• No category

STATS-BASILIO-Renz-Tyrone A-232-Assignment-Module-7-ANOVA-test (1)

Related documents.

Experiment

Add this document to collection(s)

You can add this document to your study collection(s)

Add this document to saved

You can add this document to your saved list

Suggest us how to improve StudyLib

(For complaints, use another form )

Input it if you want to receive answer

  • Privacy Policy

Research Method

Home » ANOVA (Analysis of variance) – Formulas, Types, and Examples

ANOVA (Analysis of variance) – Formulas, Types, and Examples

Table of Contents

ANOVA

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is a statistical method used to test differences between two or more means. It is similar to the t-test, but the t-test is generally used for comparing two means, while ANOVA is used when you have more than two means to compare.

ANOVA is based on comparing the variance (or variation) between the data samples to the variation within each particular sample. If the between-group variance is high and the within-group variance is low, this provides evidence that the means of the groups are significantly different.

ANOVA Terminology

When discussing ANOVA, there are several key terms to understand:

  • Factor : This is another term for the independent variable in your analysis. In a one-way ANOVA, there is one factor, while in a two-way ANOVA, there are two factors.
  • Levels : These are the different groups or categories within a factor. For example, if the factor is ‘diet’ the levels might be ‘low fat’, ‘medium fat’, and ‘high fat’.
  • Response Variable : This is the dependent variable or the outcome that you are measuring.
  • Within-group Variance : This is the variance or spread of scores within each level of your factor.
  • Between-group Variance : This is the variance or spread of scores between the different levels of your factor.
  • Grand Mean : This is the overall mean when you consider all the data together, regardless of the factor level.
  • Treatment Sums of Squares (SS) : This represents the between-group variability. It is the sum of the squared differences between the group means and the grand mean.
  • Error Sums of Squares (SS) : This represents the within-group variability. It’s the sum of the squared differences between each observation and its group mean.
  • Total Sums of Squares (SS) : This is the sum of the Treatment SS and the Error SS. It represents the total variability in the data.
  • Degrees of Freedom (df) : The degrees of freedom are the number of values that have the freedom to vary when computing a statistic. For example, if you have ‘n’ observations in one group, then the degrees of freedom for that group is ‘n-1’.
  • Mean Square (MS) : Mean Square is the average squared deviation and is calculated by dividing the sum of squares by the corresponding degrees of freedom.
  • F-Ratio : This is the test statistic for ANOVAs, and it’s the ratio of the between-group variance to the within-group variance. If the between-group variance is significantly larger than the within-group variance, the F-ratio will be large and likely significant.
  • Null Hypothesis (H0) : This is the hypothesis that there is no difference between the group means.
  • Alternative Hypothesis (H1) : This is the hypothesis that there is a difference between at least two of the group means.
  • p-value : This is the probability of obtaining a test statistic as extreme as the one that was actually observed, assuming that the null hypothesis is true. If the p-value is less than the significance level (usually 0.05), then the null hypothesis is rejected in favor of the alternative hypothesis.
  • Post-hoc tests : These are follow-up tests conducted after an ANOVA when the null hypothesis is rejected, to determine which specific groups’ means (levels) are different from each other. Examples include Tukey’s HSD, Scheffe, Bonferroni, among others.

Types of ANOVA

Types of ANOVA are as follows:

One-way (or one-factor) ANOVA

This is the simplest type of ANOVA, which involves one independent variable . For example, comparing the effect of different types of diet (vegetarian, pescatarian, omnivore) on cholesterol level.

Two-way (or two-factor) ANOVA

This involves two independent variables. This allows for testing the effect of each independent variable on the dependent variable , as well as testing if there’s an interaction effect between the independent variables on the dependent variable.

Repeated Measures ANOVA

This is used when the same subjects are measured multiple times under different conditions, or at different points in time. This type of ANOVA is often used in longitudinal studies.

Mixed Design ANOVA

This combines features of both between-subjects (independent groups) and within-subjects (repeated measures) designs. In this model, one factor is a between-subjects variable and the other is a within-subjects variable.

Multivariate Analysis of Variance (MANOVA)

This is used when there are two or more dependent variables. It tests whether changes in the independent variable(s) correspond to changes in the dependent variables.

Analysis of Covariance (ANCOVA)

This combines ANOVA and regression. ANCOVA tests whether certain factors have an effect on the outcome variable after removing the variance for which quantitative covariates (interval variables) account. This allows the comparison of one variable outcome between groups, while statistically controlling for the effect of other continuous variables that are not of primary interest.

Nested ANOVA

This model is used when the groups can be clustered into categories. For example, if you were comparing students’ performance from different classrooms and different schools, “classroom” could be nested within “school.”

ANOVA Formulas

ANOVA Formulas are as follows:

Sum of Squares Total (SST)

This represents the total variability in the data. It is the sum of the squared differences between each observation and the overall mean.

  • yi represents each individual data point
  • y_mean represents the grand mean (mean of all observations)

Sum of Squares Within (SSW)

This represents the variability within each group or factor level. It is the sum of the squared differences between each observation and its group mean.

  • yij represents each individual data point within a group
  • y_meani represents the mean of the ith group

Sum of Squares Between (SSB)

This represents the variability between the groups. It is the sum of the squared differences between the group means and the grand mean, multiplied by the number of observations in each group.

  • ni represents the number of observations in each group
  • y_mean represents the grand mean

Degrees of Freedom

The degrees of freedom are the number of values that have the freedom to vary when calculating a statistic.

For within groups (dfW):

For between groups (dfB):

For total (dfT):

  • N represents the total number of observations
  • k represents the number of groups

Mean Squares

Mean squares are the sum of squares divided by the respective degrees of freedom.

Mean Squares Between (MSB):

Mean Squares Within (MSW):

F-Statistic

The F-statistic is used to test whether the variability between the groups is significantly greater than the variability within the groups.

If the F-statistic is significantly higher than what would be expected by chance, we reject the null hypothesis that all group means are equal.

Examples of ANOVA

Examples 1:

Suppose a psychologist wants to test the effect of three different types of exercise (yoga, aerobic exercise, and weight training) on stress reduction. The dependent variable is the stress level, which can be measured using a stress rating scale.

Here are hypothetical stress ratings for a group of participants after they followed each of the exercise regimes for a period:

  • Yoga: [3, 2, 2, 1, 2, 2, 3, 2, 1, 2]
  • Aerobic Exercise: [2, 3, 3, 2, 3, 2, 3, 3, 2, 2]
  • Weight Training: [4, 4, 5, 5, 4, 5, 4, 5, 4, 5]

The psychologist wants to determine if there is a statistically significant difference in stress levels between these different types of exercise.

To conduct the ANOVA:

1. State the hypotheses:

  • Null Hypothesis (H0): There is no difference in mean stress levels between the three types of exercise.
  • Alternative Hypothesis (H1): There is a difference in mean stress levels between at least two of the types of exercise.

2. Calculate the ANOVA statistics:

  • Compute the Sum of Squares Between (SSB), Sum of Squares Within (SSW), and Sum of Squares Total (SST).
  • Calculate the Degrees of Freedom (dfB, dfW, dfT).
  • Calculate the Mean Squares Between (MSB) and Mean Squares Within (MSW).
  • Compute the F-statistic (F = MSB / MSW).

3. Check the p-value associated with the calculated F-statistic.

  • If the p-value is less than the chosen significance level (often 0.05), then we reject the null hypothesis in favor of the alternative hypothesis. This suggests there is a statistically significant difference in mean stress levels between the three exercise types.

4. Post-hoc tests

  • If we reject the null hypothesis, we conduct a post-hoc test to determine which specific groups’ means (exercise types) are different from each other.

Examples 2:

Suppose an agricultural scientist wants to compare the yield of three varieties of wheat. The scientist randomly selects four fields for each variety and plants them. After harvest, the yield from each field is measured in bushels. Here are the hypothetical yields:

The scientist wants to know if the differences in yields are due to the different varieties or just random variation.

Here’s how to apply the one-way ANOVA to this situation:

  • Null Hypothesis (H0): The means of the three populations are equal.
  • Alternative Hypothesis (H1): At least one population mean is different.
  • Calculate the Degrees of Freedom (dfB for between groups, dfW for within groups, dfT for total).
  • If the p-value is less than the chosen significance level (often 0.05), then we reject the null hypothesis in favor of the alternative hypothesis. This would suggest there is a statistically significant difference in mean yields among the three varieties.
  • If we reject the null hypothesis, we conduct a post-hoc test to determine which specific groups’ means (wheat varieties) are different from each other.

How to Conduct ANOVA

Conducting an Analysis of Variance (ANOVA) involves several steps. Here’s a general guideline on how to perform it:

  • Null Hypothesis (H0): The means of all groups are equal.
  • Alternative Hypothesis (H1): At least one group mean is different from the others.
  • The significance level (often denoted as α) is usually set at 0.05. This implies that you are willing to accept a 5% chance that you are wrong in rejecting the null hypothesis.
  • Data should be collected for each group under study. Make sure that the data meet the assumptions of an ANOVA: normality, independence, and homogeneity of variances.
  • Calculate the Degrees of Freedom (df) for each sum of squares (dfB, dfW, dfT).
  • Compute the Mean Squares Between (MSB) and Mean Squares Within (MSW) by dividing the sum of squares by the corresponding degrees of freedom.
  • Compute the F-statistic as the ratio of MSB to MSW.
  • Determine the critical F-value from the F-distribution table using dfB and dfW.
  • If the calculated F-statistic is greater than the critical F-value, reject the null hypothesis.
  • If the p-value associated with the calculated F-statistic is smaller than the significance level (0.05 typically), you reject the null hypothesis.
  • If you rejected the null hypothesis, you can conduct post-hoc tests (like Tukey’s HSD) to determine which specific groups’ means (if you have more than two groups) are different from each other.
  • Regardless of the result, report your findings in a clear, understandable manner. This typically includes reporting the test statistic, p-value, and whether the null hypothesis was rejected.

When to use ANOVA

ANOVA (Analysis of Variance) is used when you have three or more groups and you want to compare their means to see if they are significantly different from each other. It is a statistical method that is used in a variety of research scenarios. Here are some examples of when you might use ANOVA:

  • Comparing Groups : If you want to compare the performance of more than two groups, for example, testing the effectiveness of different teaching methods on student performance.
  • Evaluating Interactions : In a two-way or factorial ANOVA, you can test for an interaction effect. This means you are not only interested in the effect of each individual factor, but also whether the effect of one factor depends on the level of another factor.
  • Repeated Measures : If you have measured the same subjects under different conditions or at different time points, you can use repeated measures ANOVA to compare the means of these repeated measures while accounting for the correlation between measures from the same subject.
  • Experimental Designs : ANOVA is often used in experimental research designs when subjects are randomly assigned to different conditions and the goal is to compare the means of the conditions.

Here are the assumptions that must be met to use ANOVA:

  • Normality : The data should be approximately normally distributed.
  • Homogeneity of Variances : The variances of the groups you are comparing should be roughly equal. This assumption can be tested using Levene’s test or Bartlett’s test.
  • Independence : The observations should be independent of each other. This assumption is met if the data is collected appropriately with no related groups (e.g., twins, matched pairs, repeated measures).

Applications of ANOVA

The Analysis of Variance (ANOVA) is a powerful statistical technique that is used widely across various fields and industries. Here are some of its key applications:

Agriculture

ANOVA is commonly used in agricultural research to compare the effectiveness of different types of fertilizers, crop varieties, or farming methods. For example, an agricultural researcher could use ANOVA to determine if there are significant differences in the yields of several varieties of wheat under the same conditions.

Manufacturing and Quality Control

ANOVA is used to determine if different manufacturing processes or machines produce different levels of product quality. For instance, an engineer might use it to test whether there are differences in the strength of a product based on the machine that produced it.

Marketing Research

Marketers often use ANOVA to test the effectiveness of different advertising strategies. For example, a marketer could use ANOVA to determine whether different marketing messages have a significant impact on consumer purchase intentions.

Healthcare and Medicine

In medical research, ANOVA can be used to compare the effectiveness of different treatments or drugs. For example, a medical researcher could use ANOVA to test whether there are significant differences in recovery times for patients who receive different types of therapy.

ANOVA is used in educational research to compare the effectiveness of different teaching methods or educational interventions. For example, an educator could use it to test whether students perform significantly differently when taught with different teaching methods.

Psychology and Social Sciences

Psychologists and social scientists use ANOVA to compare group means on various psychological and social variables. For example, a psychologist could use it to determine if there are significant differences in stress levels among individuals in different occupations.

Biology and Environmental Sciences

Biologists and environmental scientists use ANOVA to compare different biological and environmental conditions. For example, an environmental scientist could use it to determine if there are significant differences in the levels of a pollutant in different bodies of water.

Advantages of ANOVA

Here are some advantages of using ANOVA:

Comparing Multiple Groups: One of the key advantages of ANOVA is the ability to compare the means of three or more groups. This makes it more powerful and flexible than the t-test, which is limited to comparing only two groups.

Control of Type I Error: When comparing multiple groups, the chances of making a Type I error (false positive) increases. One of the strengths of ANOVA is that it controls the Type I error rate across all comparisons. This is in contrast to performing multiple pairwise t-tests which can inflate the Type I error rate.

Testing Interactions: In factorial ANOVA, you can test not only the main effect of each factor, but also the interaction effect between factors. This can provide valuable insights into how different factors or variables interact with each other.

Handling Continuous and Categorical Variables: ANOVA can handle both continuous and categorical variables . The dependent variable is continuous and the independent variables are categorical.

Robustness: ANOVA is considered robust to violations of normality assumption when group sizes are equal. This means that even if your data do not perfectly meet the normality assumption, you might still get valid results.

Provides Detailed Analysis: ANOVA provides a detailed breakdown of variances and interactions between variables which can be useful in understanding the underlying factors affecting the outcome.

Capability to Handle Complex Experimental Designs: Advanced types of ANOVA (like repeated measures ANOVA, MANOVA, etc.) can handle more complex experimental designs, including those where measurements are taken on the same subjects over time, or when you want to analyze multiple dependent variables at once.

Disadvantages of ANOVA

Some limitations or disadvantages that are important to consider:

Assumptions: ANOVA relies on several assumptions including normality (the data follows a normal distribution), independence (the observations are independent of each other), and homogeneity of variances (the variances of the groups are roughly equal). If these assumptions are violated, the results of the ANOVA may not be valid.

Sensitivity to Outliers: ANOVA can be sensitive to outliers. A single extreme value in one group can affect the sum of squares and consequently influence the F-statistic and the overall result of the test.

Dichotomous Variables: ANOVA is not suitable for dichotomous variables (variables that can take only two values, like yes/no or male/female). It is used to compare the means of groups for a continuous dependent variable.

Lack of Specificity: Although ANOVA can tell you that there is a significant difference between groups, it doesn’t tell you which specific groups are significantly different from each other. You need to carry out further post-hoc tests (like Tukey’s HSD or Bonferroni) for these pairwise comparisons.

Complexity with Multiple Factors: When dealing with multiple factors and interactions in factorial ANOVA, interpretation can become complex. The presence of interaction effects can make main effects difficult to interpret.

Requires Larger Sample Sizes: To detect an effect of a certain size, ANOVA generally requires larger sample sizes than a t-test.

Equal Group Sizes: While not always a strict requirement, ANOVA is most powerful and its assumptions are most likely to be met when groups are of equal or similar sizes.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Critical Analysis

Critical Analysis – Types, Examples and Writing...

Textual Analysis

Textual Analysis – Types, Examples and Guide

Data Analysis

Data Analysis – Process, Methods and Types

Correlation Analysis

Correlation Analysis – Types, Methods and...

Bimodal Histogram

Bimodal Histogram – Definition, Examples

Methodological Framework

Methodological Framework – Types, Examples and...

IMAGES

  1. Solved SPSS Module 7 Assignment-Factorial ANOVA General

    assignment module 7. anova test

  2. Resume Anova TEST

    assignment module 7. anova test

  3. Assignment- Module 7. Anova test

    assignment module 7. anova test

  4. Solved SPSS Module 7 Assignment-Factorial ANOVA General

    assignment module 7. anova test

  5. Learn ANOVA: A Form of Hypothesis Testing Formula

    assignment module 7. anova test

  6. Solved SPSS Module 7 Assignment-Factorial ANOVA General

    assignment module 7. anova test

COMMENTS

  1. STATISTICS Module 7 Assignment ANOVA TEST

    n ANOVA test is a way to find out if survey or experiment results are significant. AIn other words, they help you to figure out if you need to reject the null ... STATISTICS Module 7 Assignment ANOVA TEST. Course: BS accountancy. 999+ Documents. Students shared 13527 documents in this course. University: University of Cebu. Info More info ...

  2. PDF Lecture 6

    Partitioning Total Sum of Squares. "The ANOVA approach is based on the partitioning of sums of squares and degrees of freedom associated with the response variable Y". We start with the observed deviations of Y. around the observed mean ̄Y. i Y − ̄Y.

  3. STATS-BASILIO-Renz-Tyrone A-232-Assignment-Module-7-ANOVA-test (1)

    Basilio, Renz Tyrone P. STATS A-232 Assignment: Module 7. ANOVA test 1. A rural bank has four branches in a certain city. The bank president was anxious that employees were taking advantage of the bank's substantial sick leave policy; and he alleged that it might be associated with the branch where employees work.

  4. Module 7

    Module 7 - ANOVA. Flashcards; Learn; Test; ... Evaluating the mean differences between two or more treatments. evaluates all mean differences simultaneously with one test - regardless of thenumber of means - and thereby avoids the problem of inflated experimentwise alpha. Factor. Independent (or quasi-independent) variable that designates the ...

  5. PDF Chapter 7 One-way ANOVA

    Chapter 7One-way ANOVAOne-way ANOVA examines equality of population means for a quantitative out-come and a single categorical explanatory variable wi. h any number of levels.The t-test of Chapter 6 looks at quantitative outcomes with a categorical ex-planatory variable t. at has only two levels. The one-way Analysis of Variance (ANOVA) can be ...

  6. Psy 260

    7.3 PSY260 - Module Seven Assignment; 3-2 Discussion - Outputs Are Only as Good as Inputs; PSY260 Project One 2022; Show 8 more documents Show all 556 ... The inferential test that best fits this research question would be the Analysis of Variance or the ANOVA test. This test is the best fit because I am searching for differences in beliefs ...

  7. Solved SPSS Module 7 Assignment-Factorial ANOVA General

    Question: SPSS Module 7 Assignment-Factorial ANOVA General Instructions: In this assignment, you will be asked to interpret the results from 1 previous assignments, the Aspelmeier and Chapter 9. Follow their instructions on how to interpret the results for this assignment. Factorial ANOVA. As with Pierce text does a wonderful job of explaining ...

  8. Module 7 Flashcards

    Study with Quizlet and memorize flashcards containing terms like one way ANOVA, Parametric test, if F is statistically significant and more. Fresh features from the #1 AI-enhanced learning platform. Try it free

  9. SPSS Module 7 Assignment-Factorial ANOVA General

    Question: SPSS Module 7 Assignment-Factorial ANOVA General Instructions: In this assignment, you will be asked to interpret the results from 1 Factorial ANOVA. ... A One-Way ANOVA was used to test the hypothesis leading to the rejection of the null hypothesis, indicating a significant difference between the means, F(3, 96)=4.61, p<.05. Tukey ...

  10. ANOVA (Analysis of variance)

    Analysis of Variance (ANOVA) is a statistical method used to test differences between two or more means. It is similar to the t-test, but the t-test is generally used for comparing two means, while ANOVA is used when you have more than two means to compare. ANOVA is based on comparing the variance (or variation) between the data samples to the ...

  11. SPSS Homework One-Way Anova Assignment Instructions 3 1204202421

    Please review the SPSS Homework Tutorial in this module for directions on how to run the statistical test, as well as the Results Sections in APA Style presentation, which includes a template for completing the APA-style Results sections for the one-way ANOVA. The scenarios begin on the next page.

  12. PDF Module 6: t Test & ANOVA

    Run a Paired (Dependent) Samples t Test: Click on Analyze > Compare Means > Paired-Samples t Test. Click on the first variable (such as a pre-test) and see it appear next to Variable 1: under Current Selections. Then, click on the second variable (such as a post-test) and see it appear next to Variable 2:.

  13. Solved STAT 145

    Question: STAT 145 - Module 7 Computer Assignment This assignment will make use of the software SP55. The SleepStudy sov file will be used to look at ANOVA and regression procedures, Instructions for performing the procedures in SpSS are given at the bottom of this page. Copy all relevont tables from Spss into your assignment for full credit.

  14. Module 7

    Results: Variables under Compound 1, 2, and 3. Objective: this number is the solution - minimized costs. How could one summarize the relationship between Selling Price and either Mileage or Age? Correlations. Study with Quizlet and memorize flashcards containing terms like One-sample t-test, Two-sample t-test, ANOVA and more.

  15. 8. One-way Anova and Chi-Square Tests

    The results of the ANOVA test on the mean sepal length of three iris species suggests that ... Module 4 short assignment; MAT 240 Symbols - These are useful notes provided within the book and from weekly webinars. Related documents. ECO-202 8-2 Discussion; Module 8s; Module 4s;

  16. Repeated Measures Anova Flashcards

    Study with Quizlet and memorize flashcards containing terms like Characteristics of a RM ANOVA, 3 different estimates of population variance, Between level variability (MSB) and more. ... STATS test 4 review. 44 terms. KASH4500. Sets found in the same folder. COM5331 Exam 1. ... Principles Module 6. 61 terms. macafull4. selecting statistical ...