Proportions

Proportion says that two ratios (or fractions) are equal.

We see that 1-out-of-3 is equal to 2-out-of-6

The ratios are the same, so they are in proportion.

Example: Rope

A rope's length and weight are in proportion.

When 20m of rope weighs 1kg , then:

  • 40m of that rope weighs 2kg
  • 200m of that rope weighs 10kg

20 1 = 40 2

When shapes are "in proportion" their relative sizes are the same.

Here we see that the ratios of head length to body length are the same in both drawings.

So they are .

Making the head too long or short would look bad!

Example: International paper sizes (like A3, A4, A5, etc) all have the same proportions:

So any artwork or document can be resized to fit on any sheet. Very neat.

Working With Proportions

NOW, how do we use this?

Example: you want to draw the dog's head ... how long should it be?

Let us write the proportion with the help of the 10/20 ratio from above:

? 42 = 10 20

Now we solve it using a special method:

Multiply across the known corners, then divide by the third number

And we get this:

? = (42 × 10) / 20 = 420 / 20 = 21

So you should draw the head 21 long.

Using Proportions to Solve Percents

A percent is actually a ratio! Saying "25%" is actually saying "25 per 100":

25% = 25 100

We can use proportions to solve questions involving percents.

The trick is to put what we know into this form:

Part Whole = Percent 100

Example: what is 25% of 160 ?

The percent is 25, the whole is 160, and we want to find the "part":

Part 160 = 25 100

Multiply across the known corners, then divide by the third number:

Part = (160 × 25) / 100 = 4000 / 100 = 40

Answer: 25% of 160 is 40.

Note: we could have also solved this by doing the divide first, like this:

Part = 160 × (25 / 100) = 160 × 0.25 = 40

Either method works fine.

We can also find a Percent:

Example: what is $12 as a percent of $80 ?

Fill in what we know:

$12 $80 = Percent 100

Multiply across the known corners, then divide by the third number. This time the known corners are top left and bottom right:

Percent = ($12 × 100) / $80 = 1200 / 80 = 15%

Answer: $12 is 15% of $80

Or find the Whole:

Example: The sale price of a phone was $150, which was only 80% of normal price. What was the normal price?

$150 Whole = 80 100

Whole = ($150 × 100) / 80 = 15000 / 80 = 187.50

Answer: the phone's normal price was $187.50

Using Proportions to Solve Triangles

We can use proportions to solve similar triangles.

Example: How tall is the Tree?

Sam tried using a ladder, tape measure, ropes and various other things, but still couldn't work out how tall the tree was.

proportion tree

But then Sam has a clever idea ... similar triangles!

Sam measures a stick and its shadow (in meters), and also the shadow of the tree, and this is what he gets:

Now Sam makes a sketch of the triangles, and writes down the "Height to Length" ratio for both triangles:

Height: Shadow Length:     h 2.9 m = 2.4 m 1.3 m

h = (2.9 × 2.4) / 1.3 = 6.96 / 1.3 = 5.4 m (to nearest 0.1)

Answer: the tree is 5.4 m tall.

And he didn't even need a ladder!

The "Height" could have been at the bottom, so long as it was on the bottom for BOTH ratios, like this:

Let us try the ratio of "Shadow Length to Height":

Shadow Length: Height:     2.9 m h = 1.3 m 2.4 m

It is the same calculation as before.

A "Concrete" Example

Ratios can have more than two numbers !

For example concrete is made by mixing cement, sand, stones and water.

concrete pouring

A typical mix of cement, sand and stones is written as a ratio, such as 1:2:6 .

We can multiply all values by the same amount and still have the same ratio.

10:20:60 is the same as 1:2:6

So when we use 10 buckets of cement, we should use 20 of sand and 60 of stones.

Example: you have just put 12 buckets of stones into a mixer, how much cement and how much sand should you add to make a 1:2:6 mix?

Let us lay it out in a table to make it clearer:

  Cement Sand Stones
Ratio Needed: 1 2 6
You Have:     12

You have 12 buckets of stones but the ratio says 6.

That is OK, you simply have twice as many stones as the number in the ratio ... so you need twice as much of everything to keep the ratio.

Here is the solution:

  Cement Sand Stones
Ratio Needed: 1 2 6
You Have: 2 4 12

And the ratio 2:4:12 is the same as 1:2:6 (because they show the same relative sizes)

So the answer is: add 2 buckets of Cement and 4 buckets of Sand. (You will also need water and a lot of stirring....)

Why are they the same ratio? Well, the 1:2:6 ratio says to have :

  • twice as much Sand as Cement ( 1 : 2 :6)
  • 6 times as much Stones as Cement ( 1 :2: 6 )

In our mix we have:

  • twice as much Sand as Cement ( 2 : 4 :12)
  • 6 times as much Stones as Cement ( 2 :4: 12 )

So it should be just right!

That is the good thing about ratios. You can make the amounts bigger or smaller and so long as the relative sizes are the same then the ratio is the same.

proportion problem solving examples

  • HW Guidelines
  • Study Skills Quiz
  • Find Local Tutors
  • Demo MathHelp.com
  • Join MathHelp.com

Select a Course Below

  • ACCUPLACER Math
  • Math Placement Test
  • PRAXIS Math
  • + more tests
  • 5th Grade Math
  • 6th Grade Math
  • Pre-Algebra
  • College Pre-Algebra
  • Introductory Algebra
  • Intermediate Algebra
  • College Algebra

Solving Proportions: Word Problems

Ratios Proportions Proportionality Solving Word Problems Similar Figures Sun's Rays / Parts

Many "proportion" word problems can be solved using other methods, so they may be familiar to you. For instance, if you've learned about straight-line equations, then you've learned about the slope of a straight line, and how this slope is sometimes referred to as being "rise over run".

But that word "over" gives a hint that, yes, we're talking about a fraction. And this means that "rise over run" can be discussed within the context of proportions.

Content Continues Below

MathHelp.com

Need a personal math teacher?

You are installing rain gutters across the back of your house. The directions say that the gutters should decline katex.render("\\small{ \\bm{\\color{green}{ \\frac{1}{4} }}}", typed01); 1 / 4 inch for every four feet of lateral run. The gutters will be spanning thirty-seven feet. How much lower than the starting point (that is, how much lower than the high end) should the low end of the gutters be?

Rain gutters have to be slightly sloped so the rainwater will drain toward and then down the downspout. As I go from the high end of the guttering to the low end, for every four-foot length that I go sideways, the gutters should decline [be lower by] one-quarter inch. So how much must the guttering decline over the thirty-seven foot span? I'll set up the proportion, using " d " to stand for the distance I'm needing to find.

There is a variable in only one part of my proportion, so I can use the shortcut method to solve.

d = [(37)(1/4)]/4

For convenience sake (because my tape measure isn't marked in decimals), I'll convert this answer to mixed-number form:

Advertisement

As is always the case with "solving" exercises, we can check our answers by plugging them back into the original problem. In this case, we can verify the size of the "drop" from one end of the house to the other by checking the products of the means and the extremes (that is, by confirming that the cross-multiplications match) of the completed proportion:

(1/4)/4 = 2.3125/37

Converting the "one-fourth" to " 0.25 ", we get:

(0.25)(37) = 9.25

(4)(2.3125) = 9.25

Since the values match, then the proportionality must have been solved correctly, and the solution must be right.

Biologists need to know roughly how many fish live in a certain lake, but they don't want to stress or otherwise harm the fish by draining or dragnetting the lake. Instead, they let down small nets in a few different spots around the lake, catching, tagging, and releasing 96 fish. A week later, after the tagged fish have had a chance to mix thoroughly with the general population, the biologists come back and let down their nets again. They catch 72 fish, of which 4 are tagged. Assuming that the catch is representative, how many fish live in the lake?

As far as I know, biologists and park managers actually use this technique for estimating populations. The idea is that, after allowing enough time (it is hoped) for the tagged fish to circulate throughout the lake, these fish will then be evenly mixed in with the total population. When the researchers catch some fish later, the ratio of tagged fish in the sample to untagged is representative of the ratio of the 96 fish that they tagged with the total population.

I'll use " f " to stand for the total number of fish in the lake, and set up my ratios with the numbers of "tagged" fish on top. Then I'll set up and solve the proportion:

Because the variable is in only one part of the proportion, I can use the shortcut method to solve.

f = [(96)(72)]/4

This tells me that the estimated population is:

about 1,728 fish

Another type of "proportion" word problem is unit conversion, which looks like this:

How many feet per second are equivalent to 60 mph?

To complete this exercise, I will need conversion factors, which are just ratios. (If you're doing this kind of problem, then you should have access — in your textbook or in a handout, for instance — to basic conversion factors. If not, then your instructor is probably expecting that you have these factors memorized.)

I'll set everything up in a long multiplication so that the units cancel :

88 feet per second

Take note of how I set up the conversion factors for my multiplicate (above) in not-necessarily-standard ways. For instance, one usually says "sixty minutes in an hour", not "one hour in sixty minutes". So why did I enter the hour-minute conversion factor (in the second line of my computations above) as "one hour per sixty minutes"?

Because doing so lined up the fractions so that the unit of "hours" in my conversion factor would cancel off with the "hours" in the original " 60 miles per hour". This cancelling-units thing is an important technique, and you should review it further if you are not comfortable with it.

A particular cookie recipe calls for 225 grams of flour for one batch of thirty cookies. Jade would like to make as many cookies as possible for the upcoming block party, and flour is his only constraint (he's got loads of sugar, eggs, etc). If he has 1.206 kilograms of flour, and assuming that all cookies are the same size, approximately how many cookies can he make? (Round to an appropriate whole number.)

I've got two elements here for my proportion: grams of flour and number of cookies. I got to "grams" first when reading the exercise, so I'll put "grams" on top in my proportion.

Since the relationship is given to me in terms of grams, not kilograms, I'll need to convert Jade's on-hand measure to " 1,206 grams, also. I'll use " c " to stand for the number that I'm trying to figure out for "cookies".

(grams)/(cookies): 225/30 = 1206/ c

Since I have an unknown in only one spot in this proportion, I can use the shortcut method to solve.

multiply 1206 and 30 (along the diagonal green arrow), divide by 225 (hooking back along the purple arrow), to get d = [(1206)(30)]/225

c = [(1206)(30)]/225

c = 36180/225

Ohhh! Now I see why the instructions said to round to an "appropriate" whole number: Jade can only make whole cookies; the "point-eight" of a cookie will be an undersized niblet that he'll eat before heading to the party.

While normally I'd round this number up to get my whole-number answer, in this case I need to round down ; in other words, in this context (namely, of all the cookies being the same size), I have to ignore the fractional portion (that is, the point-eight decimal part) to get the desired answer.

160 cookies

Kumar lives in Croatia, and is visiting relatives in India. The current exchange rate is one Euro ( €1 ) to 80.45 Indian rupees ( ₹80.45 ). He wants to buy a gift for them, which costs ₹3,759 . How many Euros will this gift cost him? (State your answer accurate to two decimal places.)

They've given me an exchange rate, which is, effectively, just another conversion factor, like the "miles per hour" exercise above. So I'll set up my proportion, with Euros on top, and will use e to stand for the number of Euros he'll need.

(Euros)/(Rupees): 1/80.45 = e /3759

I'll use the shortcut method to solve:

multiply across, along the green arrow, to get 3759 × 1; divide back along the purple arrow by 80.45; then e = 3759/80.45

e = [(3759)(1)]/80.45

e = 46.72467371...

Rounding to two decimal places, Kumar will be spending:

€46.72

Other than for the rate-conversion exercise above, we've been able to solve all of the proportions by the shortcut method. You will likely find this to be the case in your homework, also. But it is always possible that you'll get a question where you'll be better off using cross-multiplication instead.

George has heard from two different sources about the pay range at a particular company. One source says that the ratio of lowest pay to highest pay is 3 : 7 . The other source says that the top earner annually makes about $57,000 more than the lowest earner. What are the approximate salaries for the highest and lowest earners? (Round to the nearest thousand.)

I know that the ratio is 3 : 7 , so I'll be using the fraction 3/7 for one side of my proportion. If the lowest pay rate, in thousands of dollars, is L , then the highest is L  + 57 . My proportion is:

(lowest)/(highest): 3/7 = L /( L + 57)

Because there are variables in two of the parts of this proportion, the shortcut method won't be as useful as cross-multiplication to clear all the fractions. So I'll cross-multiply:

3/7 = L /( L + 57)

3( L + 57) = 7 L

3 L + 171 = 7 L

Remembering that I dropped the trailing zeroes and am counting by thousands, the above number means that the lowest salary is (rounded to the nearest thousand) approximately $43,000 . Then the highest salary, being around $57K more, is approximately $100,000 .

lowest: $43,000 highest: $100,000

URL: https://www.purplemath.com/modules/ratio5.htm

Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7

Standardized Test Prep

College math, homeschool math, share this page.

  • Terms of Use
  • About Purplemath
  • About the Author
  • Tutoring from PM
  • Advertising
  • Linking to PM
  • Site licencing

Visit Our Profiles

proportion problem solving examples

  • PRO Courses Guides New Tech Help Pro Expert Videos About wikiHow Pro Upgrade Sign In
  • EDIT Edit this Article
  • EXPLORE Tech Help Pro About Us Random Article Quizzes Request a New Article Community Dashboard This Or That Game Happiness Hub Popular Categories Arts and Entertainment Artwork Books Movies Computers and Electronics Computers Phone Skills Technology Hacks Health Men's Health Mental Health Women's Health Relationships Dating Love Relationship Issues Hobbies and Crafts Crafts Drawing Games Education & Communication Communication Skills Personal Development Studying Personal Care and Style Fashion Hair Care Personal Hygiene Youth Personal Care School Stuff Dating All Categories Arts and Entertainment Finance and Business Home and Garden Relationship Quizzes Cars & Other Vehicles Food and Entertaining Personal Care and Style Sports and Fitness Computers and Electronics Health Pets and Animals Travel Education & Communication Hobbies and Crafts Philosophy and Religion Work World Family Life Holidays and Traditions Relationships Youth
  • Browse Articles
  • Learn Something New
  • Quizzes Hot
  • Happiness Hub
  • This Or That Game
  • Train Your Brain
  • Explore More
  • Support wikiHow
  • About wikiHow
  • Log in / Sign up
  • Education and Communications
  • Mathematics

How to Solve Proportions

Last Updated: July 6, 2024

This article was reviewed by Grace Imson, MA . Grace Imson is a math teacher with over 40 years of teaching experience. Grace is currently a math instructor at the City College of San Francisco and was previously in the Math Department at Saint Louis University. She has taught math at the elementary, middle, high school, and college levels. She has an MA in Education, specializing in Administration and Supervision from Saint Louis University. This article has been viewed 100,963 times.

{\frac  {1}{2}}

What is the "vertical" way to solve a proportion?

Use the relationship between the top and bottom number of the fraction.

How can I solve a proportion with the "horizontal" method?

Use the relationship between the two numbers across the proportion.

How do I solve a proportion step by step by cross-multiplying?

Step 1 Draw two diagonal lines in an

How do you find the missing value in a proportion with a table of ratios?

Step 1 Draw a table with two rows.

        48                 128 
   x    8
  • Each column in this table represents a fraction. All of the fractions in this table are equal to each other.

Step 2 Add equivalent fractions to your table.

        48   64          128 
   x    4    8

Step 3 Repeat until you notice the pattern.

 32   48   64          128 
 2     x    4    8

{\displaystyle {\frac {48}{\bf {3}}}={\frac {128}{8}}}

  • The two answers are the same, which means your answer is correct.

How do you solve percent proportions?

Step 1 Rewrite the problem as a proportion.

How do you solve proportions algebraically?

Step 1 Treat the proportion as an algebraic equation.

  • You can change the left hand side of the equation, as long as you do the same math to the right hand side.

Step 2 Multiply each side by a denominator.

  • To get rid of the fraction on the left, multiply both sides by 27:

{\displaystyle {\frac {27\times 17}{27}}={\frac {27\times 13}{x}}}

How do you solve a proportion with a variable on both sides?

Step 1 Realize your goal is to get the variable on one side.

  • Warning : This is a difficult example. If you haven't learned about quadratic equations yet, you might want to skip this part.

{\displaystyle {\frac {3}{x+1}}={\frac {2x}{8}}}

  • You can now solve this as a quadratic equation , using any method that you've learned.

{\displaystyle (x+4)(x-3)=0}

Proportions Calculator, Practice Problems, and Answers

proportion problem solving examples

Community Q&A

wikiHow Staff Editor

  • The algebraic method above works with any proportion. But for a specific proportion, there is often a faster way to use algebra to find the answer. As you learn more algebra, this will get easier. Thanks Helpful 0 Not Helpful 0

proportion problem solving examples

You Might Also Like

Use an Abacus

  • ↑ https://www.youtube.com/watch?v=nwsDiID7UtQ
  • ↑ https://www.youtube.com/watch?v=Uo8HgcyfRFI
  • ↑ https://www.purplemath.com/modules/ratio2.htm

About This Article

Grace Imson, MA

To solve proportions, start by taking the numerator, or top number, of the fraction you know and multiplying it with the denominator, or bottom number, of the fraction you don’t know. Next, take that number and divide it by the denominator of the fraction you know. Now you can replace x with this final number. For example, to figure out “x” in the problem 3/4 = x/8, multiply 3 x 8 to get 24, then divide 24 / 4 to get 6, or the value of x. To learn how to use proportions to determine percentages, read on! Did this summary help you? Yes No

  • Send fan mail to authors

Reader Success Stories

John Almacen

John Almacen

Nov 10, 2022

Did this article help you?

John Almacen

Featured Articles

Protect Yourself from Predators (for Kids)

Trending Articles

Best Excuses to Use to Explain Away a Hickey

Watch Articles

Clean the Bottom of an Oven

  • Terms of Use
  • Privacy Policy
  • Do Not Sell or Share My Info
  • Not Selling Info

Get all the best how-tos!

Sign up for wikiHow's weekly email newsletter

proportion problem solving examples

Home / United States / Math Classes / 7th Grade Math / Writing and Solving Proportions

Writing and Solving Proportions

A proportion is an equation that states that two ratios are equivalent. We can perform operations on proportions, just l ike we do with normal equations. Here we will learn to perform operations on proportions and the steps involved in solving them. ...Read More Read Less

About Proportions in Math

proportion problem solving examples

What are Proportions?

Writing proportions as fractions, using operations to solve proportions, solved examples.

  • Frequently Asked Questions

Proportions are mathematical equations that are used to relate equivalent ratios. Two ratios having different antecedents and consequents can have the same value. This relation can be expressed with the help of proportions. Let us consider the ratios \( 2:5 \)  and \( 8:20 \) . When we simplify the ratio \( 8:20 \) , we obtain \( 2:5 \) . This implies that \( 2:5 \)  and \( 8:20 \)  are equivalent ratios. 

In other words, these ratios are in proportion. If \( a:b \)  and \( c:d \) are equivalent ratios, we can express the relation as \( a:b::c:d \) , where the ‘ \( ~::~ \) ’ sign is used to express proportion. So, we can state the proportion in the example that was just observed as, \( 2:5 :: 8:20 \) .

We have learned that a ratio is a comparison of two quantities having the same unit. We also compare two quantities using fractions. Hence, a ratio can also be written as a fraction. For example, we can write the ratio \( a:b \)  as \( \frac{a}{b} \) and \( c:d \)  as \( \frac{c}{d} \) .

Similarly, we can write a proportion as a fraction. Instead of writing \( 2:5::8:20 \) , we can write the proportion as \( \frac{2}{5} = \frac{8}{20} \)   , and this makes it easier to perform operations on proportions to solve for unknown values.

Since a proportion is basically an equation, we can perform operations on them to find unknown values. We can use operations like addition, subtraction, multiplication, and division to solve a proportion. In most cases, we only need to use multiplication and division. Let’s consider a proportion in which one of the values is unknown. 

For example, \( \frac{5}{8} = \frac{x}{40} \)

Use basic math operations to solve this equation. Begin by removing the denominator from both sides.

\( \frac{5 \times 8}{8} = \frac{x \times 8}{40} \)            [Multiply both sides by \( 8 \)]

\( 5 = \frac{x}{5} \)                    [Simplify]

\( 5 \times 5 = \frac{x\times 5}{5} \)          [Multiply both sides by \( 5 \)]

\( 25 = x \)                   [ Simplify]      

Hence, the value of \( x \) is \( 25 \). 

Similarly, we can use a combination of mathematical operations to solve proportions.

Example 1: Use math operations to find the value of \( x \) in the expression, \( \frac{3}{7} = \frac{x}{28} \) .

Solution:  

To find the value of \( x \) , simplify the equation.

\( \frac{3}{7} = \frac{x}{28} \)                    [Write the equation]

\( \frac{3 \times 7}{7} = \frac{x \times 7}{28} \)              [Multiply both sides by \( 7 \)]

\( 3 = \frac{x}{4} \)                      [Simplify]

\( 3 \times 4 = \frac{x \times 4}{4} \)            [Multiply both sides by \( 4 \)]

\( 12 = x \)                    [Simplify]

So, the value of \( x \) is \( 12 \).

Example 2: Solve the proportion to find the unknown value: \( 15:y :: 25:55 \) .

The proportion is \( 15:y :: 25:55 \) and this expression can also be written as \( \frac{15}{y} = \frac{25}{55} \)

To find the value of \( y \) , simplify the equation.

\( \frac{15}{y} = \frac{25}{55} \)                   [Write the proportion]

\( \frac{y}{15} = \frac{55}{25} \)                    [Taking reciprocal of both sides]

\( \frac{y \times 15}{15} = \frac{55 \times 15}{25} \)           [Multiplying both sides by \( 15 \)]

\( y = \frac{11 \times 15}{55} \)                  [Simplify]

\( y = 11 \times 3 \)                [Simplify]

\( y = 33 \)                      [Multiply]

Hence, the unknown value, \( y \) is \( 33 \).

Example 3: An athlete can run \( 100 \) meters in \( 11 \) seconds. If she runs at a constant pace, how long will she take to run \( 800 \) meters?

Time taken by the athlete to cover \( 100 \) meters \( = 11 \) seconds

Let us assume the time taken by the athlete to cover \( 800 \) meters \( = x \) seconds

Since her speed is constant, the ratio of distance and time in both cases is in proportion. 

\( \frac{100}{11} = \frac{800}{x} \)                      [Write the above condition in proportion]

\( \frac{11}{100} = \frac{x}{800} \)                      [Taking reciprocal of both sides]

\( \frac{11 \times 100}{100} = \frac{x \times 100}{800} \)              [Multiplying both sides by \( 100 \)]

\( 11 = \frac{x}{8} \)                          [Simplify]

\( x = 88 \)                            [Multiplying both sides by \( 8 \)]

Hence, the athlete will take \( 88 \) seconds to run \( 800 \) meters.

Are ratios related to proportions?

Yes, a proportion is an equation that states that two ratios are equivalent. So, we can say that proportions are directly related to ratios.

Can we perform mathematical operations on proportions?

Since proportions are basically mathematical equations, we can perform all the mathematical operations on them, just like we do with a normal mathematical equation.

How do we solve a proportion?

We can solve a proportion to find the unknown value by performing mathematical operations on them. The goal is to isolate the unknown value on one side of the equation. Thus, by solving the equation, we will get the value of the unknown on the other side of the equation.

Check out our other courses

Grades 1 - 12

Level 1 - 10

  • Pre-algebra lessons
  • Pre-algebra word problems
  • Algebra lessons
  • Algebra word problems
  • Algebra proofs
  • Advanced algebra
  • Geometry lessons
  • Geometry word problems
  • Geometry proofs
  • Trigonometry lessons
  • Consumer math
  • Baseball math
  • Math for nurses
  • Statistics made easy
  • High school physics
  • Basic mathematics store
  • SAT Math Prep
  • Math skills by grade level
  • Ask an expert
  • Other websites
  • K-12 worksheets
  • Worksheets generator
  • Algebra worksheets
  • Geometry worksheets
  • Free math problem solver
  • Pre-algebra calculators
  • Algebra Calculators
  • Geometry Calculators
  • Math puzzles
  • Math tricks
  • Member login

Proportion word problems

/4/8 , /3/x , /x/8 , /3/4 ,
/4/8 , /3/x , /x/8 , /3/4

It is very important to notice that if the ratio on the left is a ratio of number of liters of water to number of lemons, you have to do the same ratio on the right before you set them equal. 

/Number of liters of water/Number of liters of water
/3/x
/w/w

More interesting proportion word problems

Proportion word problem

/Length of shadow/Length of shadow
/7/14
/900/300/3/x/x/300/3/900
/900/300
/Time it takes/Time it takes
/2/10
/2/T
/900/300 , /3/x , /x/300

Check this site if you want to solve more proportion word problems.

Ratio word problems

Recent Articles

How to divide any number by 5 in 2 seconds.

Feb 28, 24 11:07 AM

Math Trick to Square Numbers from 50 to 59

Feb 23, 24 04:46 AM

Sum of Consecutive Odd Numbers

Feb 22, 24 10:07 AM

100 Tough Algebra Word Problems. If you can solve these problems with no help, you must be a genius!

Math quizzes

 Recommended

About me :: Privacy policy :: Disclaimer :: Donate   Careers in mathematics  

Copyright © 2008-2021. Basic-mathematics.com. All right reserved

Ratio and Proportion Word Problems — Examples & Practice - Expii

Algebra: Ratio Word Problems

Related Pages Two-Term Ratio Word Problems More Ratio Word Problems Algebra Lessons

In these lessons, we will learn how to solve ratio word problems that have two-term ratios or three-term ratios.

Ratio problems are word problems that use ratios to relate the different items in the question.

The main things to be aware about for ratio problems are:

  • Change the quantities to the same unit if necessary.
  • Write the items in the ratio as a fraction .
  • Make sure that you have the same items in the numerator and denominator.

Ratio Problems: Two-Term Ratios

Example 1: In a bag of red and green sweets, the ratio of red sweets to green sweets is 3:4. If the bag contains 120 green sweets, how many red sweets are there?

Solution: Step 1: Assign variables: Let x = number of red sweets.

Step 2: Solve the equation. Cross Multiply 3 × 120 = 4 × x 360 = 4 x

Answer: There are 90 red sweets.

Example 2: John has 30 marbles, 18 of which are red and 12 of which are blue. Jane has 20 marbles, all of them either red or blue. If the ratio of the red marbles to the blue marbles is the same for both John and Jane, then John has how many more blue marbles than Jane?

Solution: Step 1: Sentence: Jane has 20 marbles, all of them either red or blue. Assign variables: Let x = number of blue marbles for Jane 20 – x = number red marbles for Jane

Step 2: Solve the equation

Cross Multiply 3 × x = 2 × (20 – x ) 3 x = 40 – 2 x

John has 12 blue marbles. So, he has 12 – 8 = 4 more blue marbles than Jane.

Answer: John has 4 more blue marbles than Jane.

How To Solve Word Problems Using Proportions?

This is another word problem that involves ratio or proportion.

Example: A recipe uses 5 cups of flour for every 2 cups of sugar. If I want to make a recipe using 8 cups of flour. How much sugar should I use?

How To Solve Proportion Word Problems?

When solving proportion word problems remember to have like units in the numerator and denominator of each ratio in the proportion.

  • Biologist tagged 900 rabbits in Bryer Lake National Park. At a later date, they found 6 tagged rabbits in a sample of 2000. Estimate the total number of rabbits in Bryer Lake National Park.
  • Mel fills his gas tank up with 6 gallons of premium unleaded gas for a cost of $26.58. How much would it costs to fill an 18 gallon tank? 3 If 4 US dollars can be exchanged for 1.75 Euros, how many Euros can be obtained for 144 US dollars?

Ratio problems: Three-term Ratios

Example 1: A special cereal mixture contains rice, wheat and corn in the ratio of 2:3:5. If a bag of the mixture contains 3 pounds of rice, how much corn does it contain?

Solution: Step 1: Assign variables: Let x = amount of corn

Step 2: Solve the equation Cross Multiply 2 × x = 3 × 5 2 x = 15

Answer: The mixture contains 7.5 pounds of corn.

Example 2: Clothing store A sells T-shirts in only three colors: red, blue and green. The colors are in the ratio of 3 to 4 to 5. If the store has 20 blue T-shirts, how many T-shirts does it have altogether?

Solution: Step 1: Assign variables: Let x = number of red shirts and y = number of green shirts

Step 2: Solve the equation Cross Multiply 3 × 20 = x × 4 60 = 4 x x = 15

5 × 20 = y × 4 100 = 4 y y = 25

The total number of shirts would be 15 + 25 + 20 = 60

Answer: There are 60 shirts.

Algebra And Ratios With Three Terms

Let’s study how algebra can help us think about ratios with more than two terms.

Example: There are a total of 42 computers. Each computer runs one of three operating systems: OSX, Windows, Linux. The ratio of the computers running OSX, Windows, Linux is 2:5:7. Find the number of computers that are running each of the operating systems.

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

One to one maths interventions built for KS4 success

Weekly online one to one GCSE maths revision lessons now available

In order to access this I need to be confident with:

This topic is relevant for:

GCSE Maths

Ratio Problem Solving

Here we will learn about ratio problem solving, including how to set up and solve problems. We will also look at real life ratio problems.

There are also ratio problem solving worksheets based on Edexcel, AQA and OCR exam questions, along with further guidance on where to go next if you’re still stuck.

What is ratio problem solving?

Ratio problem solving is a collection of word problems that link together aspects of ratio and proportion into more real life questions. This requires you to be able to take key information from a question and use your knowledge of ratios (and other areas of the curriculum) to solve the problem.

A ratio is a relationship between two or more quantities . They are usually written in the form a:b where a and b are two quantities. When problem solving with a ratio, the key facts that you need to know are,

  • What is the ratio involved?
  • What order are the quantities in the ratio?
  • What is the total amount / what is the part of the total amount known?
  • What are you trying to calculate ?

As with all problem solving, there is not one unique method to solve a problem. However, this does not mean that there aren’t similarities between different problems that we can use to help us find an answer. 

The key to any problem solving is being able to draw from prior knowledge and use the correct piece of information to allow you to get to the next step and then the solution.

Let’s look at a couple of methods we can use when given certain pieces of information.

What is ratio problem solving?

When solving ratio problems it is very important that you are able to use ratios. This includes being able to use ratio notation. 

For example, Charlie and David share some sweets in the ratio of 3:5. This means that for every 3 sweets Charlie gets, David receives 5 sweets.

Charlie and David share 40 sweets, how many sweets do they each get?

We use the ratio to divide 40 sweets into 8 equal parts. 

Then we multiply each part of the ratio by 5.

3 x 5:5 x 5 = 15:25

This means that Charlie will get 15 sweets and David will get 25 sweets.

  • Dividing ratios

Step-by-step guide: Dividing ratios (coming soon)

You have been given


And you want to

Step 1: Add the parts of the ratio
together.

Step 2: Divide the quantity by the
sum of the parts.

Step 3: Multiply the share value by each
part in the ratio.
For example

Share £100 in the
ratio 4:1 .

(£80:£20)
You have been given


And you want to find

Step 1: Identify which part of the ratio
has been given.

Step 2: Calculate the individual share
value.

Step 3: Multiply the other quantities
in the ratio by the
share value.
For example

A bag of sweets is shared
between boys and girls in
the ratio of 5:6.

Each person receives the
same number of sweets. If
there are 15 boys, how many
girls are there?

(18)

Ratios and fractions (proportion problems)

We also need to consider problems involving fractions. These are usually proportion questions where we are stating the proportion of the total amount as a fraction.

You have been given


And you want to find

Step 1: Add the parts of the ratio
for the denominator.

Step 2: State the required part of the
ratio as the numerator.
For example

The ratio of red to green counters
is 3:5. What fraction of
the counters are green?

(\frac{5}{8})
You have been given


And you want to find

Step 1: Subtract the numerator from
the denominator of the fraction.

Step 2: State the parts of the ratio
in the correct order.
For example

if \frac{9}{10} students are right handed,
write the ratio of right handed
students to left handed students.

(9:1)

Simplifying and equivalent ratios

  • Simplifying ratios
You have been given


And you want to find

Step 1: Calculate the highest
common factor of the parts
of the ratio.

Step 2: Divide each part of the
ratio by the highest common
factor.
For example

Simplify the ratio 10:15.

(2:3)

Equivalent ratios

You have been given


And you want to find

Step 1: Identify which part of the
ratio is to equal 1.

Step 2: Divide all parts of the
ratio by this value.
For example

Write the ratio 4:15
in the form 1:n.

(1:3.75)
You have been given


And you want to find

Step 1: Multiply all parts of the
ratio by the same amount.
For example

A map uses the scale 1:500.
How many centimetres in real life
is 3cm on the map?

(1:500 = 3:1500, so 1500 cm)

Units and conversions ratio questions

Units and conversions are usually equivalent ratio problems (see above).

  • If £1:\$1.37 and we wanted to convert £10 into dollars, we would multiply both sides of the ratio by 10 to get £10 is equivalent to \$13.70.
  • The scale on a map is 1:25,000. I measure 12cm on the map. How far is this in real life, in kilometres? After multiplying both parts of the ratio by 12 you must then convert 12 \times 25000=300000 \ cm to km by dividing the solution by 100 \ 000 to get 3km.

Notice that for all three of these examples, the units are important. For example if we write the mapping example as the ratio 4cm:1km, this means that 4cm on the map is 1km in real life.

Top tip: if you are converting units, always write the units in your ratio.

Usually with ratio problem solving questions, the problems are quite wordy . They can involve missing values , calculating ratios , graphs , equivalent fractions , negative numbers , decimals and percentages .

Highlight the important pieces of information from the question, know what you are trying to find or calculate , and use the steps above to help you start practising how to solve problems involving ratios.

How to do ratio problem solving

In order to solve problems including ratios:

Identify key information within the question.

Know what you are trying to calculate.

Use prior knowledge to structure a solution.

Explain how to do ratio problem solving

Explain how to do ratio problem solving

Ratio problem solving worksheet

Get your free ratio problem solving worksheet of 20+ questions and answers. Includes reasoning and applied questions.

Related lessons on ratio

Ratio problem solving is part of our series of lessons to support revision on ratio . You may find it helpful to start with the main ratio lesson for a summary of what to expect, or use the step by step guides below for further detail on individual topics. Other lessons in this series include:

  • How to work out ratio  
  • Ratio to fraction
  • Ratio scale
  • Ratio to percentage

Ratio problem solving examples

Example 1: part:part ratio.

Within a school, the number of students who have school dinners to packed lunches is 5:7. If 465 students have a school dinner, how many students have a packed lunch?

Within a school, the number of students who have school dinners to packed lunches is \bf{5:7.} If \bf{465} students have a school dinner , how many students have a packed lunch ?

Here we can see that the ratio is 5:7 where the first part of the ratio represents school dinners (S) and the second part of the ratio represents packed lunches (P).

We could write this as

Ratio problem solving example 1 step 1

Where the letter above each part of the ratio links to the question.

We know that 465 students have school dinner.

2 Know what you are trying to calculate.

From the question, we need to calculate the number of students that have a packed lunch, so we can now write a ratio below the ratio 5:7 that shows that we have 465 students who have school dinners, and p students who have a packed lunch.

Ratio problem solving example 1 step 2

We need to find the value of p.

3 Use prior knowledge to structure a solution.

We are looking for an equivalent ratio to 5:7. So we need to calculate the multiplier. We do this by dividing the known values on the same side of the ratio by each other.

So the value of p is equal to 7 \times 93=651.

There are 651 students that have a packed lunch.

Example 2: unit conversions

The table below shows the currency conversions on one day.

Ratio problem solving example 2

Use the table above to convert £520 (GBP) to Euros € (EUR).

Ratio problem solving example 2

Use the table above to convert \bf{£520} (GBP) to Euros \bf{€} (EUR).

The two values in the table that are important are GBP and EUR. Writing this as a ratio, we can state

Ratio problem solving example 2 step 1 image 2

We know that we have £520.

We need to convert GBP to EUR and so we are looking for an equivalent ratio with GBP = £520 and EUR = E.

Ratio problem solving example 2 step 2

To get from 1 to 520, we multiply by 520 and so to calculate the number of Euros for £520, we need to multiply 1.17 by 520.

1.17 \times 520=608.4

So £520 = €608.40.

Example 3: writing a ratio 1:n

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the 500ml of concentrated plant food must be diluted into 2l of water. Express the ratio of plant food to water respectively in the ratio 1:n.

Liquid plant food is sold in concentrated bottles. The instructions on the bottle state that the \bf{500ml} of concentrated plant food must be diluted into \bf{2l} of water . Express the ratio of plant food to water respectively as a ratio in the form 1:n.

Using the information in the question, we can now state the ratio of plant food to water as 500ml:2l. As we can convert litres into millilitres, we could convert 2l into millilitres by multiplying it by 1000.

2l = 2000ml

So we can also express the ratio as 500:2000 which will help us in later steps.

We want to simplify the ratio 500:2000 into the form 1:n.

We need to find an equivalent ratio where the first part of the ratio is equal to 1. We can only do this by dividing both parts of the ratio by 500 (as 500 \div 500=1 ).

Ratio problem solving example 3 step 3

So the ratio of plant food to water in the form 1:n is 1:4.

Example 4: forming and solving an equation

Three siblings, Josh, Kieran and Luke, receive pocket money per week proportional to their age. Kieran is 3 years older than Josh. Luke is twice Josh’s age. If Josh receives £8 pocket money, how much money do the three siblings receive in total?

Three siblings, Josh, Kieran and Luke, receive pocket money per week proportional to their ages. Kieran is \bf{3} years older than Josh . Luke is twice Josh’s age. If Luke receives \bf{£8} pocket money, how much money do the three siblings receive in total ?

We can represent the ages of the three siblings as a ratio. Taking Josh as x years old, Kieran would therefore be x+3 years old, and Luke would be 2x years old. As a ratio, we have

Ratio problem solving example 4 step 1

We also know that Luke receives £8.

We want to calculate the total amount of pocket money for the three siblings.

We need to find the value of x first. As Luke receives £8, we can state the equation 2x=8 and so x=4.

Now we know the value of x, we can substitute this value into the other parts of the ratio to obtain how much money the siblings each receive.

Ratio problem solving example 4 step 3

The total amount of pocket money is therefore 4+7+8=£19.

Example 5: simplifying ratios

Below is a bar chart showing the results for the colours of counters in a bag.

Ratio problem solving example 5

Express this data as a ratio in its simplest form.

From the bar chart, we can read the frequencies to create the ratio.

Ratio problem solving example 5 step 1

We need to simplify this ratio.

To simplify a ratio, we need to find the highest common factor of all the parts of the ratio. By listing the factors of each number, you can quickly see that the highest common factor is 2.

\begin{aligned} &12 = 1, {\color{red} 2}, 3, 4, 6, 12 \\\\ &16 = 1, {\color{red} 2}, 4, 8, 16 \\\\ &10 = 1, {\color{red} 2}, 5, 10 \end{aligned}

HCF (12,16,10) = 2

Dividing all the parts of the ratio by 2 , we get

Ratio problem solving example 5 step 3

Our solution is 6:8:5 .

Example 6: combining two ratios

Glass is made from silica, lime and soda. The ratio of silica to lime is 15:2. The ratio of silica to soda is 5:1. State the ratio of silica:lime:soda.

Glass is made from silica, lime and soda. The ratio of silica to lime is \bf{15:2.} The ratio of silica to soda is \bf{5:1.} State the ratio of silica:lime:soda .

We know the two ratios

Ratio problem solving example 6 step 1

We are trying to find the ratio of all 3 components: silica, lime and soda.

Using equivalent ratios we can say that the ratio of silica:soda is equivalent to 15:3 by multiplying the ratio by 3.

Ratio problem solving example 6 step 3 image 1

We now have the same amount of silica in both ratios and so we can now combine them to get the ratio 15:2:3.

Ratio problem solving example 6 step 3 image 2

Example 7: using bar modelling

India and Beau share some popcorn in the ratio of 5:2. If India has 75g more popcorn than Beau, what was the original quantity?

India and Beau share some popcorn in the ratio of \bf{5:2.} If India has \bf{75g} more popcorn than Beau , what was the original quantity?

We know that the initial ratio is 5:2 and that India has three more parts than Beau.

We want to find the original quantity.

Drawing a bar model of this problem, we have

Ratio problem solving example 7 step 1

Where India has 5 equal shares, and Beau has 2 equal shares.

Each share is the same value and so if we can find out this value, we can then find the total quantity.

From the question, India’s share is 75g more than Beau’s share so we can write this on the bar model.

Ratio problem solving example 7 step 3 image 1

We can find the value of one share by working out 75 \div 3=25g.

Ratio problem solving example 7 step 3 image 2

We can fill in each share to be 25g.

Ratio problem solving example 7 step 3 image 3

Adding up each share, we get

India = 5 \times 25=125g

Beau = 2 \times 25=50g

The total amount of popcorn was 125+50=175g.

Common misconceptions

  • Mixing units

Make sure that all the units in the ratio are the same. For example, in example 6 , all the units in the ratio were in millilitres. We did not mix ml and l in the ratio.

  • Ratio written in the wrong order

For example the number of dogs to cats is given as the ratio 12:13 but the solution is written as 13:12.

  • Ratios and fractions confusion

Take care when writing ratios as fractions and vice-versa. Most ratios we come across are part:part. The ratio here of red:yellow is 1:2. So the fraction which is red is \frac{1}{3} (not \frac{1}{2} ).

Ratio problem solving common misconceptions

  • Counting the number of parts in the ratio, not the total number of shares

For example, the ratio 5:4 has 9 shares, and 2 parts. This is because the ratio contains 2 numbers but the sum of these parts (the number of shares) is 5+4=9. You need to find the value per share, so you need to use the 9 shares in your next line of working.

  • Ratios of the form \bf{1:n}

The assumption can be incorrectly made that n must be greater than 1 , but n can be any number, including a decimal.

Practice ratio problem solving questions

1. An online shop sells board games and computer games. The ratio of board games to the total number of games sold in one month is 3:8. What is the ratio of board games to computer games?

GCSE Quiz True

8-3=5 computer games sold for every 3 board games.

2. The volume of gas is directly proportional to the temperature (in degrees Kelvin). A balloon contains 2.75l of gas and has a temperature of 18^{\circ}K. What is the volume of gas if the temperature increases to 45^{\circ}K?

3. The ratio of prime numbers to non-prime numbers from 1-200 is 45:155. Express this as a ratio in the form 1:n.

4. The angles in a triangle are written as the ratio x:2x:3x. Calculate the size of each angle.

5. A clothing company has a sale on tops, dresses and shoes. \frac{1}{3} of sales were for tops, \frac{1}{5} of sales were for dresses, and the rest were for shoes. Write a ratio of tops to dresses to shoes sold in its simplest form.

6. During one month, the weather was recorded into 3 categories: sunshine, cloud and rain. The ratio of sunshine to cloud was 2:3 and the ratio of cloud to rain was 9:11. State the ratio that compares sunshine:cloud:rain for the month.

Ratio problem solving GCSE questions

1. One mole of water weighs 18 grams and contains 6.02 \times 10^{23} water molecules.

Write this in the form 1gram:n where n represents the number of water molecules in standard form.

2. A plank of wood is sawn into three pieces in the ratio 3:2:5. The first piece is 36cm shorter than the third piece.

Calculate the length of the plank of wood.

5-3=2 \ parts = 36cm so 1 \ part = 18cm

3. (a) Jenny is x years old. Sally is 4 years older than Jenny. Kim is twice Jenny’s age. Write their ages in a ratio J:S:K.

(b) Sally is 16 years younger than Kim. Calculate the sum of their ages.

Learning checklist

You have now learned how to:

  • Relate the language of ratios and the associated calculations to the arithmetic of fractions and to linear functions
  • Develop their mathematical knowledge, in part through solving problems and evaluating the outcomes, including multi-step problems
  • Make and use connections between different parts of mathematics to solve problems

The next lessons are

  • Compound measures
  • Best buy maths

Still stuck?

Prepare your KS4 students for maths GCSEs success with Third Space Learning. Weekly online one to one GCSE maths revision lessons delivered by expert maths tutors.

GCSE Benefits

Find out more about our GCSE maths tuition programme.

Privacy Overview

IMAGES

  1. Student Tutorial: Solving Proportions

    proportion problem solving examples

  2. problem solving rates ratios and proportions

    proportion problem solving examples

  3. Solving Word Problems on Proportions Using a Unit Rate

    proportion problem solving examples

  4. ratio and proportion problem solving examples

    proportion problem solving examples

  5. How to Solve a Proportion

    proportion problem solving examples

  6. Learn How To Solve A Proportion Problem

    proportion problem solving examples

COMMENTS

  1. Proportion word problems (practice)

    Problem. Sam used 6 loaves of elf bread on an 8 day hiking trip. He wants to know how many loaves of elf bread ( b) he should pack for a 12 day hiking trip if he eats the same amount of bread each day. How many loaves of elf bread should Sam pack for a 12 day trip? Learn for free about math, art, computer programming, economics, physics ...

  2. Worked example: Solving proportions (video)

    The video is a bit confusing, and I'm struggling to transfer this to solving the questions for "Solving Proportions". For example in the question: 4/z = 12/5 I understand that you begin by multiplying by z. z * 4/z = 12/5*z--> 4 = 12/5*z After this, the solution set asks you to multiply both sides by 5/12, the opposite fraction of the right side.

  3. Proportions

    Proportion says that two ratios (or fractions) are equal. Example: We see that 1-out-of-3 is equal to 2-out-of-6. The ratios are the same, so they are in proportion. Example: Rope. A rope's length and weight are in proportion. When 20m of rope weighs 1kg , then: 40m of that rope weighs 2kg. 200m of that rope weighs 10kg.

  4. 1.4: Proportions

    In solving this problem before, we set up two ratios \[3752 \colon x \quad \text{and} \quad 13 \colon 1 \] Why did we do this? Well, it turns out that all proportion problems can be solved using a method from algebra known as cross multiplication.While this text mostly stays away from algebra, this procedure is essential.

  5. How to Solve a Proportion

    Example 1. Solve for x. There's more than one way to solve this proportion. To solve it by cross-multiplying, you multiply diagonally and set the two cross-products equal to each other. Multiply the x and the 3 together and set it equal to what you get when you multiply the 2 and the 9 together. A common mistake that students make when they ...

  6. Proportions

    Learn how to solve proportions with basic examples and word problems in this easy-to-follow YouTube video. Suitable for students and teachers.

  7. Solving Proportions: Word Problems

    Purplemath. Many "proportion" word problems can be solved using other methods, so they may be familiar to you. For instance, if you've learned about straight-line equations, then you've learned about the slope of a straight line, and how this slope is sometimes referred to as being "rise over run". But that word "over" gives a hint that, yes ...

  8. Proportion Word Problems (videos lessons, examples)

    In notation, direct proportion is written as. y ∝ x. Example 1: If y is directly proportional to x and given y = 9 when x = 5, find: a) the value of y when x = 15. b) the value of x when y = 6. Solution: a) Using the fact that the ratios are constant, we get. 95 9 5 = y 15 y 15.

  9. 6.6: Solve Proportions and their Applications

    The proportion method for solving percent problems involves a percent proportion. A percent proportion is an equation where a percent is equal to an equivalent ratio. For example, 60% = 60 100 60% = 60 100 and we can simplify 60 100 = 3 5 . 60 100 = 3 5 .

  10. 8 Ways to Solve Proportions

    Find the product of these two numbers: 3. Divide by the last number in the proportion. Take the answer to your multiplication problem and divide it by the number you haven't used yet. (This is the green number in the example.) The result is the value of , the missing number in your proportion.

  11. Solving proportions (practice)

    Proportion word problem: hot dogs. Proportion word problems. Math > 7th grade > Proportional relationships > Writing & solving proportions ... Worked example: Solving proportions . Video 5 minutes 48 seconds 5:48. Proportion word problem: cookies . Report a problem. Do 7 problems ...

  12. Proportion Word Problems (examples, videos, worksheets, solutions

    Algebra Help: Solving Proportion Word Problems. This video demonstrates how to setup and solve a proportion word problem. We must make sure to have the same units in the numerators and the denominators, then we can cross multiply and solve for our unknown. Examples: (1) Biologists tagged 900 rabbits in Bryer Lake national park.

  13. Direct & Inverse Proportions (Indirect Proportions) with solutions

    This video shows how to solve inverse proportion questions. It goes through a couple of examples and ends with some practice questions. Example 1: A is inversely proportional to B. When A is 10, B is 2. Find the value of A when B is 8. Example 2: F is inversely proportional to the square of x. When A is 20, B is 3. Find the value of F when x is 5.

  14. How to Solve Proportion Problems? (Examples)

    We can use operations like addition, subtraction, multiplication, and division to solve a proportion. In most cases, we only need to use multiplication and division. Let's consider a proportion in which one of the values is unknown. For example, \ ( \frac {5} {8} = \frac {x} {40} \) Use basic math operations to solve this equation.

  15. Writing proportions example (video)

    Worked example: Solving proportions. Solving proportions. Writing proportions example. ... Some examples of writing two ratios and setting them equal to each other to solve proportion word problems. ... For the ratios of the first problem, if you're confused to how he got 11.50/9 = x/7. Well, we know 9 markers cost $11.50. ...

  16. Solving Proportions: Word Problems

    We provide you thorough instruction of every step. We`re by your side as you try problems yourself. We test your knowledge until you`ve got it down. We build your foundation if you`re struggling. Try a complete lesson on Solving Proportions: Word Problems, featuring video examples, interactive practice, self-tests, worksheets and more!

  17. Proportion Word Problems

    Proportion word problems. There are lots of situations that can create proportion word problems. We will illustrate these situations with some examples. Problem # 1. Mix 3 liters of water with 4 lemons to make lemonade. How many liters of water are mixed with 8 lemons. Set up the ratios, but make sure that the two ratios are written in the same ...

  18. Ratio Problem Solving

    Ratio problem solving is a collection of ratio and proportion word problems that link together aspects of ratio and proportion into more real life questions. This requires you to be able to take key information from a question and use your knowledge of ratios (and other areas of the curriculum) to solve the problem. ... Example 5: simplifying ...

  19. Proportion

    This problem can be solved by writing a proportion and solving it using cross products. The proportion should be written using the ratio of the model size to the actual size. {eq}\frac{1}{24 ...

  20. Ratio and Proportion Word Problems

    Summary. A proportion is two ratios that are set equal to one another. An example of a proportion would be: 1 dollar10 pesos=10 dollars100 pesos As you can see, they are equivalent. The units are the same, and then we notice the fractions are equivalent. The fractions are equivalent because 10100 can be reduced to 110.

  21. Ratios and proportions

    It compares the amount of one ingredient to the sum of all ingredients. part: whole = part: sum of all parts. To write a ratio: Determine whether the ratio is part to part or part to whole. Calculate the parts and the whole if needed. Plug values into the ratio. Simplify the ratio if needed.

  22. Ratio Word Problems (video lessons, examples and solutions)

    When solving proportion word problems remember to have like units in the numerator and denominator of each ratio in the proportion. Examples: ... Ratio problems: Three-term Ratios. Example 1: A special cereal mixture contains rice, wheat and corn in the ratio of 2:3:5. If a bag of the mixture contains 3 pounds of rice, how much corn does it ...

  23. Ratio Problem Solving

    Ratio problem solving is a collection of word problems that link together aspects of ratio and proportion into more real life questions. This requires you to be able to take key information from a question and use your knowledge of ratios (and other areas of the curriculum) to solve the problem. ... Example 5: simplifying ratios. Below is a bar ...