, household food waste is subtracted from the FS to obtain the dietary intake amount of each product. Detailed household FLW factors are shown in Supplementary Table 16 .

Quantifying dietary GHG emissions

Our equation ( 1 ) can be transformed into the following equation to calculate the total emission intensity of food calorie consumption:

where \({F}_{{\rm{energy}}}^{\,i,r}\) represents total emissions per unit of calorie content of product i in country r , \({{\rm{DMC}}}_{{\rm{energy}}}^{i,r}\) refers to total calorie content of product i consumed domestically in country r . Then, emissions from the dietary intake (without FLW) of product i in country r ( \({E}_{{\rm{intake}}}^{\,i,r}\) ) are calculated as follows:

Classification of food categories

The EAT-Lancet Commission report provides coverage of different food categories in the planetary health diet and their recommended caloric intake levels at 2,500 kcal for adults each day 12 (Supplementary Table 17 ). In this study, we classify 140 products into 13 aggregated food categories according to the planetary health diet 12 , including grains, tubers or starchy vegetables, vegetables, fruits, dairy products, red meat (beef, lamb and pork), chicken and other poultry, eggs, fish, legumes, nuts, added fats (both unsaturated and saturated oils) and all sugars. On the basis of the data availability of the FAOSTAT 4 , 82 , the food products in this study include both primary and processed products (primary and secondary food processing) which can be classified into specific food categories 16 . Ultraprocessed products that combine ingredients from several food categories, such as ice creams made from both dairy and sugar, are not considered. Detailed coverages of each food category and their mapping relationship with specific products are shown in Supplementary Table 18 .

Matching diets with the household-expenditure dataset

We explore the dietary emissions from consumers with different expenditure levels (defined as expenditure groups) using the household-expenditure dataset 41 for the year 2011. The dataset, containing 116 countries and almost 90% of the global population (Supplementary Table 19 ), is primarily based on the household survey microdata from the WBGCD 42 , supplemented by consumer expenditure surveys of national statistical offices from high-income countries such as the United States and European countries 17 , 41 . For every country in the dataset, 201 expenditure groups (grouped according to the per capita total expenditure of each group) and the corresponding population share are listed. The annual per capita expenditure of people in different expenditure groups ranges from <US$50 to ~US$1 million per year (expressed in 2011 Purchasing Power Parities, PPP) 31 , 34 . For each expenditure group, the expenditure for 33 different sectors of goods and services (including 11 food items) and the corresponding expenditure share in national consumption of each sector are provided 31 , 34 , 41 . For some affluent (or poor) countries that do not have a sufficient representative number of people at the bottom (or top) end of the expenditure spectrum, the population in the corresponding expenditure groups is empty. Expenditure shares of 11 food items are matched with the 140 products in this study (Supplementary Table 20 ). We calculate the dietary intake of different food products for each expenditure group in each country by multiplying the food expenditure share of groups with the total dietary intake amounts of food products of each country.

This study assumes that the amount of food consumption is proportionate to food expenditures and the purchasing price for the same product is unchanged across 201 groups ignoring higher prices for high-quality or luxury food items within the same food category. Although the assumption of an unchanged purchasing price is an unsolved limitation shared by similar studies using monetary expenditure data 31 , 34 , 41 , household expenditures on food can still effectively highlight the differences in food consumption and emissions across consumer groups with different affordability of, and spending on, food. We also assume that the proportion of food sources from local production and trade for the same food category remains constant across the 201 groups. In other words, the magnitude of dietary emissions is solely determined by the size and pattern of food expenditure of each group and the associated supply chains for each food consumption item.

For countries that are major food consumers (and emitters) but without data in WBGCD, expenditure shares from countries with similar development levels and eating habits and neighbouring geographical locations are used to calculate the distribution of their food expenditure. We finally select 201 expenditure groups in 139 countries/areas, covering 95% of the global population in 2019 (Supplementary Table 3 and Supplementary Data 3 ). Details for dealing with missing data are provided in Supplementary Table 7 . Countries or areas are then classified into 18 regions for comparison according to geographical locations (Supplementary Table 8 ). The WBGCD expenditure data from the year 2011 are adjusted to PPP in 2019 to represent the expenditure level of populations in figures. Results of emissions from 13 types of food categories of 201 expenditure groups at the national and regional levels are shown in Supplementary Data 8 , 10 and 11 .

Analysis of GF-Gini coefficients

Calculation of gf-gini coefficients.

This study uses the GF-Gini coefficient 33 , 89 , which is based on the well-known Gini coefficient 90 , to measure the inequality of GHG footprints from 201 expenditure groups within countries, regions and globally. The GF-Gini coefficient ranges from 0 to 1, indicating the emission distribution across expenditure groups changes from perfect equality to perfect inequality. The GF-Gini coefficient of each food category is calculated as 33 :

where Gini j indicate the GF-Gini coefficient of food category j (including product i , i  = 1, 2, 3, …, n ). Expenditure groups and their population are reordered in ascending order of per capita GHG footprint of food category j and m refers to the reordered number of groups ( m  = 1, 2, 3, …, 201). \({D}_{m}^{j}\) and \({Y}_{m}^{j}\) represent the proportions of population and GHG footprints (of food category j ) for each expenditure group, respectively. \({T}_{m}^{j}\) is the cumulative proportion of GHG footprints of each expenditure group. The results of national, regional and global GF-Gini coefficients are shown in Supplementary Tables 9 and 10 .

Regression analysis

We use the regression approach to examine the relationship between the national GF-Gini coefficients and the per capita GDP 91 , 92 of 139 countries/areas. The GF-Gini coefficient of each country is regarded as the dependent variable ( y ) and the national per capita GDP acts as the independent variable ( x ). Initially, locally weighted regression is applied to illustrate the trend lines within the scatterplot. Subsequently, we test different regression methods for validation based on the general trend. Ultimately, we found that logarithmic regression is the most fitting for dietary emissions of most food categories, particularly in the case of animal-based products. Thus, the logarithmic regression is applied.

Scenario of the planetary health diet

Scenario setting and assumptions.

To estimate the emission changes resulting from the transition from the 2019 diet to the global planetary health diet, we build a hypothetical scenario by assuming that individuals belonging to 201 different expenditure groups in all countries will all reach the reference intake level of 13 types of food categories 12 . First, we assume that the proportion of food sources from local production and trade in each country is unchanged, that is, emission changes from dietary shifts would be calculated on the basis of emissions from local production and imports accounting for emissions along global food supply chains, similar to studies by refs. 25 , 26 . At the same time, emission changes induced by decreased food consumption in countries following the planetary health diet, such as carbon uptake from agriculture abandonment 59 or emission increase from non-food biomass production in saved agricultural land 77 , are not considered in this study. Second, we assume that agricultural and food-related production technology, trade patterns and emission intensities of food supply chain processes remain unchanged during the diet transition. Third, fluctuations in food prices induced by altered food demand or the affordability of the planetary health diet for different consumer groups are not considered in this study.

Diet gaps for different food categories

The diet gap (DG) reflects gaps between present dietary intake and the planetary health diet 12 , 25 , as follows:

where \({{\rm{DG}}}_{{\rm{per}}}^{j,r}\) is defined as the percentage ratio of the present per capita caloric intake of food category j in country r each year ( \({{\rm{DI}}}_{{\rm{per}}}^{\,j,r}\) ) to the annual reference level ( \({{\rm{DI}}}_{{\rm{EAT}}\_{\rm{per}}}^{i}\) ). \({{\rm{DI}}}_{{\rm{EAT}\_day\_per}}^{\,j}\) is the recommended per capita caloric intake of food category j each day 12 (Supplementary Table 17 ). We assume a uniform annual calorie reference level for each food category across all populations in all countries. We allow flexibility in local diets by keeping the composition of each food category unchanged, requiring only that the calorie content reaches the reference level. According to the definition, present food intake is considered insufficient compared with reference levels when DG is <100%, while it is deemed excessive and should be reduced when DG is >100%. Daily per capita caloric intake of food categories from 201 expenditure groups of countries or regions are shown in Supplementary Data 12 and 13 . We calculate the DG for food categories of 201 expenditure groups at national and regional levels (Supplementary Data 14 and 15 ).

According to equation ( 1 ), the total emissions per unit of calorie content of food category j in country r ( \({F}_{{\rm{energy}}}^{\;j,r}\) ) can be calculated as:

where E j,r refers to the national emissions due to consumption of food category j in country r . Thus, emission changes for adopting the planetary health diet are calculated as follows:

where \(\Delta {E}_{{\rm{intake}}}^{\;j,r}\) represents the national emission changes of food category j in country r , \({E}_{{\rm{intake}}}^{\;j,r}\) is the national emissions from intake of food category j in country r . Changes in dietary emissions of food categories from 201 groups are shown in Supplementary Data 9 . The number of people with increased/decreased emissions from 201 groups is shown in Supplementary Data 19 .

Uncertainty analysis

We assess the uncertainty range of dietary emissions from different food products using a Monte Carlo approach, which simulates the uncertainties caused by activity data, emission factors and parameters in each emission process 16 , 59 , 93 . More details can be found in Supplementary Methods 1 .

Limitations

This study has the following limitations regarding data analysis and scenario setting.

In terms of data analysis, this study is limited by the data availability. First, we use regional household food loss and waste factors of aggregated food categories without more detailed product division at the national level because of a lack of data. There might also be differences between calculated and actual food intake amounts that are unable to be removed, such as animal bones or fruit skins 25 . Second, we use the consumer household-expenditure dataset based on WBGCD for the year 2011, which provides the most precise and detailed differentiation of consumer groups and their consumption patterns within countries so far. We assume that the shares in food expenditure and population for each expenditure group are the same as in 2011. Third, we assume that the composition of different products aggregated in one category consumed by expenditure groups is the same as the national consumption composition and there is no difference in the price of food products purchased by people from different expenditure groups. In addition, data for some populous high- or upper-middle-income countries are missing from the household-expenditure dataset. However, the countries are the world’s major food consumers and emitters, their emission changes due to diet shifts are important for the global food system. We use the expenditure shares of similar countries in the household-expenditure dataset to allocate the distributions of food expenditure in these countries.

In terms of scenario setting, we focus on the impact induced by changes in consumer choices without changing the proportion of food supply sources (domestic production and imports). We do not consider altering the proportions of supply sources and associated emissions in this study. However, future studies may explore the impacts of the production side and supply chains for diet shifts. Moreover, as we focus on the present emission inequality and mitigation potentials within the food system, we assume that the income and expenditure levels of expenditure groups remain unchanged. However, a shift in food supply may affect household income and subsequently alter the household food budgets, especially for populations employed in, or countries reliant on, food-related sectors. Additionally, as a result of data and model limitations, this study does not consider price fluctuations induced by food demand and subsequent changes in household affordability or spillover effects (between food categories or to non-food sectors). Future studies may combine assessment models incorporating elasticities to project the long-term feasibilities and consequences of diet shifts.

Reporting summary

Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article.

Data availability

Data for LULUC, agricultural and beyond-farm emissions and data for physical food consumption are curated by the FAO and can be freely obtained from FAOSTAT 82 , available from ref. 16 . Data of food loss and waste rate are retrieved from FAOSTAT 82 and ref. 25 . The global household-expenditure data are obtained from the World Bank 42 and refs. 17 , 41 . Population data used in this study are obtained from World Population Prospects of the United Nations 86 . Data on per capita GDP in countries can be collected from the World Bank 91 and the International Monetary Fund 92 . Supplementary datasets are also available on Zenodo ( https://doi.org/10.5281/zenodo.11934909 ) 94 . Source data are provided with this paper.

Code availability

Data collection is performed in MATLAB and Microsoft Excel. Code developed for data processing in MATLAB and R in this study is available from Zenodo ( https://doi.org/10.5281/zenodo.11880402 ) 95 .

Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113 , 4146–4151 (2016).

Article   CAS   Google Scholar  

Kesse-Guyot, E. et al. Sustainability analysis of French dietary guidelines using multiple criteria. Nat. Sustain. 3 , 377–385 (2020).

Article   Google Scholar  

Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2 , 198–209 (2021).

Tubiello, F. N. et al. Pre-and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems. Earth Syst. Sci. Data 14 , 1795–1809 (2022).

Clark, M. A. et al. Global food system emissions could preclude achieving the 1.5 °C and 2 °C climate change targets. Science 370 , 705–708 (2020).

Ivanovich, C. C., Sun, T., Gordon, D. R. & Ocko, I. B. Future warming from global food consumption. Nat. Clim. Change 13 , 297–302 (2023).

Béné, C. et al. Five priorities to operationalize the EAT-Lancet Commission report. Nat. Food 1 , 457–459 (2020).

Navarre, N., Schrama, M., de Vos, C. & Mogollón, J. M. Interventions for sourcing EAT-Lancet diets within national agricultural areas: a global analysis. One Earth 6 , 31–40 (2023).

Laine, J. E. et al. Co-benefits from sustainable dietary shifts for population and environmental health: an assessment from a large European cohort study. Lancet Planet. Health 5 , e786–e796 (2021).

Craig, W. J. Health effects of vegan diets. Am. J. Clin. Nutr. 89 , S1627–S1633 (2009).

Afshin, A. et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 393 , 1958–1972 (2019).

Willett, W. et al. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393 , 447–492 (2019).

The State of Food Security and Nutrition in the World 2022: Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable (FAO, 2022); https://www.fao.org/documents/card/en/c/cc0639en

Bajželj, B. et al. Importance of food-demand management for climate mitigation. Nat. Clim. Change 4 , 924–929 (2014).

Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562 , 519–525 (2018).

Li, Y. et al. Changes in global food consumption increase GHG emissions despite efficiency gains along global supply chains. Nat. Food 4 , 483–495 (2023).

Hubacek, K., Baiocchi, G., Feng, K. & Patwardhan, A. Poverty eradication in a carbon constrained world. Nat. Commun. 8 , 912 (2017).

Sustainable Development Goals: 17 Goals to Transform Our World (United Nations, 2017); https://www.un.org/sustainabledevelopment/sustainable-development-goals/

Humpenöder, F. et al. Projected environmental benefits of replacing beef with microbial protein. Nature 605 , 90–96 (2022).

Hasegawa, T., Havlík, P., Frank, S., Palazzo, A. & Valin, H. Tackling food consumption inequality to fight hunger without pressuring the environment. Nat. Sustain. 2 , 826–833 (2019).

Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Change 62 , 101926 (2020).

Denton, F. et al. in Climate Change 2022: Mitigation of Climate Change (eds Shukla, P. R. et al.) 1727–1790 (Cambridge Univ. Press, 2022).

Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515 , 518–522 (2014).

Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2 , e451–e461 (2018).

Tuninetti, M., Ridolfi, L. & Laio, F. Compliance with EAT-Lancet dietary guidelines would reduce global water footprint but increase it for 40% of the world population. Nat. Food 3 , 143–151 (2022).

Semba, R. D. et al. Adoption of the ‘planetary health diet’ has different impacts on countries’ greenhouse gas emissions. Nat. Food 1 , 481–484 (2020).

Guo, Y. et al. Environmental and human health trade-offs in potential Chinese dietary shifts. One Earth 5 , 268–282 (2022).

Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3 , 29–37 (2022).

Mbow, C. et al. in Climate Change and Land (eds Shukla, P. R. et al.) Ch. 5 (IPCC, 2019); https://www.ipcc.ch/site/assets/uploads/sites/4/2022/11/SRCCL_Chapter_5.pdf

Millward-Hopkins, J. & Oswald, Y. Reducing global inequality to secure human wellbeing and climate safety: a modelling study. Lancet Planet. Health 7 , e147–e154 (2023).

Guan, Y. et al. Burden of the global energy price crisis on households. Nat. Energy 8 , 304–316 (2023).

Hubacek, K. et al. Global carbon inequality. Energy Ecol. Environ. 2 , 361–369 (2017).

Mi, Z. et al. Economic development and converging household carbon footprints in China. Nat. Sustain. 3 , 529–537 (2020).

Bruckner, B., Hubacek, K., Shan, Y., Zhong, H. & Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 5 , 311–320 (2022).

He, P., Baiocchi, G., Hubacek, K., Feng, K. & Yu, Y. The environmental impacts of rapidly changing diets and their nutritional quality in China. Nat. Sustain. 1 , 122–127 (2018).

Rao, N. D. et al. Healthy, affordable and climate-friendly diets in India. Glob. Environ. Change 49 , 154–165 (2018).

He, P., Feng, K., Baiocchi, G., Sun, L. & Hubacek, K. Shifts towards healthy diets in the US can reduce environmental impacts but would be unaffordable for poorer minorities. Nat. Food 2 , 664–672 (2021).

Reynolds, C. J., Horgan, G. W., Whybrow, S. & Macdiarmid, J. I. Healthy and sustainable diets that meet greenhouse gas emission reduction targets and are affordable for different income groups in the UK. Public Health Nutr. 22 , 1503–1517 (2019).

Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R. & Meybeck, A. Global Food Losses and Food Waste-Extent, Causes and Prevention (FAO, 2011); https://www.fao.org/3/mb060e/mb060e00.htm

Kummu, M. et al. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland and fertiliser use. Sci. Total Environ. 438 , 477–489 (2012).

Zhong, H., Feng, K., Sun, L., Cheng, L. & Hubacek, K. Household carbon and energy inequality in Latin American and Caribbean countries. J. Environ. Manag. 273 , 110979 (2020).

Global Consumption Database (World Bank, 2022); https://datatopics.worldbank.org/consumption/

Wier, M., Birr-Pedersen, K., Jacobsen, H. K. & Klok, J. Are CO 2 taxes regressive? Evidence from the Danish experience. Ecol. Econ. 52 , 239–251 (2005).

Hirvonen, K., Bai, Y., Headey, D. & Masters, W. A. Affordability of the EAT-Lancet reference diet: a global analysis. Lancet Glob. Health 8 , e59–e66 (2020).

The State of Food Security and Nutrition in the World 2023 (FAO, 2023); https://doi.org/10.4060/cc3017en

World Bank Country and Lending Groups (World Bank, 2021); https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups

Okou, C., Spray, J. A. & Unsal, M. F. D. Staple Food Prices in Sub-Saharan Africa: An Empirical Assessment (International Monetary Fund, 2022); https://www.imf.org/en/Publications/WP/Issues/2022/07/08/Staple-Food-Prices-in-Sub-Saharan-Africa-An-Empirical-Assessment-520567

Delgermaa, D., Yamaguchi, M., Nomura, M. & Nishi, N. Assessment of Mongolian dietary intake for planetary and human health. PLoS Glob. Public Health 3 , e0001229 (2023).

Burkhart, S., Underhill, S. & Raneri, J. Realizing the potential of neglected and underutilized bananas in improving diets for nutrition and health outcomes in the Pacific Islands. Front. Sustain. Food Syst. 6 , 805776 (2022).

Pingali, P. Agricultural policy and nutrition outcomes—getting beyond the preoccupation with staple grains. Food Secur. 7 , 583–591 (2015).

Sibhatu, K. T. & Qaim, M. Rural food security, subsistence agriculture and seasonality. PloS ONE 12 , e0186406 (2017).

Headey, D. D. & Alderman, H. H. The relative caloric prices of healthy and unhealthy foods differ systematically across income levels and continents. J. Nutr. 149 , 2020–2033 (2019).

Bai, Y., Alemu, R., Block, S. A., Headey, D. & Masters, W. A. Cost and affordability of nutritious diets at retail prices: evidence from 177 countries. Food Policy 99 , 101983 (2021).

Batis, C. et al. Adoption of healthy and sustainable diets in Mexico does not imply higher expenditure on food. Nat. Food 2 , 792–801 (2021).

Bennett, M. K. International contrasts in food consumption. Geogr. Rev. 31 , 365–376 (1941).

D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56 , 456–531 (2018).

Traditional Pacific Island Crops (Univ. Hawaii, 2024); https://guides.library.manoa.hawaii.edu/paccrops

Fiji—Agricultural Commodities (International Trade Administration, 2022); https://www.trade.gov/country-commercial-guides/fiji-agricultural-commodities

Hong, C. et al. Global and regional drivers of land-use emissions in 1961–2017. Nature 589 , 554–561 (2021).

Hong, C. et al. Land-use emissions embodied in international trade. Science 376 , 597–603 (2022).

Darmon, N., Lacroix, A., Muller, L. & Ruffieux, B. Food price policies improve diet quality while increasing socioeconomic inequalities in nutrition. Int. J. Behav. Nutr. Phys. Act. 11 , 66 (2014).

Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360 , 987–992 (2018).

Bacon, L. & Krpan, D. (Not) Eating for the environment: the impact of restaurant menu design on vegetarian food choice. Appetite 125 , 190–200 (2018).

Swinburn, B. A. et al. The global syndemic of obesity, undernutrition and climate change: the Lancet Commission report. Lancet 393 , 791–846 (2019).

Geyik, O., Hadjikakou, M., Karapinar, B. & Bryan, B. A. Does global food trade close the dietary nutrient gap for the world’s poorest nations? Glob. Food Secur. 28 , 100490 (2021).

Pradhan, P., Fischer, G., Van Velthuizen, H., Reusser, D. E. & Kropp, J. P. Closing yield gaps: how sustainable can we be. PloS ONE 10 , e0129487 (2015).

Sánchez, P. A. Tripling crop yields in tropical Africa. Nat. Geosci. 3 , 299–300 (2010).

Huang, J., Pray, C. & Rozelle, S. Enhancing the crops to feed the poor. Nature 418 , 678–684 (2002).

The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets (FAO, 2020); https://www.fao.org/documents/card/en?details=ca9692en

Allcott, H. et al. Food deserts and the causes of nutritional inequality. Q. J. Econ. 134 , 1793–1844 (2019).

Springmann, M., Clark, M. A., Rayner, M., Scarborough, P. & Webb, P. The global and regional costs of healthy and sustainable dietary patterns: a modelling study. Lancet Planet. Health 5 , e797–e807 (2021).

Darmon, N. & Drewnowski, A. Contribution of food prices and diet cost to socioeconomic disparities in diet quality and health: a systematic review and analysis. Nutr. Rev. 73 , 643–660 (2015).

Baylis, K., Peplow, S., Rausser, G. & Simon, L. Agri-environmental policies in the EU and United States: a comparison. Ecol. Econ. 65 , 753–764 (2008).

Swinnen, J. The right price of food. Dev. Policy Rev. 29 , 667–688 (2011).

Headey, D. D. Food prices and poverty. World Bank Econ. Rev. 32 , 676–691 (2018).

Google Scholar  

Headey, D. & Hirvonen, K. Higher food prices can reduce poverty and stimulate growth in food production. Nat. Food 4 , 699–706 (2023).

Gatto, A., Kuiper, M. & van Meijl, H. Economic, social and environmental spillovers decrease the benefits of a global dietary shift. Nat. Food 4 , 496–507 (2023).

Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10 , 024007 (2015).

Davis, K. F. et al. Alternative cereals can improve water use and nutrient supply in India. Sci. Adv. 4 , eaao1108 (2018).

Le Quéré, C. et al. Temporary reduction in daily global CO 2 emissions during the COVID-19 forced confinement. Nat. Clim. Change 10 , 647–653 (2020).

Shan, Y. et al. Impacts of COVID-19 and fiscal stimuli on global emissions and the Paris Agreement. Nat. Clim. Change 11 , 200–206 (2021).

FAOSTAT Database (FAO, 2022); https://www.fao.org/faostat/en/

Supply Utilization Accounts, Food Blances, FAOSTAT Online Database (FAO, 2022); https://www.fao.org/faostat/en/#data/SCL

Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70 , 1032–1040 (2011).

Kastner, T., Erb, K.-H. & Haberl, H. Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environ. Res. Lett. 9 , 034015 (2014).

World Population Prospects 2022 (United Nations, 2022); https://population.un.org/wpp/Download/Standard/Population/

Food Balance Sheets—A Handbook (FAO, 2001); https://www.fao.org/3/x9892e/X9892e05.htm#P8217_125315

Nutritive Factors (FAO, 2023); https://www.fao.org/economic/the-statistics-division-ess/publications-studies/publications/nutritive-factors/en/

Wiedenhofer, D. et al. Unequal household carbon footprints in China. Nat. Clim. Change 7 , 75–80 (2017).

Gini, C. Measurement of inequality of incomes. Econ. J. 31 , 124–125 (1921).

The World Bank Data: GDP per Capita (Current US$) (World Bank, 2023); https://data.worldbank.org/indicator/NY.GDP.PCAP.PP.CD

Datasets, World Economic Outlook (April 2023): GDP per Capita, Current Prices (IMF, 2023); https://www.imf.org/external/datamapper/NGDPDPC@WEO/OEMDC/ADVEC/WEOWORLD

Xu, X. et al. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. Nat. Food 2 , 724–732 (2021).

Li, Y. et al. Supplementary Datasets for ‘Reducing climate change impacts from the global food system through diet shifts’. Zenodo https://doi.org/10.5281/zenodo.11934909 (2024).

Li, Y. et al. Code for ‘Reducing climate change impacts from the global food system through diet shifts’. Zenodo https://doi.org/10.5281/zenodo.11880402 (2024).

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant nos 72243004, 32101315, 71904098). Y.S. and S.S. acknowledge support from the National Natural Science Foundation of China (grant no. 72243004). Yu Li acknowledges support from the National Natural Science Foundation of China (grant no. 32101315). P.H. acknowledges support from the National Natural Science Foundation of China under a Young Scholar Programme Grant (grant no. 71904098). Yanxian Li and Y.H. acknowledge the funding support by the China Scholarship Council PhD programme. We thank Y. Zhou for supporting visualization and J. Yan for assisting in writing and revising. For the purpose of open access, a CC BY public copyright license is applied to any author accepted manuscript arising from this submission.

Author information

Authors and affiliations.

Integrated Research on Energy, Environment and Society (IREES), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen, the Netherlands

Yanxian Li, Franco Ruzzenenti & Klaus Hubacek

School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK

Department of Earth System Science, Tsinghua University, Beijing, China

School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK

Yuli Shan & Ye Hang

School of Public Administration, Chongqing Technology and Business University, Chongqing, China

School of Business, East China University of Science and Technology, Shanghai, China

You can also search for this author in PubMed   Google Scholar

Contributions

Yanxian Li, Y.S. and K.H. designed the research. Yanxian Li performed the analysis with support from P.H., Yu Li, Y.H. and S.S. on analytical approaches and visualization. Yanxian Li led the writing with efforts from P.H., Y.S., F.R. and K.H. Y.S. and K.H. supervised and coordinated the overall research. All co-authors reviewed and commented on the manuscript.

Corresponding authors

Correspondence to Yuli Shan or Klaus Hubacek .

Ethics declarations

Competing interests.

The authors declare no competing interests.

Peer review

Peer review information.

Nature Climate Change thanks Catharina Latka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information.

Supplementary Methods, Discussion, Figs. 1–23, Tables 1–24 and references.

Reporting Summary

Supplementary data.

Detailed data for calculated results in this study.

Source Data Fig. 1

Source data for creating Fig. 1.

Source Data Fig. 2

Source data for creating Fig. 2.

Source Data Fig. 3

Source data for creating Fig. 3.

Source Data Fig. 4

Source data for creating Fig. 4.

Source data Fig. 5

Source data for creating Fig. 5.

Source Data Fig. 6

Source data for creating Fig. 6.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Li, Y., He, P., Shan, Y. et al. Reducing climate change impacts from the global food system through diet shifts. Nat. Clim. Chang. (2024). https://doi.org/10.1038/s41558-024-02084-1

Download citation

Received : 07 November 2023

Accepted : 05 July 2024

Published : 13 August 2024

DOI : https://doi.org/10.1038/s41558-024-02084-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

essay on effect of global warming

Home

  • University News
  • Faculty & Research
  • Health & Medicine
  • Science & Technology
  • Social Sciences
  • Humanities & Arts
  • Students & Alumni
  • Arts & Culture
  • Sports & Athletics
  • The Professions
  • International
  • New England Guide

The Magazine

  • Current Issue
  • Past Issues

Class Notes & Obituaries

  • Browse Class Notes
  • Browse Obituaries

Collections

  • Commencement
  • The Context

Harvard Squared

  • Harvard in the Headlines

Support Harvard Magazine

  • Why We Need Your Support
  • How We Are Funded
  • Ways to Support the Magazine
  • Special Gifts
  • Behind the Scenes

Classifieds

  • Vacation Rentals & Travel
  • Real Estate
  • Products & Services
  • Harvard Authors’ Bookshelf
  • Education & Enrichment Resource
  • Ad Prices & Information
  • Place An Ad

Follow Harvard Magazine:

Right Now | Rough Reckoning

Climate Change’s Crippling Costs

September-October 2024

 An illustration of a burning Earth breaking a rising red line graph, symbolizing the impact of climate change.

Illustration by Eva Vázquez

Adrien Bilal Website

Economists, including the late research professor of economics Martin Weitzman and William Nordhaus of Yale, began in the 1990s to consider the potential economic effects of climate change. By their rough estimates and a large body of subsequent work, each 1-degree Celsius rise in world temperature would reduce world gross domestic product (GDP) by 1 to 3 percent.

But for assistant professor of economics Adrien Bilal and his collaborator, Diego Kanzig of Northwestern University, these estimates were at odds with the dire warnings from climate scientists who predict that climate change will “profoundly affect our lives and livelihoods,” Bilal explains. “We were puzzled by that disconnect.”

Economic Impact Estimates

Estimating the economic damages of climate change is critical; it allows policymakers to prepare for shifts in the economy and to make informed choices about efforts to reduce carbon emissions, Bilal says. “If climate damages are low, standard cost-benefit analysis will conclude that expensive decarbonization policies are not worthwhile,” he says. Yet if climate damages are high, such analysis will recommend bigger efforts to reduce carbon, he adds. Modeling the economic impact of climate change can also guide decisions about the resources society might invest to adapt to these changes, with greater investment in sea walls or air conditioning, for example.

Bilal and Kanzig take a fundamentally different approach to modeling the economic impacts of global climate change than their predecessors. They argue in a recent working paper that the economic damages of climate change are likely six times worse than previously estimated. A 1-degree Celsius rise in global temperature, they say, would lead to a 12 percent decline in world GDP.

What accounts for this dramatic difference? Bilal explains that most previous analyses were based soley on local temperature changes and the corresponding impact on local GDP. “If it’s a little hotter in Germany than in France this year, how does Germany’s GDP change?” he offers, as an example. But climate change involves a planet-wide rise in temperatures, which also generates more dramatic weather patterns than regional temperature fluctuations do. Global temperature increases warm the oceans, affecting evaporation, precipitation, and wind speeds. These conditions have led to more extreme and disruptive weather patterns, such as tropical storms and heat waves, Bilal says, “which are more costly to the economy.”

To model these effects, the researchers created a data set featuring 173 countries during the last 120 years, including land and ocean surface air temperature as well as economic data for each of the countries. They also examined the impact of temporary “temperature shocks” that affected the planet as whole: events such as the El Niño weather pattern, which traps warmer air in tropical areas of the Pacific Ocean, and volcanic eruptions. “When the volcano erupts, it blows sulfur dioxide into the atmosphere that blocks incoming sunlight,” Bilal says, cooling the Earth for up to two years. The economists then analyzed how the ensuing temperature shocks corresponded to income changes.

Bilal says he was surprised by how much more global temperature rise damaged GDP around the world, in contrast with local temperature shifts. “The effects are more uniformly detrimental,” he says. “It’s bad for almost everyone.” And when the researchers added in the possibility of a moderate 2 degrees of warming before the end of the century, this led to a decline in future GDP of between 30 and 50 percent by 2100, relative to the predicted baseline, Bilal says.

Projected Climate-Caused GDP Decline

In the U.S. alone, current GDP is roughly $25 trillion; with a modest growth rate and no climate change, this could grow to about $112 trillion by 2100, Bilal explains. A 50 percent decline in 2100 GDP relative to baseline means a loss of $56 trillion each year, which exceeds the current GDP. Such declines would leave individuals with “a 31 percent drop in purchasing power relative to a world without climate change,” Bilal adds. Such losses are “comparable to living in the 1929 Great Depression, forever ,” he says. When converted into a dollar figure representing the damage incurred by each additional ton of carbon emissions, known as the social cost of carbon, this analysis settled on slightly more than $1,000 per ton—very different from the frequently cited figure of around $150 per ton. Because their findings are so dramatically different from those produced by traditional models, Bilal says he and his colleague spent many months confirming their results before releasing their research.

Once this working paper is published, Bilal hopes to consider the “critical” question of adaptation, or how human investments and actions in the face of climate change might improve the scenario described here. He notes that this current research does factor in historical adaptation, and their results were very stable. “That’s not very good news for the adaptation hypothesis because historically, it doesn’t seem that we’re adapting very much,” he says. And such measures are costly; Venice’s MOSE barrier system to protect the city from devastating floods cost roughly $8 billion and has had mixed success.

Still, “there are many channels through which societies can adapt,” including in-place measures such as air conditioning and coastal defense, or migratory strategies such as relocation to less-exposed places, and investment shifts that favor safer locations.

“However, how much adaptation will offset losses from climate change overall,” Bilal says, “is still an open question.”

You might also like

five small sculptures of houses made of brass, suspended on posts and placed on the grassy shore overlooking Duxbury Bay

Among the Oyster Houses

Harvard students’ art installation nods at New England’s coastal farms.

Illustration of John Harvard in the foreground with a green bar graph background

Harvard’s Financial Outlook

What to expect after a tumultuous year

essay on effect of global warming

Nuclear Treaties and the Russo-Ukrainian Conflict

Mitigating nuclear risks in modern warfare

Most popular

A young girl with pink headphones uses a tablet for an educational reading game at a classroom desk.

A Right Way to Read?

The science, art, and politics of teaching an essential skill

An illustration of a graduate in a cap and gown shouting into a megaphone labeled with a "U," facing a man shouting into a megaphone with an American flag design. The background is bright yellow.

Academic Freedom and Free Speech

Robert Post explains how they differ—and why it matters, especially now

John Singleton Copley&rsquo;s <i>A Boy with a Flying Squirrel,</i> 1765

The Power of Patience

Teaching students the value of deceleration and immersive attention

House - Email

More to explore

 An illustration of a burning Earth breaking a rising red line graph, symbolizing the impact of climate change.

What is the Economic Impact of Climate Change on Global GDP?

The impact on global GDP is likely six times greater than previously estimated. 

Beau McCall, at left, wearing Button Jacket: Born in Philly, Made in Harlem, circa 1988, and his partner, Souleo, wearing Button Jacket: Stacked Sleeves, circa early 1990s-2021

Art Made Out of Buttons

Works by Harlem-based artist Beau McCall at Brockton's Fuller Craft Museum

Susan Farbstein smiles while standing outside in front of a building with columns and surrounding greenery, wearing a light blue blouse.

John Harvard's Journal

Susan Farbstein on Human Rights Law

Human rights lawyer on law’s ability to promote justice—and shape public understanding

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

We've detected unusual activity from your computer network

To continue, please click the box below to let us know you're not a robot.

Why did this happen?

Please make sure your browser supports JavaScript and cookies and that you are not blocking them from loading. For more information you can review our Terms of Service and Cookie Policy .

For inquiries related to this message please contact our support team and provide the reference ID below.

U.S. flag

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Publications

Global net climate effects of anthropogenic reactive nitrogen.

Anthropogenic activities have substantially enhanced the loadings of reactive nitrogen (Nr) in the Earth system since pre-industrial times1,2, contributing to widespread eutrophication and air pollution3–6. Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of −0.34 [−0.20, −0.50] W m−2 in the year 2019 relative to the year 1850. This net cooling effect is the result of increased aerosol loading, reduced methane lifetime and increased terrestrial carbon sequestration associated with increases in anthropogenic Nr, which are not offset by the warming effects of enhanced atmospheric nitrous oxide and ozone. Future predictions using three representative scenarios show that this cooling effect may be weakened primarily as a result of reduced aerosol loading and increased lifetime of methane, whereas in particular N2O-induced warming will probably continue to increase under all scenarios. Our results indicate that future reductions in anthropogenic Nr to achieve environmental protection goals need to be accompanied by enhanced efforts to reduce anthropogenic greenhouse gas emissions to achieve climate change mitigation in line with the Paris Agreement.

IMAGES

  1. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    essay on effect of global warming

  2. Persuasive Essay Sample: Global Warming

    essay on effect of global warming

  3. Essay on Global Warming with Samples (150

    essay on effect of global warming

  4. Essay on Global Warming with Samples (150 & 200 words)

    essay on effect of global warming

  5. Issue of Global Warming Argumentative Essay on Samploon.com

    essay on effect of global warming

  6. Write A Short Essay On Global Warming

    essay on effect of global warming

COMMENTS

  1. Essay on Effects of Global Warming for Students

    500+ Words Essay on Effects of Global Warming. Global warming refers to climate change that causes an increase in the average of Earth's temperature. Natural events and human influences are believed to be top contributions towards the increase in average temperatures. Global warming is a rise in the surface and atmospheric temperature of the ...

  2. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  3. Essay on Global Warming with Samples (150, 250, 500 Words

    These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming. Also Read: Concept of Sustainable Development. Sample Essays on Global Warming. Here are some sample essays on Global Warming: Essay on Global Warming Paragraph in 100 - 150 ...

  4. Essay on Effects of Global Warming For Students in English

    Effect of Global Warming Short Essay. Since hundreds of years ago, greenhouse gases have remained in the atmosphere for several years. Global warming, on the other hand, would have disastrous consequences for the planet. If global warming persists, a slew of negative consequences will emerge. Melting polar ice caps, economic effects, warming ...

  5. Essay on Global Warming

    Q.1 List the causes of Global Warming. A.1 There are various causes of global warming both natural and manmade. The natural one includes a greenhouse gas, volcanic eruption, methane gas and more. Next up, manmade causes are deforestation, mining, cattle rearing, fossil fuel burning and more.

  6. Global Warming Essay: Causes, Effects, and Prevention

    This article will help you understand how to write an essay about global warming from many different perspectives. Topics. The different effects of global warming in two different geographic regions. Possible social or humanitarian effects from global warming, such as population migration. The places on Earth most at risk due to rising sea levels.

  7. What are the effects of global warming?

    What are the effects of global warming? One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers. The Arctic ...

  8. Global Warming Essay

    A rise in global temperatures can lead to additional changes in the environment, such as rising sea levels. Since an increase in the temperature causes the glaciers and icebergs to melt at a rapid pace, it causes the sea levels to rise. On the Weather: Global Warming causes intense heat waves by significantly increasing the temperature which ...

  9. Global Warming

    Global warming is the long-term warming of the planet's overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels.As the human population has increased, so has the volume of . fossil fuels burned.. Fossil fuels include coal, oil, and natural gas, and burning them causes ...

  10. Causes and effects of global warming

    global warming, Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution.In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2-7.2 °F (1.8-4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was ...

  11. Causes and Effects of Climate Change

    Fossil fuels - coal, oil and gas - are by far&nbsp;the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent ...

  12. Global Warming Definition, Causes, Effects, Impacts, Solutions

    Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post Industrial Revolution, have led to an increase in the rate of this temperature increase. Various Reports published by the International Panel on Climate Change (IPCC) have time and ...

  13. There's a deeper problem hiding beneath global warming

    Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the 'waste heat' problem around 15 years ago.

  14. Effects of Global Warming Essay in English

    This has caused increased flooding, drought, and extreme weather events. In addition, global warming has also caused a loss of biodiversity, as some species are unable to adapt to the changing climate. Global warming has become an increasingly important environmental issue in recent years. The effects of global warming are far-reaching and can ...

  15. Causes, Effects and Solutions to Global Warming

    There are many effects that will happen in the future if global warming continues. That includes polar ice caps melting, economic consequences, warmer waters and more hurricanes, spread of diseases and earthquake. First effect is polar ice caps melting. As the temperature increase, the ice at the North Pole will melt.

  16. Global Warming 101

    A: Global warming occurs when carbon dioxide (CO 2) and other air pollutants collect in the atmosphere and absorb sunlight and solar radiation that have bounced off the earth's surface. Normally ...

  17. Global Warming Essay in English (Causes and Solutions)

    500 Words Essay On Global Warming. The gradual increase in surface climate caused by various factors is known as global warming. It poses serious risks to both the environment and humanity. Climate change effects include global warming. The main contributor to global warming is the unavoidable release of greenhouse gases.

  18. Climate change: a threat to human wellbeing and health of the

    Global Warming of 1.5°C, an IPCC special report on the impacts of global warming of 1.5 degrees Celsius above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty was launched in ...

  19. The Science of Climate Change Explained: Facts, Evidence and Proof

    Average global temperatures have increased by 2.2 degrees Fahrenheit, or 1.2 degrees Celsius, since 1880, with the greatest changes happening in the late 20th century. Land areas have warmed more ...

  20. Essay On Global Warming

    Essay On Global Warming in 300 Words. Global warming is a phenomenon where the earth's average temperature rises due to increased amounts of greenhouse gases. Greenhouse gases such as carbon dioxide, methane and ozone trap the incoming radiation from the sun. This effect creates a natural "blanket", which prevents the heat from escaping ...

  21. Global Warming Cause and Effect Essay

    Factors Contributing To Global Warming Environmental Sciences Essay. In the 21st century, negative environmental and economical effects have been experienced: due to global warming. Global warming is defined as warming of Earth's surface and lower atmosphere; whi...

  22. Scholarly Articles on Global Warming and Climate Change

    The effects of human activities on global warming and climate change are acknowledged and accepted by most people in the United States. According to annual polls conducted by Gallup since 2001, the public's beliefs in anthropogenic climate change has increased. In 2023, 62 percent of Americans accepted that human activities cause climate change ...

  23. Global warming makes heat waves hotter longer and more common

    Extremely hot weather can make people sick and even die. Heat waves are a leading cause of weather-related deaths in the United States, killing more than 600 people each year. Extreme heat can make existing health problems worse and can cause heat stroke or heat exhaustion even in healthy people.. Older adults, young children, and people with chronic conditions face the highest risk.

  24. How Close Are the Planet's Climate Tipping Points?

    Even if humanity moves swiftly to rein in global warming, 70 percent to 90 percent of today's reef-building corals could die in the coming decades. If we don't, the toll could be 99 percent or ...

  25. Reducing climate change impacts from the global food system

    Food choices impact both our health and the environment 1,2.The food system is responsible for about one-third of global anthropogenic GHG emissions 3,4 and climate goals become unattainable ...

  26. What is the Economic Impact of Climate Change on Global GDP?

    Economists, including the late research professor of economics Martin Weitzman and William Nordhaus of Yale, began in the 1990s to consider the potential economic effects of climate change. By their rough estimates and a large body of subsequent work, each 1-degree Celsius rise in world temperature would reduce world gross domestic product (GDP) by 1 to 3 percent.

  27. Global Warming Solution Essay (pdf)

    Global Warming Solution Essay Crafting an essay on the subject of global warming solutions is undoubtedly a challenging endeavor. Tackling such a complex and pressing issue demands a comprehensive understanding of the scientific, economic, and political aspects surrounding climate change. The task involves delving into a vast pool of information, ranging from greenhouse gas emissions and ...

  28. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  29. We're Burning More Climate-Warming Coal Than Ever. Why?

    From 2006 through 2014, coal was the source of at least 40% of global electricity generation, according to the International Energy Agency, a Paris-based organization of developed nations that ...

  30. Global net climate effects of anthropogenic reactive nitrogen

    Increased Nr can also influence global climate through a variety of effects on atmospheric and land processes but the cumulative net climate effect is yet to be unravelled. Here we show that anthropogenic Nr causes a net negative direct radiative forcing of −0.34 [−0.20, −0.50] W m−2 in the year 2019 relative to the year 1850.