Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • View all journals

Information technology articles from across Nature Portfolio

Information technology is the design and implementation of computer networks for data processing and communication. This includes designing the hardware for processing information and connecting separate components, and developing software that can efficiently and faultlessly analyse and distribute this data.

research papers on it

Bridging the gap between artificial intelligence and natural intelligence

According to a recent study, a small network consisting of four leaky integrate-and-fire neurons can reproduce the behavior of a single Hodgkin–Huxley neuron, thereby bridging the gap between endogenous and exogenous complexity.

  • Rui-Jie Zhu
  • Skye Gunasekaran
  • Jason Eshraghian

Latest Research and Reviews

research papers on it

Accelerating segmentation of fossil CT scans through Deep Learning

  • Espen M. Knutsen
  • Dmitry A. Konovalov

research papers on it

Energy and throughput aware adequate routing for wireless sensor networks using integrated game theory method

  • M. Vivek Kumar
  • O. Saraniya

research papers on it

Artificial intelligence can regulate light and climate systems to reduce energy use in plant factories and support sustainable food production

Plant–environment interactions are examined using artificial intelligence and computational modelling, allowing energy use to be optimized in plant factories with artificial lighting.

  • Benjamin Decardi-Nelson

research papers on it

Leveraging AI and patient metadata to develop a novel risk score for skin cancer detection

  • Shafiqul Islam
  • Gordon C. Wishart
  • Haider Raza

research papers on it

A machine learning based EMA-DCPM algorithm for production scheduling

research papers on it

3D indoor area recognition for personnel security using integrated UWB and barometer approach

  • Juha Hyyppä

Advertisement

News and Comment

research papers on it

Intellectual property and data privacy: the hidden risks of AI

Generative artificial-intelligence tools have been widely adopted across academia, but users might not be aware of all their inherent risks.

  • Amanda Heidt

research papers on it

Mitigating interference within satellite megaconstellations

An article in IEEE Journal on Selected Areas in Communications presents a cooperative framework that integrates satellite routing and frequency assignment to avoid self-interference in large satellite constellations.

research papers on it

Quantum hacking looms — but ultra-secure encryption is ready to deploy

Approval of three quantum-proof algorithms caps eight-year global effort to make the Internet safe from attacks using future computers.

  • Davide Castelvecchi

research papers on it

Vehicle-based vision–radar fusion for real-time and accurate positioning of clustered UAVs

An article in IEEE Journal on Selected Areas in Communications presents a vehicle-based vision–radar system designed for precise, real-time positioning of UAV clusters.

research papers on it

AI ‘deepfake’ faces detected using astronomy methods

Analysing reflections of light in the eyes can help to determine an image’s authenticity.

Quick links

  • Explore articles by subject
  • Guide to authors
  • Editorial policies

research papers on it

  • Gartner client? Log in for personalized search results.

IT Research

Get the trusted insights into the major business and technology trends with free research, ebooks and special reports from gartner..

  • Applications
  • Chief Information Officer Head of IT
  • Data and Analytics
  • Enterprise Architecture and Technology Innovation
  • IT - Other Role
  • IT Infrastructure and Operations
  • Program and Portfolio Management Leader
  • IT Security and Risk Management
  • Software Engineering
  • Sourcing, Procurement and Vendor Management
  • Technical Professionals

research papers on it

2023 Strategic Roadmap for Greenhouse Gas Emissions Data and Analytics

Accurately manage GHG emissions to make progress on sustainability targets and comply with environmental regulations.

research papers on it

Market Guide for Energy Management and Optimization Systems

Gain insight into the evolving EMOS software market to support production optimization.

research papers on it

Quick Answer: What to Expect When Expecting Generative AI in Power and Utilities

Evaluate where Generative AI fits into your Power and Utilities strategy.

research papers on it

Quick Answer: What to Expect When Expecting Generative AI in Oil and Gas

Oil and Gas CIOs must act now to utilize generative AI or risk falling behind.

research papers on it

Healthcare Providers: Benchmark Performance With the Digital Execution Scorecard

Healthcare CIOs can leverage the Digital Execution Scorecard to generate benchmarks to compare their digital capabilities against their peers.

research papers on it

2024 Power & Utilities Trend: Focus AI Pilots on Business Outcomes to Succeed

CIOs can use this trend to guide creation of new AI strategies to deliver realistic returns.

research papers on it

Market Guide for DERMS

Understand the evolving DERMS market and functional requirements, and align strategies with new regulatory mandates and operating models.

research papers on it

How CIOs Can Use PLM to Generate Value From Digital Threads

Manufacturing CIOs can use PLM software to create, connect and govern product data across the value chain and lay the foundation for a digital thread.

research papers on it

Snapshot of Innovation in Higher Education

Case studies of success that include practices higher education CIOs can adopt.

research papers on it

2024 Strategic Roadmap for Higher Education Student Information Systems

Guide for higher education CIOs to navigate the path of transitioning the SIS to a modern technology platform.

research papers on it

Top Strategic Technology Trends in Industrial Manufacturing for 2024

Manufacturing CIOs can use trends for 2024 accelerate product innovation, operational excellence and sustainability.

research papers on it

Can Operations Be Excellent Without Intelligent Industrial Assets?

Integrate and orchestrate digital investments across the company and collaboratively lead the journey to intelligent assets.

research papers on it

Drive stronger performance on your mission-critical priorities.

Advances, Systems and Applications

Journal of Cloud Computing Cover Image

  • Search by keyword
  • Search by citation

Page 1 of 15

Dependency-aware online task offloading based on deep reinforcement learning for IoV

The convergence of artificial intelligence and in-vehicle wireless communication technologies, promises to fulfill the pressing communication needs of the Internet of Vehicles (IoV) while promoting the develop...

  • View Full Text

Using blockchain and AI technologies for sustainable, biodiverse, and transparent fisheries of the future

This paper proposes a total fusion of blockchain and AI tech for tomorrow’s viable, rich in diversity and transparent fisheries. It outlines the main goal of tackling overfishing challenges due to lack of tran...

Predictive digital twin driven trust model for cloud service providers with Fuzzy inferred trust score calculation

Cloud computing has become integral to modern computing infrastructure, offering scalability, flexibility, and cost-effectiveness. Trust is a critical aspect of cloud computing, influencing user decisions in s...

When wavelet decomposition meets external attention: a lightweight cloud server load prediction model

Load prediction tasks aim to predict the dynamic trend of future load based on historical performance sequences, which are crucial for cloud platforms to make timely and reasonable task scheduling. However, ex...

Compliance and feedback based model to measure cloud trustworthiness for hosting digital twins

Cloud-based digital twins use real-time data from various data sources to simulate the behavior and performance of their physical counterparts, enabling monitoring and analysis. However, one restraining factor...

Human digital twin: a survey

The concept of the Human Digital Twin (HDT) has recently emerged as a new research area within the domain of digital twin technology. HDT refers to the replica of a physical-world human in the digital world. C...

Deep learning based enhanced secure emergency video streaming approach by leveraging blockchain technology for Vehicular AdHoc 5G Networks

VANET is a category of MANET that aims to provide wireless communication. It increases the safety of roads and passengers. Millions of people lose their precious lives in accidents yearly, millions are injured...

SSF-CDW: achieving scalable, secure, and fast OLAP query for encrypted cloud data warehouse

Implementing a cloud-based data warehouse to store sensitive or critical strategic data presents challenges primarily related to the security of the stored information and the exchange of OLAP queries between ...

Energy-aware tasks offloading based on DQN in medical mobile devices

Offloading some tasks from the local device to the remote cloud is one of the important methods to overcome the drawbacks of the medical mobile device, such as the limitation in the execution time and energy s...

Adaptive heuristic edge assisted fog computing design for healthcare data optimization

Patient care, research, and decision-making are all aided by real-time medical data analysis in today’s rapidly developing healthcare system. The significance of this research comes in the fact that it has the...

Optimizing energy efficiency in MEC networks: a deep learning approach with Cybertwin-driven resource allocation

Cybertwin (CT) is an innovative network structure that digitally simulates humans and items in a virtual environment, significantly influencing Cybertwin instances more than regular VMs. Cybertwin-driven netwo...

Attack detection model for BCoT based on contrastive variational autoencoder and metric learning

With development of blockchain technology, clouding computing and Internet of Things (IoT), blockchain and cloud of things (BCoT) has become development tendency. But the security has become the most developme...

MDB-KCP: persistence framework of in-memory database with CRIU-based container checkpoint in Kubernetes

As the demand for container technology and platforms increases due to the efficiency of IT resources, various workloads are being containerized. Although there are efforts to integrate various workloads into K...

Enhancing intrusion detection: a hybrid machine and deep learning approach

The volume of data transferred across communication infrastructures has recently increased due to technological advancements in cloud computing, the Internet of Things (IoT), and automobile networks. The netwo...

An intelligent decision system for virtual machine migration based on specific Q-learning

Due to the convenience of virtualization, the live migration of virtual machines is widely used to fulfill optimization objectives in cloud/edge computing. However, live migration may lead to side effects and ...

Real-time scheduling of power grid digital twin tasks in cloud via deep reinforcement learning

As energy demand continues to grow, it is crucial to integrate advanced technologies into power grids for better reliability and efficiency. Digital Twin (DT) technology plays a key role in this by using data ...

ASOD: an adaptive stream outlier detection method using online strategy

In the current era of information technology, blockchain is widely used in various fields, and the monitoring of the security and status of the blockchain system is of great concern. Online anomaly detection f...

Computational intelligence-based classification system for the diagnosis of memory impairment in psychoactive substance users

Computational intelligence techniques have emerged as a promising approach for diagnosing various medical conditions, including memory impairment. Increased abuse of psychoactive drugs poses a global public he...

Adaptive scheduling-based fine-grained greybox fuzzing for cloud-native applications

Coverage-guided fuzzing is one of the most popular approaches to detect bugs in programs. Existing work has shown that coverage metrics are a crucial factor in guiding fuzzing exploration of targets. A fine-gr...

Non-orthogonal multiple access-based MEC for energy-efficient task offloading in e-commerce systems

Mobile edge computing (MEC) reduces the latency for end users to access applications deployed at the edge by offloading tasks to the edge. With the popularity of e-commerce and the expansion of business scale,...

Multiple time servers timed-release encryption based on Shamir secret sharing for EHR cloud system

Electronic health record (EHR) cloud system, as a primary tool driving the informatization of medical data, have positively impacted both doctors and patients by providing accurate and complete patient informa...

Efficiently localizing system anomalies for cloud infrastructures: a novel Dynamic Graph Transformer based Parallel Framework

Cloud environment is a virtual, online, and distributed computing environment that provides users with large-scale services. And cloud monitoring plays an integral role in protecting infrastructures in the clo...

From data to insights: the application and challenges of knowledge graphs in intelligent audit

In recent years, knowledge graph technology has been widely applied in various fields such as intelligent auditing, urban transportation planning, legal research, and financial analysis. In traditional auditin...

HybOff: a Hybrid Offloading approach to improve load balancing in fog environments

Load balancing is crucial in distributed systems like fog computing, where efficiency is paramount. Offloading with different approaches is the key to balancing the load in distributed environments. Static off...

Hierarchical Identity-Based Authenticated Encryption with Keyword Search over encrypted cloud data

With the rapid development of cloud computing technology, cloud storage services are becoming more and more mature. However, the storage of sensitive data on remote servers poses privacy risks and is presently...

Correction to: Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN

The original article was published in Journal of Cloud Computing 2024 13 :91

ABWOA: adaptive boundary whale optimization algorithm for large-scale digital twin network construction

Digital twin network (DTN) as an emerging network paradigm, have garnered growing attention. For large-scale networks, a crucial problem is how to effectively map physical networks onto the infrastructure plat...

Distance optimization and directional overcurrent relay coordination using edge-powered biogeography-genetic algorithms

The effective functioning and regulation of power systems crucially rely on the coordination of distance and directional overcurrent relays. Accurate fault detection and successful clearing sequences require s...

Towards optimized scheduling and allocation of heterogeneous resource via graph-enhanced EPSO algorithm

Efficient allocation of tasks and resources is crucial for the performance of heterogeneous cloud computing platforms. To achieve harmony between task completion time, device power consumption, and load balanc...

Topic and knowledge-enhanced modeling for edge-enabled IoT user identity linkage across social networks

The Internet of Things (IoT) devices spawn growing diverse social platforms and online data at the network edge, propelling the development of cross-platform applications. To integrate cross-platform data, use...

Privacy-preserving sports data fusion and prediction with smart devices in distributed environment

With the rapid advancement of sports analytics and fan engagement technologies, the volume and diversity of physique data generated by smart devices across various distributed sports platforms have grown signi...

Quantum support vector machine for forecasting house energy consumption: a comparative study with deep learning models

The Smart Grid operates autonomously, facilitating the smooth integration of diverse power generation sources into the grid, thereby ensuring a continuous, reliable, and high-quality supply of electricity to e...

Enhancing multimedia management: cloud-based movie type recognition with hybrid deep learning architecture

Film and movie genres play a pivotal role in captivating relevant audiences across interactive multimedia platforms. With a focus on entertainment, streaming providers are increasingly prioritizing the automat...

MTG_CD: Multi-scale learnable transformation graph for fault classification and diagnosis in microservices

The rapid advancement of microservice architecture in the cloud has led to the necessity of effectively detecting, classifying, and diagnosing run failures in microservice applications. Due to the high dynamic...

Recognizing online video genres using ensemble deep convolutional learning for digital media service management

It's evident that streaming services increasingly seek to automate the generation of film genres, a factor profoundly shaping a film's structure and target audience. Integrating a hybrid convolutional network ...

A bizarre synthesized cascaded optimized predictor (BizSCOP) model for enhancing security in cloud systems

Due to growing network data dissemination in cloud, the elasticity, pay as you go options, globally accessible facilities, and security of networks have become increasingly important in today's world. Cloud se...

STAM-LSGRU: a spatiotemporal radar echo extrapolation algorithm with edge computing for short-term forecasting

With the advent of Mobile Edge Computing (MEC), shifting data processing from cloud centers to the network edge presents an advanced computational paradigm for addressing latency-sensitive applications. Specif...

Constrained optimal grouping of cloud application components

Cloud applications are built from a set of components often deployed as containers, which can be deployed individually on separate Virtual Machines (VMs) or grouped on a smaller set of VMs. Additionally, the a...

Students health physique information sharing in publicly collaborative services over edge-cloud networks

Data privacy is playing a vital role while facing the digital life aspects. Today, the world is being extensively inter-connected through the internet of things (IoT) technologies. This huge interconnectivity ...

Efficient and secure privacy protection scheme and consensus mechanism in MEC enabled e-commerce consortium blockchain

The application of blockchain technology to the field of e-commerce has solved many dilemmas, such as low transparency of transactions, hidden risks of data security and high payment costs. Mobile edge computi...

A mobile edge computing-focused transferable sensitive data identification method based on product quantization

Sensitive data identification represents the initial and crucial step in safeguarding sensitive information. With the ongoing evolution of the industrial internet, including its interconnectivity across variou...

Blockchain-based 6G task offloading and cooperative computing resource allocation study

In the upcoming era of 6G, the accelerated development of the Internet of Everything and high-speed communication is poised to provide people with an efficient and intelligent life experience. However, the exp...

Deep Reinforcement Learning techniques for dynamic task offloading in the 5G edge-cloud continuum

The integration of new Internet of Things (IoT) applications and services heavily relies on task offloading to external devices due to the constrained computing and battery resources of IoT devices. Up to now,...

Enhancing patient healthcare with mobile edge computing and 5G: challenges and solutions for secure online health tools

Patient-focused healthcare applications are important to patients because they offer a range of advantages that add value and improve the overall healthcare experience. The 5G networks, along with Mobile Edge ...

Online dynamic multi-user computation offloading and resource allocation for HAP-assisted MEC: an energy efficient approach

Nowadays, the paradigm of mobile computing is evolving from a centralized cloud model towards Mobile Edge Computing (MEC). In regions without ground communication infrastructure, incorporating aerial edge comp...

Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN

The recent advancements in automated lung cancer diagnosis through the application of Convolutional Neural Networks (CNN) on Computed Tomography (CT) scans have marked a significant leap in medical imaging and...

The Correction to this article has been published in Journal of Cloud Computing 2024 13 :111

Cross-chain asset trading scheme for notaries based on edge cloud storage

Blockchain has penetrated in various fields, such as finance, healthcare, supply chain, and intelligent transportation, but the value exchange between different blockchains limits their expansion. Cross-chain ...

An overview of QoS-aware load balancing techniques in SDN-based IoT networks

Increasing and heterogeneous service demands have led to traffic increase, and load imbalance challenges among network entities in the Internet of Things (IoT) environments. It can affect Quality of Service (Q...

MSCO: Mobility-aware Secure Computation Offloading in blockchain-enabled Fog computing environments

Fog computing has evolved as a promising computing paradigm to support the execution of latency-sensitive Internet of Things (IoT) applications. The mobile devices connected to the fog environment are resource...

Correction to: Edge intelligence‑assisted animation design with large models: a survey

The original article was published in Journal of Cloud Computing 2024 13 :48

  • Editorial Board
  • Sign up for article alerts and news from this journal

Annual Journal Metrics

Citation Impact 2023 Journal Impact Factor: 3.7 5-year Journal Impact Factor: 3.8 Source Normalized Impact per Paper (SNIP): 1.406 SCImago Journal Rank (SJR): 0.995

Speed 2023 Submission to first editorial decision (median days): 12 Submission to acceptance (median days): 116

Usage 2023 Downloads: 733,672 Altmetric mentions: 49

  • More about our metrics
  • ISSN: 2192-113X (electronic)

Benefit from our free funding service

New Content Item

We offer a free open access support service to make it easier for you to discover and apply for article-processing charge (APC) funding. 

Learn more here

computer science Recently Published Documents

Total documents.

  • Latest Documents
  • Most Cited Documents
  • Contributed Authors
  • Related Sources
  • Related Keywords

Hiring CS Graduates: What We Learned from Employers

Computer science ( CS ) majors are in high demand and account for a large part of national computer and information technology job market applicants. Employment in this sector is projected to grow 12% between 2018 and 2028, which is faster than the average of all other occupations. Published data are available on traditional non-computer science-specific hiring processes. However, the hiring process for CS majors may be different. It is critical to have up-to-date information on questions such as “what positions are in high demand for CS majors?,” “what is a typical hiring process?,” and “what do employers say they look for when hiring CS graduates?” This article discusses the analysis of a survey of 218 recruiters hiring CS graduates in the United States. We used Atlas.ti to analyze qualitative survey data and report the results on what positions are in the highest demand, the hiring process, and the resume review process. Our study revealed that a software developer was the most common job the recruiters were looking to fill. We found that the hiring process steps for CS graduates are generally aligned with traditional hiring steps, with an additional emphasis on technical and coding tests. Recruiters reported that their hiring choices were based on reviewing resume’s experience, GPA, and projects sections. The results provide insights into the hiring process, decision making, resume analysis, and some discrepancies between current undergraduate CS program outcomes and employers’ expectations.

A Systematic Literature Review of Empiricism and Norms of Reporting in Computing Education Research Literature

Context. Computing Education Research (CER) is critical to help the computing education community and policy makers support the increasing population of students who need to learn computing skills for future careers. For a community to systematically advance knowledge about a topic, the members must be able to understand published work thoroughly enough to perform replications, conduct meta-analyses, and build theories. There is a need to understand whether published research allows the CER community to systematically advance knowledge and build theories. Objectives. The goal of this study is to characterize the reporting of empiricism in Computing Education Research literature by identifying whether publications include content necessary for researchers to perform replications, meta-analyses, and theory building. We answer three research questions related to this goal: (RQ1) What percentage of papers in CER venues have some form of empirical evaluation? (RQ2) Of the papers that have empirical evaluation, what are the characteristics of the empirical evaluation? (RQ3) Of the papers that have empirical evaluation, do they follow norms (both for inclusion and for labeling of information needed for replication, meta-analysis, and, eventually, theory-building) for reporting empirical work? Methods. We conducted a systematic literature review of the 2014 and 2015 proceedings or issues of five CER venues: Technical Symposium on Computer Science Education (SIGCSE TS), International Symposium on Computing Education Research (ICER), Conference on Innovation and Technology in Computer Science Education (ITiCSE), ACM Transactions on Computing Education (TOCE), and Computer Science Education (CSE). We developed and applied the CER Empiricism Assessment Rubric to the 427 papers accepted and published at these venues over 2014 and 2015. Two people evaluated each paper using the Base Rubric for characterizing the paper. An individual person applied the other rubrics to characterize the norms of reporting, as appropriate for the paper type. Any discrepancies or questions were discussed between multiple reviewers to resolve. Results. We found that over 80% of papers accepted across all five venues had some form of empirical evaluation. Quantitative evaluation methods were the most frequently reported. Papers most frequently reported results on interventions around pedagogical techniques, curriculum, community, or tools. There was a split in papers that had some type of comparison between an intervention and some other dataset or baseline. Most papers reported related work, following the expectations for doing so in the SIGCSE and CER community. However, many papers were lacking properly reported research objectives, goals, research questions, or hypotheses; description of participants; study design; data collection; and threats to validity. These results align with prior surveys of the CER literature. Conclusions. CER authors are contributing empirical results to the literature; however, not all norms for reporting are met. We encourage authors to provide clear, labeled details about their work so readers can use the study methodologies and results for replications and meta-analyses. As our community grows, our reporting of CER should mature to help establish computing education theory to support the next generation of computing learners.

Light Diacritic Restoration to Disambiguate Homographs in Modern Arabic Texts

Diacritic restoration (also known as diacritization or vowelization) is the process of inserting the correct diacritical markings into a text. Modern Arabic is typically written without diacritics, e.g., newspapers. This lack of diacritical markings often causes ambiguity, and though natives are adept at resolving, there are times they may fail. Diacritic restoration is a classical problem in computer science. Still, as most of the works tackle the full (heavy) diacritization of text, we, however, are interested in diacritizing the text using a fewer number of diacritics. Studies have shown that a fully diacritized text is visually displeasing and slows down the reading. This article proposes a system to diacritize homographs using the least number of diacritics, thus the name “light.” There is a large class of words that fall under the homograph category, and we will be dealing with the class of words that share the spelling but not the meaning. With fewer diacritics, we do not expect any effect on reading speed, while eye strain is reduced. The system contains morphological analyzer and context similarities. The morphological analyzer is used to generate all word candidates for diacritics. Then, through a statistical approach and context similarities, we resolve the homographs. Experimentally, the system shows very promising results, and our best accuracy is 85.6%.

A genre-based analysis of questions and comments in Q&A sessions after conference paper presentations in computer science

Gender diversity in computer science at a large public r1 research university: reporting on a self-study.

With the number of jobs in computer occupations on the rise, there is a greater need for computer science (CS) graduates than ever. At the same time, most CS departments across the country are only seeing 25–30% of women students in their classes, meaning that we are failing to draw interest from a large portion of the population. In this work, we explore the gender gap in CS at Rutgers University–New Brunswick, a large public R1 research university, using three data sets that span thousands of students across six academic years. Specifically, we combine these data sets to study the gender gaps in four core CS courses and explore the correlation of several factors with retention and the impact of these factors on changes to the gender gap as students proceed through the CS courses toward completing the CS major. For example, we find that a significant percentage of women students taking the introductory CS1 course for majors do not intend to major in CS, which may be a contributing factor to a large increase in the gender gap immediately after CS1. This finding implies that part of the retention task is attracting these women students to further explore the major. Results from our study include both novel findings and findings that are consistent with known challenges for increasing gender diversity in CS. In both cases, we provide extensive quantitative data in support of the findings.

Designing for Student-Directedness: How K–12 Teachers Utilize Peers to Support Projects

Student-directed projects—projects in which students have individual control over what they create and how to create it—are a promising practice for supporting the development of conceptual understanding and personal interest in K–12 computer science classrooms. In this article, we explore a central (and perhaps counterintuitive) design principle identified by a group of K–12 computer science teachers who support student-directed projects in their classrooms: in order for students to develop their own ideas and determine how to pursue them, students must have opportunities to engage with other students’ work. In this qualitative study, we investigated the instructional practices of 25 K–12 teachers using a series of in-depth, semi-structured interviews to develop understandings of how they used peer work to support student-directed projects in their classrooms. Teachers described supporting their students in navigating three stages of project development: generating ideas, pursuing ideas, and presenting ideas. For each of these three stages, teachers considered multiple factors to encourage engagement with peer work in their classrooms, including the quality and completeness of shared work and the modes of interaction with the work. We discuss how this pedagogical approach offers students new relationships to their own learning, to their peers, and to their teachers and communicates important messages to students about their own competence and agency, potentially contributing to aims within computer science for broadening participation.

Creativity in CS1: A Literature Review

Computer science is a fast-growing field in today’s digitized age, and working in this industry often requires creativity and innovative thought. An issue within computer science education, however, is that large introductory programming courses often involve little opportunity for creative thinking within coursework. The undergraduate introductory programming course (CS1) is notorious for its poor student performance and retention rates across multiple institutions. Integrating opportunities for creative thinking may help combat this issue by adding a personal touch to course content, which could allow beginner CS students to better relate to the abstract world of programming. Research on the role of creativity in computer science education (CSE) is an interesting area with a lot of room for exploration due to the complexity of the phenomenon of creativity as well as the CSE research field being fairly new compared to some other education fields where this topic has been more closely explored. To contribute to this area of research, this article provides a literature review exploring the concept of creativity as relevant to computer science education and CS1 in particular. Based on the review of the literature, we conclude creativity is an essential component to computer science, and the type of creativity that computer science requires is in fact, a teachable skill through the use of various tools and strategies. These strategies include the integration of open-ended assignments, large collaborative projects, learning by teaching, multimedia projects, small creative computational exercises, game development projects, digitally produced art, robotics, digital story-telling, music manipulation, and project-based learning. Research on each of these strategies and their effects on student experiences within CS1 is discussed in this review. Last, six main components of creativity-enhancing activities are identified based on the studies about incorporating creativity into CS1. These components are as follows: Collaboration, Relevance, Autonomy, Ownership, Hands-On Learning, and Visual Feedback. The purpose of this article is to contribute to computer science educators’ understanding of how creativity is best understood in the context of computer science education and explore practical applications of creativity theory in CS1 classrooms. This is an important collection of information for restructuring aspects of future introductory programming courses in creative, innovative ways that benefit student learning.

CATS: Customizable Abstractive Topic-based Summarization

Neural sequence-to-sequence models are the state-of-the-art approach used in abstractive summarization of textual documents, useful for producing condensed versions of source text narratives without being restricted to using only words from the original text. Despite the advances in abstractive summarization, custom generation of summaries (e.g., towards a user’s preference) remains unexplored. In this article, we present CATS, an abstractive neural summarization model that summarizes content in a sequence-to-sequence fashion while also introducing a new mechanism to control the underlying latent topic distribution of the produced summaries. We empirically illustrate the efficacy of our model in producing customized summaries and present findings that facilitate the design of such systems. We use the well-known CNN/DailyMail dataset to evaluate our model. Furthermore, we present a transfer-learning method and demonstrate the effectiveness of our approach in a low resource setting, i.e., abstractive summarization of meetings minutes, where combining the main available meetings’ transcripts datasets, AMI and International Computer Science Institute(ICSI) , results in merely a few hundred training documents.

Exploring students’ and lecturers’ views on collaboration and cooperation in computer science courses - a qualitative analysis

Factors affecting student educational choices regarding oer material in computer science, export citation format, share document.

Technology Research Paper

Academic Writing Service

This sample technology research paper features: 8300 words (approx. 27 pages), an outline, and a bibliography with 48 sources. Browse other research paper examples for more inspiration. If you need a thorough research paper written according to all the academic standards, you can always turn to our experienced writers for help. This is how your paper can get an A! Feel free to contact our writing service for professional assistance. We offer high-quality assignments for reasonable rates.

Introduction

Man’s relation to technology: a brief history, technology and biological anthropology, the sts approach, classical philosophical anthropology, philosophy of technology, the continental approach to the philosophy of technology, the analytic approach to the philosophy of technology, recent developments: bridging the gap, conclusion and future directions.

  • Bibliography

More Technology Research Papers:

  • History of Technology Research Paper
  • Internet Research Paper
  • Nanotechnology Research Paper
  • Compstat Research Paper
  • Computer Forensics Research Paper
  • Healthcare Technology Assessment Research Paper
  • Ethics of Information Technology Research Paper
  • Neurotechnology Research Paper

The term technology is derived from the Greek word techné. The Greek word refers to all forms of skillful, rule-based mastery in any field of human praxis, originally encompassing both arts (like painting, sculpture, writing, and the like) and craftsmanship (like carpentry, shipbuilding, architecture, and the like). The Roman culture uses the Latin word arts for these domains. Accordingly the medieval terminology distinguishes between the seven free arts (grammar, rhetoric, logic, geometry, arithmetic, music, astronomy) and the mechanical arts (e.g., agriculture, architecture, tailoring), thus prefiguring the later distinction between arts (as linked to the study of humans and the humanities) and technology (as linked to engineering and the study and science of nature).

Academic Writing, Editing, Proofreading, And Problem Solving Services

Get 10% off with 24start discount code.

The modern word technology finally refers either to procedures and skillful application of sciences for the production of industrial or manual products or to the products of these processes themselves. In this sense, technology nowadays encompasses only a part of the original Greek definition. The place of technology as being on the one hand a product of humans (being thus rooted in human anthropology and human tool usage), and being on the other hand based on a solid scientific understanding of the laws of nature (modern technology), can be seen as the two key features of contemporary and recent approaches to analyze and understand technology. Technology is then in one respect as old as humankind: Many approaches in anthropology thus refer to the general structure of technology in all of human history and relate it to the biological condition of humans. But recent anthropological thinking also reflects on the specific details of modern technology. It has often been argued that there is a structural difference between modern, science-based technology and older forms of craftsmanship of ancient or medieval types of technology. Therefore, a central question for modern anthropology is to analyze the consequences modern technology has for our picture of humankind: how to define man in the age of technology.

Reflection about the anthropological function of technology is probably as old as human self-reflection itself, since the ability to use tools and create cultural products has always been seen as a unique human feature, distinguishing humankind from most other animals (see also the next section on biological anthropology). But an analysis of technology was not at the center of political, social, anthropological, or philosophical thoughts before the development of the modern natural sciences and their counterpart, modern technology. Following Carl Mitcham (1994) one can roughly distinguish three approaches to technology before the 20th century, encompassing many topics that later became essential parts of contemporary discussions about technology (p. 275). The three approaches are as follows:

  • In the ancient world, technology is looked at with certain skepticism. The use of tools is seen as necessary for survival, but also regarded as dangerous, since it might lead to human hubris and might raise the envy and anger of the gods. In this sense, mythological thinking envisions technology as, for example, stolen from the gods (the myth of Prometheus), and thus not properly belonging to humans. The extensive use of technology is often seen as leading to megalomaniac fantasies or unjustified overstepping of religious and ethical boundaries (e.g., myth of the Tower of Babel, myth of Icarus). Philosophical reflection, however, acknowledges the value of technology for an otherwise defenseless human being. Already Plato anticipates a central thought of modern anthropology: Human beings are poorly equipped for survival in nature. They need to compensate for this lack by developing skills of rational thinking and the usage of tools (this idea later becomes a central thesis of the famous anthropology of Arnold Gehlen [1988]). But the emphasis in ancient philosophical anthropology lies not so much on man’s capacities to invent technology, but on man’s moral character (exemplified by ancient wisdom or medieval religiosity). The usage of technical knowledge should thus be kept within strict ethical boundaries.
  • In the hierarchy of knowledge, ethical wisdom is regarded in principle as higher than and superior to technological skills. Socrates points to the question that we should not only seek knowledge about how to do certain things (technical knowledge), but rather about whether we should perform certain actions (ethical knowledge); this idea can also be found in the medieval distinction between the (superior form of a) life in contemplation ( vita contemplativa ) and the (lower) life in active involvement ( vita activa ). Ancient and medieval technology is thus embedded in an anthropological vision, in which human virtues play an important role. Different forms of virtues are combined in the original crafts, as opposed to the later, modern differentiation of these virtues: In craftmanship one can find a union of economical virtues (e.g., efficient usage of limited resources), technical virtues (creating new entities that did not exist before), and often also aesthetic virtues (a sense of beauty that adds an aesthetic component to these newly created entities going beyond the modern idea that “form follows function”). In the Greek world, these three skills are combined in the realm of poiesis, while in modernity they are separated in the three domains of economy, technology, and art—each relatively independent of the others (Hösle, 2004, p. 366).
  • A profound change in the evaluation of technology emerges with modernity, a position that Mitcham (1994) summarizes as Enlightenment optimism. Already in the writings of Francis Bacon (1620), the new science of nature and its application to experimental and technological research is highly welcomed. Progress in technology is seen as very beneficial to humankind, as it may lead to the cure of diseases, mastery over nature, and a constant progress toward a more human society. Many utopian writings mark the beginning of early modern thoughts in which technology is seen as essential in leading to a brighter future for humankind (e.g., Thomas More’s Utopia [1516], J. V. Andreae’s Christianopolis [1619], F. Bacon’s New Atlantis [1627]). In a similar line of thought, Enlightenment thinkers defend science and modern technology against attacks from religious conservatism, pointing at the beneficial consequences of technological and scientific progress.
  • A countermovement to the Enlightenment is Romanticism, which accordingly has a different view on technology, referred to by Mitcham (1994) as Romantic uneasiness. Again, the central thought is an anthropological perspective in which man is seen as being good by nature, while it is civilization that poses the danger of alienating man from nature and from his fellow man, focusing only on his rational capacities and suppressing his emotional and social skills. Already Vico (1709) opposed Cartesian rationalism and feared that the new interest in science would lead to a neglect of traditional humanistic education. Rousseau’s critique of modern societies then became influential, seeing an advancement of knowledge and science, but a decay of virtues and immediacy ( Discourse on the Arts and Sciences; Rousseau, 1750). With the age of industrialism, the negative social consequences of modern labor work become the scope of interest of social theorists, leading up to Marx’s famous analysis of modern societies (see subsequent section on cultural and sociological anthropology). In opposition to the positive utopias centered on technology in early modernity, the 20th century then sees the literary success of pessimistic dystopias, in which often technological means of suppression or control play an important role (e.g., already in M. W. Schelley’s Frankenstein or the Modern Prometheus [1818] and later in H. G. Wells’s The Island of Doctor Moreau [1896], A. Huxley’s Brave New World [1932], George Orwell’s 1984 [1948], and Ray Bradbury’s Fahrenheit 451 [1953]).

The tension between approaches praising the benefits of technology (in the spirit of the Enlightenment) and approaches focusing on negative consequences (in the spirit of Romanticism) still forms the background of most of the contemporary philosophical and anthropological debate; this debate circles around an understanding of modern technology, often rooted in the different “cultures” of the humanities and the sciences. It can be regarded as being a particularly vivid opposition at the beginning of the 20th century, that only later gave room for more detailed and balanced accounts of technology (some classics of the debate being Snow, 1959; McDermott, 1969).

Recent contributions toward a deeper understanding of the usage and development of technology stem from such different disciplines as biology, sociology, philosophical anthropology, metaphysics, ethics, theory of science, and religious worldviews. This research paper aims at a brief overview of important topics in the debate over technology during the 20th century to the present time. Three anthropological perspectives will be distinguished, depending on the main focus of anthropological interest. This will start with a brief summary of the biological anthropological perspective on technology, move on to those theories which focus more on social or cultural aspects, and conclude with more general philosophical anthropologies. This research paper is thus not chronologically organized, but tries to identify common themes of the debate, even though sometimes the topics might overlap (e.g., the case of Gehlen, a philosophical anthropologist who starts from a biological perspective and then moves on toward a more social view on technology).

In contemporary anthropology, technology becomes a central issue for at least two different reasons:

  • From a biological perspective the usage of tools is regarded (next to the development of language and a cognitive rational apparatus) as one of the key features of humanization. Biological anthropology thus initially focuses on the differences and similarities of tool usage in humans and animals, trying to understand the role technology plays in general for an understanding of humans’ biological and social nature. With the focus on human evolution, attention is often drawn to the question of which role technology played at the beginning of humankind.
  • While in this way always being a part of human culture, technology becomes arguably one of the single most influential key features of society only in modernity. According to Max Weber, science, technology, and economy form the “superstructure” of modernity, while they all share a common “rationality” (mainly of means-ends reasoning in economy and technology). The experience of the powers and dangers of modern technology (as in industrialized labor work, medical progress, nuclear energy and weapon technology, environmental problems due to pollution, and extensive usage of resources, etc.) has triggered many social, political, and philosophical reflections that—in opposition to biological anthropology—aim primarily at understanding the specifics of modern

Let us look at these two tendencies in turn, starting with the biological perspective, before moving to the social or cultural anthropology of technology.

Biological anthropologists are interested in the role technology played during humanization, and they attempt to give evolutionary accounts of the development of tool usage and technology and compare tool usage in man with tool usage in other animals. The development of technology has often been regarded as an evolutionarily necessary form of adaption or compensation. Since most of man’s organs are less developed than those of other species, he needed to compensate for this disadvantage in the evolutionary struggle for life (see Gehlen, 1980). Initially the usage of tools was considered a unique human feature, distinguishing the genus Homo from other animals (Oakley, 1957), but research on tool usage in different animals, especially chimpanzees, led to a more or less complete revision of this thesis (Schaik, Deaner, & Merrill, 1999).

Nowadays, many examples of tool usage in the animal kingdom are known (Beck, 1980). For example, chimpanzees use sticks to fish for termites, and elephants have been described as having a remarkable capacity for tool usage. Even though tool usage must thus be regarded as more common among animals, attention still needs to be drawn to the specifics of man’s tool usage, which arguably in scope and quality goes beyond what is known from the animal kingdom. It has been pointed out that our biological anatomy offers us several advantages for an extended usage of tools: walking erectly frees the two hands, which can then be used for other purposes. Furthermore, the position of the human thumb and short straight finger are of great benefit, especially in making and using stone tools (Ambrose, 2001). Still debated, however, is whether social and technological developments go hand in hand or whether one of the two factors is prior.

Even though many anthropologists tended to see social behaviors and cultural revolutions mostly as a consequence of a change in tool usage or a development of new technologies, it has also occasionally been argued that the development of social skills precedes the development of technical skills (e.g., in joint group hunting). It has additionally been acknowledged that chimpanzees also pass over some of their technical knowledge through the mechanism of learning and establishing cultural “traditions” that resemble, to some extent, human traditions (Wrangham, 1994; Laland, 2009). But there seems to be a specific difference in human and primate learning, namely in the fact that human children learn tool usage mainly via imitation and by simply copying a shown behavior, even if it is not the most efficient solution to a given problem. Opposed to this, chimpanzees seem to learn through a process called emulation, which implies that they diverge from the paradigmatic solution that has been “taught” to them. It has been argued that learning through imitation has been selected in humans, even though it is a less flexible strategy, because it is a more social strategy of learning (Tomasello, 1999, p. 28). In this way, biological anthropology mirrors a debate in social anthropology about the role of technology; this can be seen either as a driving force born out of necessity that calls for social changes (technical determinism), or as highly mediated or even constructed by culture (social constructivism).

Technology and Social/Cultural Anthropology

As already mentioned, technology was identified early on as a key feature of modern society (Misa, Brey, & Feenberg, 2004). Many studies have been written about the impact of modern technology on society, focusing mainly on the industrial revolution (e.g., Haferkamp, 1992; Pressnell, 1960; Smelser, 1969) or on the more recent revolution of the information society (e.g., Castells, 1999; Nora, 1980), as well as on the impact of technological change on traditional societies.

The analyses of Karl Marx and the Frankfurt School are influential, not only in trying to grasp the role of modern technology in society, but also in hinting on potential anthropological roots of technology and their essential interrelation with social aspects of the human condition. Marx insisted that the study of technology holds the highest relevance for human sciences, since it reveals the way humans deal with nature and sustain life (Marx, 1938). An essential feature of man’s nature is that he has to work in order to sustain his life, that he is the “toolmaking animal” or—as he has later been called—the Homo faber. Marx analyzes the role of technology in Chapter 13 of his first volume of Das Kapital. He argues that the division of labor becomes fostered through machines, which at the same time replace more and more traditional manpower and can furthermore be operated by less skilled employees, thus leading to very bad labor conditions for the working class. Technology in general is, however, still greeted as an option to make humans’ lives easier; it is mainly the social distribution of the possession of the means of production that Marx regards as problematic. (Also later thinkers, inspired by Marxian thought, tend to see technology as an important means toward establishing a better future.) On the other hand, at the same time, technology is seen as rooted in man’s will to dominate nature.

Following this later insight in particular, Theodor Adorno argues that Western civilization has developed powerful tools to ensure its self-preservation against nature. Technical rationality is regarded as the exercise of strategic power to dominate (external) nature, but it is at the same time also leading to a suppression of the inner nature of man (Adorno, 1979). The main strategy of this rationality is quantification, which lies at the heart of the mathematical-scientific interpretation of nature and the development of modern technology. At the same time it brings forth a type of rationality, which leads to a selfmutilation. The will to exercise power becomes the main feature of modern rationality, thus leading to a dialectic that turns the noble aims of the Age of Enlightenment into a morality of humankind that is its very opposite: A new barbaric system of oppression and dictatorship arises, using technology for totalitarian purposes.

While Adorno seeks redemption mainly in the arts (Adorno, 1999), seeming to promise the possibility of a completely different kind of subjectivity, Jürgen Habermas (1971) tries to propose an antidote; this does not lie outside of modern-Enlightenment rationality, but rather returns to its original intention. Habermas argues with Marx and Adorno, asserting that technological knowledge has its anthropological roots in the will to dominate nature and therefore serves a strategic interest of man. With this, man is not only Homo faber but also a social animal. Besides the strategic means-end rationality he also possesses a communicative rationality, aimed at defining common moral values and engaging in discourse over ethically acceptable principles of actions. In thus distinguishing two types of rationality, Habermas tries to incorporate much of the German tradition of cognitivistic ethics into his approach. It is important for Habermas that technology be brought under the control of democratic decision-making processes; his discourse ethics has thus helped to inspire ideas of participatory technology assessment.

Outside the Frankfurt School, technology has not been at the center of social and cultural anthropology, as has been often complained (Pfaffenberger, 1988, 1992). Langdon Winner (1986) coined the term technological somnambulism to refer to those theories that neglect the social dimension of technology. According to this dominant tradition, the human-technology relation is “too obvious” to merit serious reflection. Technology is seen as an independent factor of the material and social world, one that forms a relatively autonomous realm of ethically neutral tools to acquire human ends. But already Winner argues that technology is essentially social and is shaped by cultural conditions and underlying value decisions. He claims in a famous article (Winner, 1980) that Long Island’s low bridges were intentionally built in a way that would keep buses away, making it more difficult for the poor, and mainly the black population, to reach the island. Even though this particular claim has been challenged, Winner seems to be correct in pointing out that value decisions play a role in creating technology, and that the social value system leaves its trace in technological artifacts.

In line with this renewed interest in social issues, a new field of studies related to technology emerged in the 1980s, focusing explicitly on this neglected relation between society and technology: the so-called STS approach. Having been labeled the “turn to technology” (Woolgar, 1991), science and technology studies (STS) analyzes society’s impact on science and technology, and science and technology’s impact on society. Several writers draw attention to the social shaping of technology. An influential author is Bruno Latour, who contributed to both the initial appeal to social constructivism (that he later gave up) and the development of the actor-network theory; both are at the center of the debate about the theoretical underpinnings of STS.

Social Constructivism

Woolgar and Latour employ a social-constructivist perspective in their early case study on the production of scientific results, in which they analyze scientists’ attempt to establish and accumulate recognition and credibility of their research through the “cycle of credibility” (Latour, 1979). The main idea of social constructivism is the attempt to interpret alleged objective “facts” in the social world as being socially constructed, so that knowledge of the world and its interpretation depends on social mechanisms and cannot be traced back to objective facts (Berger & Luckmann, 1966). In this sense technology is also not an objective, independent given, but shaped by social ideas and societal interpretations.

Actor-Network Theory

In the 1980s and 1990s, Latour became one of the main proponents of the actor-network theory (Latour, 2005); this is also attractive to scholars who reject social constructivism, since it can be combined with the idea that not all of technology is socially constructed. The social-constructive interpretation of this theory aims to develop a framework in which society and nature, or society and technology, are not separated. The idea of technology as a sociotechnical system implies that agent and tool form a unity, which cannot be explained completely by referring to one of the two elements in isolation. According to this idea, technological artifacts dispose over some form of agency and can be—to some extent—regarded as actants. This ascription of intentionality and agency to technical systems is, however, highly debated. The debate between realism and social constructivism has thus not been settled.

Philosophical Anthropology and the Philosophy of Technology

Research in philosophical anthropology peaked in early 20th-century Germany, discussed in the next section. But outside of anthropological discussions, the topic of technology became an important issue for philosophy, so in this brief overview, important contributions and themes of the continental and analytic tradition will be discussed next. Finally, more recent developments and topics in the philosophy of technology will be sketched that do not try to revitalize a philosophical anthropology, but that nevertheless do touch in one way or another on anthropological perspectives on technology.

Classical philosophical anthropology was mainly interested in understanding the essence of human nature and often draws specific attention to the role of technology. Important contributions came from Gehlen, Plessner, and Scheler during the first half of the 20th century. The attempt to link technology to a biological interpretation of man in Gehlen’s early works especially deserves attention. Given his biological constitution, man must be seen as deficient by nature ( Mängelwesen ), since he is not endowed with instinctive routines and is not adapted well to a specific natural environment, but rather is open to the world ( weltoffen ). He compensates for this deficiency with the help of his mental capacities and tool usage. Gehlen interprets human language and human institutions as relief mechanisms ( Entlastungen ) that help him to interpret and organize the plentitude of impressions (the sensory overload, Reizüberflutung ) that he is exposed to. Most technologies can thus be regarded to be either organ-amplification ( Organverstärkung ) or organ-replacement ( Organersatz ) (Gehlen, 1988). In Man in the Age of Technology (1980), Gehlen focuses more on sociological perspectives of technology. He identifies two essential cultural breaks marking principle changes in humans’ world interpretation and social organization, both of which are linked to technological developments: (1) the neolithic revolution of sedentism, marking the passage from a hunter’s culture to a society of agriculture and cattle breeding, and (2) the industrial revolution in modernity (Gehlen, 1980).

Scheler also analyzes man’s rational capacities from a biological perspective, but he concludes that a purely naturalistic approach does not render justice to our selfunderstanding. The human ways of sustaining life are from an often inefficient biological perspective. Therefore, it must be pointed out that the main function of human knowledge is not only to strategically ensure humans’ own survival, but also to be directed toward the discovery of moral values and toward the process of self-education ( Bildung ). Humans not only live in an environment, but also reflect on their place in the world—a capacity that marks a fundamental difference between humans and animals (Scheler, 1961).

This type of philosophical anthropology came to a certain end when the main interest of philosophers shifted from understanding “man” to understanding “society” during the 1960s. With the recent developments of sociobiology, philosophers have taken a renewed interest in the linkage between biological and cultural interpretations of man. Let us look at some tendencies of later research in the philosophy of technology.

If we look at a philosophical interpretation of technology, we find the first origins of a discipline of the philosophy of technology by the end of the 19th and the beginning of the 20th century (see Kapp, 1877, and Dessauer, 1933). During the first half of the 20th century, the philosophical analysis of technology can, roughly speaking, be divided into two main schools of thought: the continental, often skeptical approach, and the analytical, often optimistic approach . As with all such very generic typologies, this distinction likewise does not claim to be more than an approximation, while the general tendency of recent research seems precisely to be to overcome this gap and to aim for a convergence or crossfertilization of these two approaches. Therefore, what follows is an ideal-type distinction that tries to make some of the basic ideas of these two approaches more visible and aims at understanding their more general features.

The continental approach originally focused on a humanities-centered perspective on technology, its (mainly negative) consequences for society, and its rootedness in a problematic feature of human anthropology (the will to power), and finally tried to understand technology as such (its “essence”). The analytic approach, on the other hand, originally focused on a more science-based understanding of technology, its (mostly beneficial) potential for the progress of societies, and its rootedness in a rational (scientific) way to approach nature, and it finally tried to look not at technology as such but at specific problems or specific types of technologies.

In the continental philosophy of technology, technology is often interpreted as closely linked to a certain form of consciousness, a form of approaching nature (and also human interaction) from a perspective that is rooted in a scientific understanding of the world, which itself is rooted in the will to dominate nature. This approach is seen to replace or at least to endanger a value-based approach to reality. In this sense, Edmund Husserl’s phenomenology regards science and technology as a mere abstraction from the fullfledged real experience of the world we live in. In this way, the sphere of technical knowledge is limited and needs to be guided by value decisions, which do not have their basis in scientific or technical knowledge, but stem from our ethical knowledge of our life-world.

While technology is not at the center of Husserl’s interest, José Ortega y Gasset (1914/1961) was one of the first philosophers who aimed at a deeper understanding of the relation between human nature and technology. Rejecting Husserl’s later emphasis on the transcendental subject, he insists that human nature can only be understood by the formula “I am I plus my circumstances.” Philosophy can thus neither start from the isolated subject (as in idealism), nor can it interpret everything from the perspective of the material conditions (as in materialism). Rather, it must find a middle ground. The essence of humans is for Ortega not determined by nature; this distinguishes humans from plants or animals or from physical objects—all having a defined, specific given nature. Man must determine his own nature by himself by way of the creative imagination. Technology is interpreted as the material realization of this self-image; it is a projection of an inner invention into nature. According to Ortega, technology evolved in three phases: It started as a collection of accidental findings of means toward ends by pure chance. In a later state, these findings became traditions and skills that were passed on to the next generation. Modern technology marks a radical difference, since it is based on a systematic scientific approach, which forms the third phase. This approach, however, tends to become the dominant mode of thinking, so that man’s creative capacity for imagination (which is at the heart of man’s very essence) is in danger of being replaced or losing its importance (Ortega y Gasset, 1914/1961).

Martin Heidegger’s (1977) analysis of technology in his essay “The Question Concerning Technology” is also very influential. His philosophy aims at understanding the notion of being, which—so claims Heidegger—has been misinterpreted or neglected by traditional European philosophy. Since man is the only known being that can ask for the meaning of being, Heidegger’s analysis in Sein und Zeit starts from an interpretation of the existence of such a being ( Da-sein ). Even though his book is meant to be an exercise in philosophical (fundamental) ontology, it offers many anthropological insights about the specific human form of existence, in which the knowledge and the denial of one’s own mortality form essential human features.

In his later work, Heidegger (1977) understands technology as a specific form of disclosing reality. Asked for the essence of technology, people usually refer to it as a means to achieve an end (instrumental definition), or they define technology as an essential human activity (anthropological definition). Even though Heidegger admits that these definitions are “correct,” they do not disclose the essential truth about technology for two reasons. Essentially, (1) technology is not a tool for achieving an end, but rather the perspective under which everything that exists is seen only as a potential resource to achieve an (external) end. Furthermore, (2) this disclosure of reality is not a human-directed practice: Humans are driven objects rather than being themselves the active subjects. According to these conclusions, the instrumental and the anthropological definitions of technology do not capture the whole truth of technology. Let us look at these two points in turn, as follows:

  • The essence of technology lies, according to Heidegger, in its capacity to disclose reality ( entbergen ) under a very specific, limited perspective. This perspective reduces everything to a potential object for manipulation, a resource ( Bestand ) for further activity. Technology is thus a way to disclose something hidden. Following his analysis of the Greek word for truth ( aletheia ) as referring to something undisclosed, he sees thus a “truth” at work, under which reality presents itself as a mere collection of resources for external purposes, rid of all inner logic and teleology that was so prominent in traditional understandings of nature. Heidegger points at the different ways in which a river is seen by a poet in an artwork ( Kunst werk), on the one hand, and, on the other hand, in which the same river is seen by an engineer as a potential resource for energy generation in a power plant ( Kraft werk).
  • Heidegger then goes on to claim that opposed to the image of man being in control of technology and using it for his purposes, he should rather be seen as being provoked ( herausgefordert ) by this coming to pass. Heidegger clearly wants to reject the optimistic idea of “man being in control” through the help of modern technology and, rather, revert it to its opposite: man being driven by a force greater than himself. He calls this driving force the essence of technology, the en-framing ( Ge-stell ) that prompts humans to look at nature under the idea of its usability. In doing so, man is in highest danger, but not because of potential hazards or specific negative consequence of modern technology. The danger is, rather, that he loses sight of understanding nature in a different way and that he might finally end up understanding also himself and other humans only as potential “resources” or potential material for manipulation and instrumentalization. Heidegger suspects that art might be a potential antidote to this development: In Greek, techne originally encompassed also the production of beautiful objects in art. Thus, a deeper understanding of technology might reveal its relation to art and might point to the fact that art offers a potential answer to the challenge that modern technology poses to human self-understanding.

Certainly, Heidegger’s contribution to the modern philosophy of technology lies more in highlighting this essential dimension of technology as a threat, rather than in elaborating strategies to counter these inherent dangers. Heidegger’s article is arguably the single most influential essay written in the philosophy of technology, although his mannered, often dark language allows for different interpretations and often lacks the clarity of philosophical contributions from the analytical school. But the idea that “technology” and technological rationality is a limited form of looking at reality—one that is in strong need of a countervision, and that might further lead to a deformation of intersubjective human relations and that finally affects human self-understanding—has ever since been a prominent topic in different thinkers from Adorno and Marcuse to Jürgen Habermas, as illustrated earlier. This idea has often been linked with an ethical concern: Modern technology calls for new ethical guidelines, and despite some beneficial consequence, poses a potential threat to human existence. Much of this ethical debate about modern technology was triggered by its potential to radically destroy human life, be it through nuclear, biological, or chemical weapons or by consequences of environmental pollution and climate change.

Heidegger’s pupil Hans Jonas (1984) was one of the first philosophers to emphasize the need for a specific “ethics for the age of technology,” feeling that modern technology urges us to radically reconsider our ethical intuitions in order to meet the new challenges. Nevertheless, based on humans’ anthropological need to seek protection against nature, classical technology never fully reached this aim. Nature remained always more powerful than men, and the consequences of human actions were mostly not far-reaching. Traditional ethics could therefore focus on the “near and dear.” Modern technology, however, radically changes the picture: Its scope is unknown in premodern times; its consequences and potential dangers could be fatal, far-reaching, and irreversible. Focusing on the environmental problems of modern societies with, as the darkest perspective, the possible extinction of humankind, Jonas suggests broadening the scope of our ethical obligations: If our actions are more far-reaching than ever before in the history of humankind, we need to acquire a new ethical countervision. Jonas finds this remedy in the anthropological feature of our feelings of responsibility. Responsibility often expresses an asymmetrical relation, as in parents who feel responsible to care for their children. The old ethical intuition to derive obligations from the rights of free and conscious individuals, able to participate in argumentation and democratic decisions, seems to be too narrow to account for most environmental problems: Future generations are not yet born, animals and nature cannot in the same sense be regarded as having rights, as has been established in previous ethical approaches to the idea of universal human rights. But obligations may also stem from the idea of responsibility, from the idea that something has been given into our care.

Analytic philosophy is rooted in the quest for clear conceptualization, sound argumentation, and scientific precision. For early analytical philosophy in the Vienna Circle, the mathematical nature of scientific knowledge could serve as a role model for knowledge as such: hence, the need for and the extended usage of logical formalization within analytic philosophy. Skeptical of the quest to address the essence of things like “the technology” in general, analytic philosophers very often focus on concrete problems linked to very specific technologies. Even though many thinkers in the line of logical positivism thus greeted scientific knowledge as the highest form of knowledge, this did not always lead to an unbalanced embrace of technology. In Bertrand Russell (1951), we find a skeptical attitude toward the social benefits of technology, especially if it is linked with totalitarian ideology. Thus, he stresses the importance of democratic education; if placed in a democratic context and applied in well-defined careful steps, technology is, however, beneficial for progress in a way in which Karl Popper (1957) typically advertises as piecemeal social engineering. Important early contributions to an analytic philosophy of technology stem further from Mario Bunge (1979), whose ideas closely link to the program of logical empiricism and oppose the “romantic wailings about the alleged evils of technology” (p. 68).

Even though this distinction between humanities’ philosophy of technology and engineering’s philosophy of technology (Mitcham, 1994) marks the background of the philosophical discussion on technology in the early 20th century, the debate soon moved beyond this opposition. Three tendencies seem to be of importance.

First, continental philosophy was moving away from the attempt to come up with metaphysical, religious, or anthropological answers to the big questions. With the emergence of postmodernism, the alleged end of the “big stories” was proclaimed, thus making a metaphysical approach less fashionable. Appealing to ontology (as in Heidegger), to metaphysics, or to religious ideals (as in Jonas) seemed less promising. Even though early continental philosophy was very critical with regard to strategic rationality and technology, it has been criticized by postmodernism as not moving radically beyond the central modernistic Western ideal of a rational philosophical synthesis or universal world interpretation.

Second, the focus within the philosophy of technology moved toward a renewed interest in looking at concrete technologies and the challenges they pose for analytical and ethical reflection, a movement that has been called the empirical turn in the philosophy of technology (Kroes, 2001).

Third, different attempts were soon made to bridge the gap between the two camps. In post-world-war Germany, the Society of German Engineers (VDI) established a dialogue about the responsibilities of scientists and engineers, addressing topics and worries of the humanities. The experience of the massive and systematic use of technology for organized mass murder during the holocaust and the development of technology for modern warfare, including the development of the nuclear bomb, raised issues about the responsibilities of engineers. The debate of the VDI meetings resulted in a series of important publications on the philosophy of technology (Rapp, 1981); these must be recognized as an important attempt to synthesize different strands of philosophical thinking, even though it can be asked how far the VDI school was really successful in transcending its engineering-philosophical origins (Mitcham, 1994, p. 71).

Along a similar line, authors have tried to combine the phenomenological approach with American pragmatism, thus bridging insights of a more continental and a more analytical tradition. Common to phenomenology and pragmatism is the idea of the priority of praxis over theory and thus the tendency not to see technology as applied science but, rather, science as a purified or abstract form of (technological) praxis. Following the works of John Dewey, thinkers like Paul T. Durbin (1992), Larry Hickman (1990), and Don Ihde (1979) have tried to establish a pragmatist phenomenological approach to technology. The insights of Don Ihde that each technology either extends human bodily experience (e.g., the microscope) or calls for human interpretations (e.g., the thermometer) are of particular anthropological interest. If technology amplifies our experience, then it always does so at the cost of a reduction: In highlighting or amplifying certain aspects of reality, it makes invisible other aspects of this very same reality (as in an ultrasonic picture) (Ihde, 1979). The way technology thus “mediates” our interpretation of the world, and our actions within it, has been a further object of extended research (e.g., Verbeek, 2005).

A further attempt to bridge humanist and engineering tradition has been made by Carl Mitcham (1994), who nevertheless tries to defend the priority of the humanist perspective, but at the same time develops an analytic framework that should serve for further investigation within the philosophy of technology. He distinguishes among technology as object (tools), as type of knowledge, as activity, and as volition (expression of man’s intention or will). The 1980s and 1990s saw an increased interest, especially in the analyses of the first three aspects of this distinction.

With regard to the fourth aspect, ethical issues have been a central topic for many philosophers of technology, ranging from debates about the responsibility of scientists and engineers, medical and bioethics, business ethics, technology assessment, risk assessment and decision under uncertainty, to environmental ethics. Two of these fields are of particular interest from an anthropological perspective: In environmental ethics, those theories might shed light on anthropological questions seeking to interpret the environmental crisis as essentially rooted in human nature. It has been argued that it is a human tendency to value short-term (individual) interests more highly than long-term (collective) interests, thus putting a pessimistic neo-Hobbesian anthropology in the middle of the debate. According to Garrett Hardin (1968), it is this very human tendency (together with a mismatch in the growth of the human population that exceeds the growth of the supply of the food or other resources) that leads to the “tragedy of the commons.” Research in game theory and environmental sociobiology indicates the possibility of holding a more optimistic view of the development of cooperative strategies in humans (Axelrod, 1984), though the issue is still debated and there is room for a more pessimistic perspective, as has been defended early on by some sociobiologists (Dawkins, 1978) or recently by some philosophers (Gardiner, 2001).

In the ethical debate on transhumanism, finally, many links can be found to classical anthropological questions about the essence of man (e.g., Baillie, 2005; Fukuyama, 2004). The central debated question is whether it is morally allowed, forbidden, or even demanded from us to enhance our human capacities through new technologies, ranging from short-term nonevasive ways (like taking performanceenhancing drugs) to fundamental irreversible changes (like genetic engineering). While bioconservativists argue against an extended usage of enhancement technologies, transhumanists point to the potential benefits of these new options. It is reasonable to assume that these issues will be with us as technology advances and opens new possibilities to alter the human condition. This opens a radical new challenge to anthropology, which until recently dedicated itself to understanding the given human nature, while it now has to face the normative question of which we should choose as our future nature, once technology offers radical new options of changing human nature (e.g., as by slowing down or even stopping the process of aging). It seems that the anthropology of the future must take into consideration, more and more, normative claims and it must reach out to incorporate ethics to prepare itself for the challenges modern technology poses.

Looking at recent tendencies in research, it can be argued that the initial focus on linking technology with a universal, philosophical anthropological vision, also rooted in biological knowledge, was one of the key achievements of early philosophical anthropology in the works of Gehlen and others. What made these anthropologies remarkable was their attempt to bring together the different traditions of anthropological thought, ranging from philosophy to sociology and biology. A turn toward a more social perspective was established first by Gehlen himself, the Frankfurt school, and later STS studies, sometimes leading away from or even lacking both an underlying philosophical vision and an interest in our biological nature. Very recently, however, sociologists and philosophers have shown an increased interest in biology (as is visible in the ever-growing numbers of publications in sociobiology and the philosophy of biology). This increased attention has not yet led to a revival of an interest in the links between anthropology and technology. But in order to understand man—both in his evolutionary origins and (maybe even more) in his current historical situation—it seems to demand attention to man’s amazing capacity to develop technology.

It can reasonably be argued that what is thus needed is a new vision of how to synthesize the different fields of biological, social, and cultural anthropology. It seems that after the empirical turn to gather extended details over the biological and social aspects of technology, there is now a call for a new philosophical turn, seeking a new discourse synthesis. Many classical questions of anthropology will tend to remain unanswered, if academic research remains focused only on disciplinary perspectives, which always look at only a part of the whole picture. It is certainly true that man is a social animal, that he has biological roots and that he can ask ethical and philosophical questions about the good and about his place in this universe. The disciplinary separations in biology, sociology, and philosophy (to name just a few) tend, however, to distract from the fact that man in reality is a unity, meaning that a true answer to the most fundamental question of anthropology (What is man?) calls for a plausible combination of these approaches. To synthesize the different aspects of our knowledge about our own human nature is certainly far from being an easy task, but it seems more needed than ever.

But if this is not yet a big enough challenge, there is even a second aspect that makes the quest for a synthesis even more challenging. It seems that a new anthropological vision of humankind must answer a question that classical anthropology has not been dealing with: If technology soon allows us to alter our very nature, then we must know not only what the human condition is, but also what the human condition should be.

Ethics might again enter anthropological reflection, as has been hinted at already by early thinkers such as Scheler and Jonas. Recent attempts to place man in the middle of both a normative vision of ideals, on the one side, and against a profound overview of our descriptive knowledge about our essence, on the other side (as in the voluminous attempt at a synthesis in Hösle, 2004), deserve attention, as they might be the first steps toward a renewed synthetic anthropology that tries to bridge the gaps among the different disciplines. A deepened understanding of technology must be a central part of these efforts, since the way we use tools and produce artifacts is one of the remarkable features of humankind—a feature in much need of guidance by descriptive knowledge and ethical wisdom, especially in our age in which technology (of which humans have been the subject) is about to discover the condition humana as its potential object in a way more radical than ever before.

Bibliography:

  • Adorno, T. (1979). Dialectic of enlightenment. London: Verso.
  • Adorno, T. (1999). Aesthetic theory. London: Athlone.
  • Ambrose, S. H. (2001). Paleolithic technology and human evolution. Science, 291 (5509), 1748–1753.
  • Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.
  • Baillie, H. (2005). Is human nature obsolete? Genetics, bioengineering, and the future of the human condition. Cambridge: MIT Press.
  • Beck, B. (1980). Animal tool behaviour. New York: Garland.
  • Berger, P. L., & Luckmann, T. (1966). The social construction of reality: A treatise in the sociology of knowledge. Garden City, NY: Anchor Books.
  • Bunge, M. (1979). The five buds of technophilosophy. Technology in Society, 1 (1), 67–74.
  • Castells, M. (1999). The information age: Economy, society and culture. Malden, MA: Blackwell.
  • Dawkins, R. (1978). The selfish gene. Oxford, UK: Oxford University Press.
  • Durbin, P. (1992). Social responsibility in science, technology, and medicine. Bethlehem, PA: Lehigh University Press.
  • Fukuyama, F. (2004). Transhumanism. Foreign Policy, 144, 42–43.
  • Gardiner, S. M. (2001). The real tragedy of the commons. Philosophy and Public Affairs, 30 (4), 387–416.
  • Gehlen, A. (1980). Man in the age of technology. New York: Columbia University Press.
  • Gehlen, A. (1988). Man, his nature and place in the world. New York: Columbia University Press.
  • Habermas, J. (1971). Knowledge and human interests. Boston: Beacon Press.
  • Haferkamp, H. (1992). Social change and modernity. Berkeley: University of California Press.
  • Heidegger, M. (1977). The question concerning technology, and other essays. New York: Harper & Row.
  • Hickman, L. (1990). John Dewey’s pragmatic technology. Bloomington: Indiana University Press.
  • Hösle, V. (2004). Morals and politics (S. Randall, Trans.). Notre Dame, IN: University of Notre Dame Press.
  • Ihde, D. (1979). Technics and praxis. Boston: D. Reidel.
  • Jonas, H. (1984). The imperative of responsibility: In search of an ethics for the technological age. Chicago: University of Chicago Press.
  • Kroes, P. (2001). The empirical turn in the philosophy of technology. New York: JAI.
  • Laland, K. (2009). The question of animal culture. Cambridge, MA: Harvard University Press.
  • Latour, B. (1979). The social construction of scientific facts. Beverly Hills, CA: Sage.
  • Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. New York: Oxford University Press.
  • Marx, K. (1938). London: Allen & Unwin.
  • McDermott, J. (1969). Technology: The opiate of the intellectuals. The New York Review of Books, 13 (2), 25–35.
  • Misa, T. J., Brey, P., & Feenberg, A. (2004). Modernity and technology. Cambridge: MIT Press.
  • Mitcham, C. (1994). Thinking through technology: The path between engineering and philosophy. Chicago: University of Chicago Press.
  • Nora, S. (1980). The computerization of society: A report to the president of France. Cambridge: MIT Press.
  • Oakley, K. (1957). Man the tool-maker. Chicago: University of Chicago Press.
  • Ortega y Gasset, J. (1961). Meditations on Quixote. New York: Norton. (Original work published 1914)
  • Pfaffenberger, B. (1988). Fetishised objects and humanized nature: Towards an anthropology of technology. Man, 23 (2), 236–252.
  • Pfaffenberger, B. (1992). Social anthropology of technology. Annual Revue of Anthropology, 21, 491–516.
  • Pressnell, L. (1960). Studies in the industrial revolution, presented to T. S. Ashton. London: University of LondonAthlone Press.
  • Rapp, F. (1981). Analytical philosophy of technology. Boston: D. Reidel.
  • Russell, B. (1951). The impact of science on society. New York: Columbia University Press.
  • Schaik, C. P., Deaner, R. O., & Merrill, M.Y. (1999).The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36 (6), 719–741.
  • Scheler, M. (1961). Man’s place in nature. New York: Farrar, Strauss & Giroux.
  • Smelser, N. (1969). Social change in the industrial revolution: An application of theory to the British cotton industry. Chicago: University of Chicago Press.
  • Snow, C. (1959). The two cultures and the scientific revolution (The Rede lecture, 1959). Cambridge, UK: Cambridge University Press.
  • Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.
  • Verbeek, P. P. (2005). What things do: Philosophical reflections on technology, agency, and design. University Park: Pennsylvania State University Press.
  • Winner, L. (1980). Do artifacts have politics? Daedalus, 109, 121–123.
  • Winner, L. (1986). Technology as forms of life. In The whale and the reactor: A search for limits in an age of high technology. Chicago: University of Chicago Press.
  • Woolgar, S. (1991). The turn to technology. Science, Technology and Human Values, 16 (1), 20–50.
  • Wrangham, R. (1994). Chimpanzee cultures. Cambridge, MA: Harvard University Press.

ORDER HIGH QUALITY CUSTOM PAPER

research papers on it

  • DSpace@MIT Home

MIT Open Access Articles

The MIT Open Access Articles collection consists of scholarly articles written by MIT-affiliated authors that are made available through DSpace@MIT under the MIT Faculty Open Access Policy, or under related publisher agreements. Articles in this collection generally reflect changes made during peer-review.

Version details are supplied for each paper in the collection:

  • Original manuscript: author's manuscript prior to formal peer review
  • Author's final manuscript: final author's manuscript post peer review, without publisher's formatting or copy editing
  • Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context (this version appears here only if allowable under publisher's policy)

Some peer-reviewed scholarly articles are available through other DSpace@MIT collections, such as those for departments, labs, and centers.

If you are an MIT community member who wants to deposit an article into the this collection, you will need to log in to do so. If you don't have an account, please contact us.

More information:

  • Working with MIT's open access policy
  • Submitting a paper under the policy
  • FAQ about the policy

Recent Submissions

Intercity connectivity and urban innovation , directed assembly of proteinaceous–polysaccharide nanofibrils to fabricate membranes for emerging contaminant remediation .

Thumbnail

Design thinking in physical and virtual environments: Conceptual foundations, qualitative analysis, and practical implications 

Show Statistical Information

feed

research papers on it

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

  •  We're Hiring!
  •  Help Center

Information Technology

  • Most Cited Papers
  • Most Downloaded Papers
  • Newest Papers
  • Last »
  • Information Systems Follow Following
  • Computer Science Follow Following
  • Informatics Follow Following
  • Education Follow Following
  • Artificial Intelligence Follow Following
  • Data Mining Follow Following
  • E-learning Follow Following
  • Social Media Follow Following
  • Information Systems (Business Informatics) Follow Following
  • Enterprise Architecture Follow Following

Enter the email address you signed up with and we'll email you a reset link.

  • Academia.edu Journals
  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Illustration

  • Research Paper Guides
  • Research Paper Topics
  • 450+ Technology Research Topics & Ideas for Your Paper
  • Speech Topics
  • Basics of Essay Writing
  • Essay Topics
  • Other Essays
  • Main Academic Essays
  • Basics of Research Paper Writing
  • Miscellaneous
  • Chicago/ Turabian
  • Data & Statistics
  • Methodology
  • Admission Writing Tips
  • Admission Advice
  • Other Guides
  • Student Life
  • Studying Tips
  • Understanding Plagiarism
  • Academic Writing Tips
  • Basics of Dissertation & Thesis Writing

Illustration

  • Essay Guides
  • Formatting Guides
  • Basics of Research Process
  • Admission Guides
  • Dissertation & Thesis Guides

450+ Technology Research Topics & Ideas for Your Paper

Technology Research Topics

Table of contents

Illustration

Use our free Readability checker

Technology is like a massive puzzle where each piece connects to form the big picture of our modern lives. Be it a classroom, office, or a hospital, technology has drastically changed the way we communicate and do business. But to truly understand its role, we need to explore different technology research topics.

And that's where this blog will be handy! Powered by solid experience, our professional term paper writers gathered multiple technology research paper topics in literally any direction. Whether you're a student looking for an intriguing subject for your project or just a tech enthusiast trying to broaden your understanding, we've got your back. Dive into this collection of tech topics and see how technological progress is shaping our world.

What Are Technology Topics?

Technology is the application of scientific knowledge for practical purposes. It's the smartphone in your hand, the electric car on your street, and the spacecraft exploring Mars. It might also be the code that protects your online privacy and the microscope that uncovers mysteries of the human cell.

Technology permeates our lives, revolutionizing the way we communicate, learn, work, and play. But, beyond the gadgets and gizmos, there's a world of diverse technology research topics, ideas, concepts, and challenges.

Technology topics zoom in on these ideas, peeling back the layers of the tech universe. As a researcher, you might study how AI is changing healthcare, explore the ethical implications of robotics, or investigate the latest innovations in renewable energy. Your project should probe into the 'how,' the 'why,' and the 'what next' of the technology that is reshaping our world. So, whether you're dissecting the impact of EdTech on traditional learning or predicting the future of space exploration, research topics in technology are limitless.

Branches of Technology Research Paper Topics

Undoubtedly, the reach of technology is extensive. It's woven its way into almost every corner of our lives. Before we move to technological research topics, let’s first see just where technology has left its mark. So, here are some areas where technology is really shaking things up:

  • Government services: E-governance, digital IDs, and digital voting are just a few examples of technology's application in government services.
  • Finance: Fintech innovations include cryptocurrencies, mobile banking, robo-advising, and contactless payments.
  • Education: Technology is used in a wide variety of educational contexts, from e-learning platforms and digital textbooks to educational games and virtual classrooms.
  • Communication: Social media, video conferencing, instant messaging, and email are all examples of tech's role in communication.
  • Healthcare: From electronic medical records and telemedicine to advanced imaging technology and robotic surgery, technology is surely transforming healthcare.
  • Agriculture: Technological advancements are revolutionizing agriculture through precision farming, automated machinery, drones, and genetic engineering.
  • Retail: It also influences retail through e-commerce, mobile payments, virtual fitting rooms, and personalized shopping experiences.
  • Environment: Tech is used in climate modeling, conservation efforts, renewable energy, and pollution control.

These are far from all sectors where technology can be applied. But this list shows how diverse topics in technology can be.

How to Choose a Technology Research Topic?

Before you select any idea, it’s important to understand what a good technology research topic is. In a nutshell, a decent topic should be interesting, relevant, and feasible to research within your available resources and time. Make sure it’s specific enough, but not to narrow so you can find enough credible resources. 

Your technology topic sets the course of your research. It influences the type and amount of information you'll search for, the methods you'll use to find it, and the way you'll interpret it. Ultimately, the right topic can make your research process not only more manageable but also more meaningful. But how to get started, you may ask. Don’t worry! Below we are going to share valuable tips from our thesis writers on how to choose a worthy topic about technology.

  • Make research Study the latest trends and explore relevant technology news. Your task is to come up with something unique that’s not been done before. Try to look for inspiration in existing literature, scientific articles, or in past projects.
  • Recognize your interests Start with what you are genuinely curious about in the field of technology. Passion can be a great motivator during the research process.
  • Consider the scope You want a topic that is neither too broad nor too narrow. It should provide enough material to explore without being overwhelming.
  • Check availability of resources Ensure there are sufficient trustworthy resources available for your chosen topic.
  • Evaluate the relevance Your technology research idea should be pertinent to your field of study and resonate with current trends. This can make your research more valuable and engaging for your audience.

Top List of Technology Research Topics

Are you looking for the best research topics about technology? Stop by! Here, we’ve carefully collected the topic ideas to ignite your curiosity and support your research. Each topic offers various data sources, allowing you to construct well-supported arguments. So, let's discover these fascinating subjects together!

  • AI's influence on healthcare.
  • Challenges of cybersecurity in a connected world.
  • Role of drones in modern agriculture.
  • Could renewable energy replace fossil fuels?
  • Impact of virtual reality on education.
  • Blockchain's potential beyond cryptocurrencies.
  • Ethical considerations in biotechnology.
  • Can smart cities enhance quality of life?
  • Autonomous vehicles – opportunities and threats.
  • Robotics in manufacturing.
  • Is big data changing decision-making processes?
  • E-waste : Challenges and solutions.
  • Role of IoT in smart homes.
  • Implications of 5G technology.
  • EdTech: A revolution in learning?

Good Technology Research Topics

Ready for another batch of inspiration? Get ready to discover great technology topics for a research paper across various disciplines. These ideas are designed to stimulate your creativity and provide substantial information for your research. So, let's explore these exciting themes together!

  • Impact of nanotechnology on medicine.
  • Harnessing quantum computing potential.
  • Augmented reality in tourism.
  • Can bioinformatics revolutionize disease prediction?
  • Sustainability in tech product design.
  • Darknet : A hidden side of the internet.
  • How does technology influence human behavior?
  • Assistive technology in special education.
  • Are smart textiles transforming the fashion industry?
  • Role of GIS in urban planning.
  • Space tourism: A reality or fantasy?
  • Potential of digital twins in engineering.
  • How is telemedicine shaping healthcare delivery?
  • Green IT : Addressing environmental issues.
  • Impact of machine learning on finance.

Interesting Technology Research Paper Topics

For those craving intriguing angles and fresh ideas, we present these interesting topics in technology. This collection is filled with thought-provoking subjects that cover the lesser-known areas of technology. Each topic is concise, clear, and ready to spark a fascinating research journey!

  • Cyber-physical systems in industry 4.0.
  • Social implications of deepfake technology.
  • Can gamification enhance learning outcomes?
  • Neuromorphic computing: Emulating the human brain.
  • Li-Fi : Light-based communication technology.
  • Health risks of prolonged screen time.
  • Quantum cryptography and secure communication.
  • Role of technology in sustainable agriculture.
  • Can we predict earthquakes with AI?
  • Virtual influencers: A new trend in marketing.
  • Tech solutions for wildlife conservation.
  • Role of 3D printing in organ transplantation.
  • Impact of automation on the job market.
  • Cloud gaming: A new era in the gaming industry.
  • Genomic editing: Possibilities and ethical concerns.

New Technology Research Topics

Understanding the fast-paced world of technology requires us to keep up with the latest developments. Hence, we bring you burning  technology research paper topics. These ideas reflect the most recent trends and advances in technology, offering fresh perspectives for your research. Let's take a look at these compelling subjects!

  • Potential of hyper automation in business processes.
  • How is AI changing digital marketing?
  • Brain-computer interfaces: The future of communication?
  • Quantum supremacy : Fact or fiction?
  • 5D data storage: Revolutionizing data preservation.
  • Rise of voice technology in consumer applications.
  • Using AI for mental health treatment.
  • Implications of edge computing for IoT devices.
  • Personalized learning with AI in education.
  • Role of technology in reducing food waste.
  • Digital twin technology in urban development.
  • Impact of AI on patent law.
  • Cybersecurity in the era of quantum computing.
  • Role of VR in disaster management training.
  • AI in talent recruitment: Pros and cons.

Unique Technology Research Topics

For those wanting to stand out with truly original research, we offer 100% authentic topics about technology. We understand that professors highly value unique perspectives. Below we've meticulously selected these technology paper topics to offer you something different. These are not your everyday technology subjects but rather unexpected gems ready to be explored.

  • Digital ethics in AI application.
  • Role of technology in countering climate change.
  • Is there a digital divide in developing countries?
  • Role of drones in disaster management.
  • Quantum internet: Possibilities and challenges.
  • Digital forensic techniques in cybersecurity.
  • Impact of technology on traditional art forms.
  • Biohacking: Can we really upgrade ourselves?
  • Technology and privacy: An inevitable trade-off?
  • Developing empathy through virtual reality.
  • AI and creativity: Can machines be artists?
  • Technology's impact on urban gardening.
  • Role of technology in accessible tourism.
  • Quantum biology: A frontier of science.
  • Unmanned underwater vehicles: Opportunities and threats.

Informative Research Topics in Technology

If you are seeking comprehensive information on technologies, this selection will definitely provide you with insights. As you may know, every study should be backed up by credible sources. Technology topics for research papers below are very easy to investigate, so you will surely find a bunch of academic resources.

  • Exploring  adaptive learning systems in online education.
  • Role of technology in modern archaeology.
  • Impact of immersive technology on journalism.
  • The rise of telehealth services.
  • Green data centers: A sustainable solution?
  • Cybersecurity in mobile banking.
  • 3D bioprinting : A revolution in healthcare?
  • How technology affects sleep quality.
  • AI in music production: A new era?
  • Technology's role in preserving endangered languages.
  • Smart grids for sustainable energy use.
  • The future of privacy in a digital world.
  • Can technology enhance sports performance?
  • Role of AR in interior design.
  • How technology is transforming public libraries.

Controversial Research Topics on Technology

Technological field touches upon areas where technology, ethics, and society intersect and often disagree. This has sparked debates and, sometimes, conspiracy theories, primarily because of the profound implications technologies have for our future. Take a look at these ideas, if you are up to a more controversial research topic about technology:

  • Facial recognition technology: Invasion of privacy?
  • Tech addiction: Myth or reality?
  • The ethics of AI in warfare.
  • Should social media platforms censor content?
  • Are cryptocurrencies a boon or a bane?
  • Is technology causing more harm than good to our health?
  • The bias in machine learning algorithms.
  • Genetic engineering: Playing God or advancing science?
  • Will AI replace human jobs?
  • Net neutrality: Freedom of internet or control?
  • The risk of AI superintelligence.
  • Tech companies' monopoly: Beneficial or detrimental?
  • Are we heading towards a surveillance society?
  • AI in law enforcement: Safeguard or threat?
  • Do we rely too much on technology?

Easy Technology Research Paper Topics

Who ever thought the tech field was only for the tech-savvy? Well, it's time to dispel that myth. Here in our collection of simple technology research topics, we've curated subjects that break down complex tech concepts into manageable chunks. We believe that every student should get a chance to run a tech related project without any hurdles.

  • Impact of social media on interpersonal communication.
  • Smartphones: A boon or a bane?
  • How technology improves accessibility for people with disabilities.
  • E-learning versus traditional learning.
  • Impact of technology on travel and tourism.
  • Pros and cons of online shopping.
  • How has technology changed entertainment?
  • Technology's role in boosting productivity at work.
  • Online safety: How to protect ourselves?
  • Importance of digital literacy in today's world.
  • How has technology influenced the music industry?
  • E-books vs printed books: A tech revolution?
  • Does technology promote loneliness?
  • Role of technology in shaping modern communication.
  • The impact of gaming on cognitive abilities.

Technology Research Topics Ideas for Students

As an experienced paper writing service online that helps students all the time, we understand that every learner has unique academic needs. With this in mind, the next section of our blog is designed to cater specifically to different academic levels. Whether you're a high school student just starting to explore technology or a doctoral candidate delving deep into a specialized topic, we've got different technology topics arranged by complexity.

Technology Research Topics for High School Students

High school students are expected to navigate complex topics, fostering critical thinking and promoting in-depth exploration. The proposed research paper topics on technology will help students understand how tech advancements shape various sectors of society and influence human life.

  • How have smartphones changed our communication?
  • Does virtual reality in museums enhance visitor experience?
  • Understanding privacy issues in social media.
  • How has technology changed the way we listen to music?
  • Role of technology in promoting fitness and healthy lifestyle.
  • Advantages and disadvantages of online learning.
  • Does excessive screen time affect sleep quality?
  • Do video games affect academic performance?
  • How do GPS systems work?
  • How has technology improved animation in films?
  • Pros and cons of using smart home devices.
  • Are self-driving cars safe?
  • Technology's role in modernizing local libraries.
  • Can technology help us lead more sustainable lifestyles?
  • Can technology help improve road safety for teenagers?

Technology Research Topics for College Students

Think technology research topics for college are all about rocket science? Think again! Our compilation of college-level tech research topics brings you a bunch of intriguing, conversation-stirring, and head-scratching questions. They're designed to let you sink into the world of technology while also pushing your academic boundaries. Time to dive in, explore, question, and take your own unique stance on hot-button issues.

  • Biometrics in identity verification: A privacy risk?
  • Impact of 5G on mobile gaming.
  • Are wearable fitness devices a true reflection of health?
  • Can machine learning help predict climate change effects?
  • Are digital currencies disrupting traditional finance?
  • Use of drones in search and rescue operations.
  • Impact of e-learning on academic performance.
  • Does artificial intelligence have a place in home security?
  • What are the ethical issues surrounding robotic surgery?
  • Are e-wallets a safer option for online transactions?
  • How has technology transformed news dissemination?
  • AI in language translation: How accurate can it be?
  • Personalized advertising: Boon or bane for online users?
  • Are smart classes making learning more interactive?
  • Influence of technology on homemade crafts and DIY culture.

Technology Research Topics for University Students

Are you browsing for university technology research ideas? We've got you covered. Whether you're about to dig deep into high-tech debates, or just taking your first steps, our list of technology research questions is your treasure chest.

  • Blockchain applications in ensuring academic integrity.
  • Impact of quantum computing on data security.
  • Are brain-computer interfaces a future communication tool?
  • Does digital currency pose a threat to the global economy?
  • Use of AI in predicting and managing natural disasters.
  • Can biometrics replace traditional identification systems?
  • Role of nanotechnology in waste management.
  • Machine learning's influence on climate change modeling.
  • Edge computing: Revolutionizing data processing?
  • Is virtual reality in psychological therapy a viable option?
  • Potential of synthetic biology in medical research.
  • Quantum cryptography: An uncrackable code?
  • Is space tourism achievable with current technology?
  • Ethical implications of gene editing technologies.
  • Artificial intelligence in governance.

Technology Research Paper Topics in Different Areas

In the next section, we've arranged a collection of technology research questions related to different areas like computer science, biotechnology, and medicine. Find an area you are interested in and look through subject-focused ideas and topics for a research paper on technology.

Technology Research Topics on Computer Science

Computer science is a field that has rapidly developed over the past decades. It deals with questions of technology's influence on society, as well as applications of cutting-edge technologies in various industries and sectors. Here are some computer science research topics on technology to get started:

  • Prospects of machine learning in malware detection.
  • Influence of cloud computing on business operations.
  • Quantum computing: potential impacts on cryptography.
  • Role of big data in personalized marketing.
  • Can AI models effectively simulate human decision-making?
  • Future of mobile applications: Towards augmented reality?
  • Pros and cons of open source software development.
  • Role of computer science in advancing virtual reality.
  • Natural language processing: Transforming human-computer interaction?
  • Developing secure e-commerce platforms: Challenges and solutions.
  • Green computing : solutions for reducing energy consumption.
  • Data mining in healthcare: An untapped opportunity?
  • Understanding cyber threats in the internet of things.
  • Algorithmic bias: Implications for automated decision-making.
  • Role of neural networks in image recognition.

Information Technology Research Topics

Information technology is a dynamic field that involves the use of computers and software to manage and process information. It's crucial in today's digital era, influencing a range of industries from healthcare to entertainment. Here are some captivating information technology related topics:

  • Impact of cloud technology on data management.
  • Role of information technology in disaster management.
  • Can artificial intelligence help improve data accuracy?
  • Cybersecurity measures for protecting personal information.
  • Evolving role of IT in healthcare administration.
  • Adaptive learning systems: A revolution in education?
  • E-governance : Impact on public administration.
  • Role of IT in modern supply chain management.
  • Bioinformatics and its role in personalized medicine.
  • Is data mining an invasion of privacy?
  • Can virtual reality enhance training and development programs?
  • Role of IT in facilitating remote work.
  • Smart devices and data security: A potential risk?
  • Harnessing IT for sustainable business practices.
  • How can big data support decision-making processes?

Technology Research Topics on Artificial Intelligence

Artificial Intelligence, or AI as we fondly call it, is all about creating machines that mimic human intelligence. It's shaping everything from how we drive our cars to how we manage our calendars. Want to understand the mind of a machine? Choose a topic about technology for a research paper from the list below:

  • AI's role in detecting fake news.
  • Chatbots in customer service: Are humans still needed?
  • Algorithmic trading: AI's impact on financial markets.
  • AI in agriculture: a step towards sustainable farming?
  • Facial recognition systems: an AI revolution or privacy threat?
  • Can AI outperform humans in creative tasks?
  • Sentiment analysis in social media: how effective is AI?
  • Siri, Alexa, and the future of AI.
  • AI in autonomous vehicles: safety concern or necessity?
  • How AI algorithms are transforming video games.
  • AI's potential in predicting and mitigating natural disasters.
  • Role of AI in combating cyber threats.
  • Influence of AI on job recruitment and HR processes.
  • Can AI help in advancing climate change research?
  • Can machines make accurate diagnoses?

Technology Research Topics in Cybersecurity Command

Cybersecurity Command focuses on strengthening digital protection. Its goal is to identify vulnerabilities, and outsmart cyber threats. Ready to crack the code of the cybersecurity command? Check out these technology topics for research designed to take you through the tunnels of cyberspace:

  • Cybersecurity strategies for a post-quantum world.
  • Role of AI in identifying cyber threats.
  • Is cybersecurity command in healthcare a matter of life and death?
  • Is there any connection between cryptocurrency and cybercrime?
  • Cyber warfare : The invisible battleground.
  • Mitigating insider threats in cybersecurity command.
  • Future of biometric authentication in cybersecurity.
  • IoT security: command challenges and solutions.
  • Cybersecurity and cloud technology: A secure match?
  • Influence of blockchain on cybersecurity command.
  • Machine learning's role in malware detection.
  • Cybersecurity protocols for mobile devices.
  • Ethics in cybersecurity: Hacking back and other dilemmas.
  • What are some steps to recovery after a breach?
  • Social engineering: Human factor in cybersecurity.

Technology Research Topics on Biotechnology

Biotechnology is an interdisciplinary field that has been gaining a lot of traction in the past few decades. It involves the application of biological principles to understand and solve various problems. The following research topic ideas for technology explore biotechnology's impact on medicine, environment, agriculture, and other sectors:

  • Can GMOs solve global hunger issues?
  • Understanding biotech's role in developing personalized medicine.
  • Using biotech to fight antibiotic resistance.
  • Pros and cons of genetically modified animals.
  • Biofuels – are they really a sustainable energy solution?
  • Ethical challenges in gene editing.
  • Role of biotech in combating climate change.
  • Can biotechnology help conserve biodiversity?
  • Biotech in beauty: Revolutionizing cosmetics.
  • Bioluminescence – a natural wonder or a biotech tool?
  • Applications of microbial biotechnology in waste management.
  • Human organ farming: Possibility or pipe dream?
  • Biotech and its role in sustainable agriculture.
  • Biotech advancements in creating allergy-free foods.
  • Exploring the future of biotech in disease detection.

>> Read more: Biology Topics to Research

Technology Research Paper Topics on Genetic Engineering

Genetic engineering is an area of science that involves the manipulation of genes to change or enhance biological characteristics. This field has raised tremendous ethical debates while offering promising solutions in medicine and agriculture. Here are some captivating topics for a technology research paper on genetic engineering:

  • Future of gene editing: Breakthrough or ethical dilemma?
  • Role of CRISPR technology in combating genetic diseases.
  • Pros and cons of genetically modified crops.
  • Impact of genetic engineering on biodiversity.
  • Can gene therapy provide a cure for cancer?
  • Genetic engineering and the quest for designer babies.
  • Legal aspects of genetic engineering.
  • Use of genetic engineering in organ transplantation.
  • Genetic modifications: Impact on human lifespan.
  • Genetically engineered pets: A step too far?
  • The role of genetic engineering in biofuels production.
  • Ethics of genetic data privacy.
  • Genetic engineering and its impact on world hunger.
  • Genetically modified insects: Solution for disease control?
  • Genetic engineering: A tool for biological warfare?

Reproduction Technology Research Paper Topics

Reproduction technology is all about the science that aids human procreation. It's a field teeming with innovation, from IVF advancements to genetic screening. Yet, it also stirs up ethical debates and thought-provoking technology topics to write about:

  • Advances in in Vitro Fertilization (IVF) technology .
  • The rise of surrogacy: Technological advancements and implications.
  • Ethical considerations in sperm and egg donation.
  • Genetic screening of embryos: A step forward or an ethical minefield?
  • Role of technology in understanding and improving fertility.
  • Artificial Wombs: Progress and prospects.
  • Ethical and legal aspects of posthumous reproduction.
  • Impact of reproductive technology on the LGBTQ+ community.
  • The promise and challenge of stem cells in reproduction.
  • Technology's role in preventing genetic diseases in unborn babies.
  • Social implications of childbearing technology.
  • The concept of 'designer babies': Ethical issues and future possibilities.
  • Reproductive cloning: Prospects and controversies.
  • Technology and the future of contraception.
  • Role of AI in predicting successful IVF treatment.

Medical Technology Topics for a Research Paper

The healthcare field is undergoing massive transformations thanks to cutting-edge medical technology. From revolutionary diagnostic tools to life-saving treatments, technology is reshaping medicine as we know it. To aid your exploration of this dynamic field, we've compiled medical technology research paper topics:

  • Role of AI in early disease detection.
  • Impact of telemedicine on rural healthcare.
  • Nanotechnology in cancer treatment: Prospects and challenges.
  • Can wearable technology improve patient outcomes?
  • Ethical considerations in genome sequencing.
  • Augmented reality in surgical procedures.
  • The rise of personalized medicine: Role of technology.
  • Mental health apps: Revolution or hype?
  • Technology and the future of prosthetics.
  • Role of Big Data in healthcare decision making.
  • Virtual reality as a tool for pain management.
  • Impact of machine learning on drug discovery.
  • The promise of medical drones for emergency response.
  • Technology's role in combating antimicrobial resistance.
  • Electronic Health Records (EHRs): Blessing or curse?

>> More ideas: Med Research Topics

Health Technology Research Topics

Health technology is driving modern healthcare to new heights. From apps that monitor vital stats to robots assisting in surgeries, technology's touch is truly transformative. Take a look at these topics related to technology applied in healthcare:

  • Role of mobile apps in managing diabetes.
  • Impact of health technology on patient privacy.
  • Wearable tech: Fad or future of personal health monitoring?
  • How can AI help in battling mental health issues?
  • Role of digital tools in promoting preventive healthcare.
  • Smart homes for the elderly: Boon or bane?
  • Technology and its impact on health insurance.
  • The effectiveness of virtual therapy sessions.
  • Can health chatbots replace human doctors?
  • Technology's role in fighting the obesity epidemic.
  • The use of blockchain in health data management.
  • Impact of technology on sleep health.
  • Social media and its effect on mental health.
  • Prospects of 3D printing in creating medical equipment.
  • Tele-rehabilitation: An effective solution for physical therapy?

>> View more: Public Health Topics to Research

Communication Technology Research Topics

With technology at the helm, our ways of communicating are changing at an unprecedented pace. From simple text messages to immersive virtual conferences, technology has rewritten the rules of engagement. So, without further ado, let's explore these communication research ideas for technology that capture the essence of this revolution.

  • AI chatbots: Re-defining customer service.
  • The impact of 5G on global communication.
  • Augmented Reality: The future of digital marketing?
  • Is 'digital divide' hindering global communication?
  • Social media's role in shaping public opinion.
  • Can holographic communication become a reality?
  • Influence of emojis in digital communication.
  • The cybersecurity challenges in modern communication.
  • Future of journalism in the digital age.
  • How technology is reshaping political communication.
  • The influence of streaming platforms on viewing habits.
  • Privacy concerns in the age of instant messaging.
  • Can technology solve the issue of language barriers?
  • The rise of podcasting: A digital renaissance.
  • Role of virtual reality in remote communication.

Research Topics on Technology in Transportation

Technology is the driving force behind the dramatic changes in transportation, making journeys safer, more efficient, and eco-friendly. Whether it's autonomous vehicles or the concept of Hyperloop, there are many transportation technology topics for a research paper to choose from:

  • Electric vehicles: A step towards sustainable travel.
  • The role of AI in traffic management.
  • Pros and cons of autonomous vehicles.
  • Hyperloop: An ambitious vision of the future?
  • Drones in goods delivery: Efficiency vs. privacy.
  • Technology's role in reducing aviation accidents.
  • Challenges in implementing smart highways.
  • The implications of blockchain in logistics.
  • Could vertical takeoff and landing (VTOL) vehicles solve traffic problems?
  • Impact of GPS technology on transportation.
  • How has technology influenced public transit systems?
  • Role of 5G in future transportation.
  • Ethical concerns over self-driving cars.
  • Technology in maritime safety: Progress and hurdles.
  • The evolution of bicycle technology: From spokes to e-bikes.

Technology Research Paper Topics on Education

The intersection of technology and education is an exciting frontier with limitless possibilities. From online learning to interactive classrooms, you can explore various technology paper topics about education:

  • How does e-learning affect student engagement?
  • VR classrooms: A glimpse into the future?
  • Can AI tutors revolutionize personalized learning?
  • Digital textbooks versus traditional textbooks: A comparison.
  • Gamification in education: Innovation or distraction?
  • The impact of technology on special education.
  • How are Massive Open Online Courses (MOOCs) reshaping higher education?
  • The role of technology in inclusive education.
  • Cybersecurity in schools: Measures and challenges.
  • The potential of Augmented Reality (AR) in classroom learning.
  • How is technology influencing homeschooling trends?
  • Balancing technology and traditional methods in early childhood education.
  • Risks and benefits of student data tracking.
  • Can coding be the new literacy in the 21st century?
  • The influence of social media on academic performance.

>> Learn more: Education Research Paper Topics

Relationships and Technology Research Topics

In the digital age, technology also impacts our relationships. It has become an integral part of how we communicate, meet people, and sustain our connections. Discover some thought-provoking angles with these research paper topics about technology:

  • How do dating apps affect modern relationships?
  • The influence of social media on interpersonal communication.
  • Is technology enhancing or hindering long-distance relationships?
  • The psychology behind online dating: A study.
  • How do virtual reality environments impact social interaction?
  • Social media friendships: Genuine or superficial?
  • How does technology-mediated communication affect family dynamics?
  • The impact of technology on work-life balance.
  • The role of technology in sustaining long-term relationships.
  • How does the 'always connected' culture influence personal boundaries?
  • Cyberbullying and its effect on teenage relationships.
  • Can technology predict compatibility in relationships?
  • The effects of 'ghosting' in digital communication.
  • How technology assists in maintaining relationships among elderly populations.
  • Social media: A boon or bane for marital relationships?

Agriculture Technology Research Paper Topics

Modern agriculture is far from just tilling the soil and harvesting crops. Technology has made remarkable strides into the fields, innovating and improving agricultural processes. Take a glance at these technology research paper topic ideas:

  • Can drone technology transform crop monitoring?
  • Precision agriculture: Benefits and challenges.
  • Aquaponics and the future of sustainable farming.
  • How is artificial intelligence aiding in crop prediction?
  • Impact of blockchain technology in food traceability.
  • The role of IoT in smart farming.
  • Vertical farming : Is it a sustainable solution for urban food supply?
  • Innovations in irrigation technology for water conservation.
  • Automated farming: A boon or a threat to employment in agriculture?
  • How satellite imagery is improving crop disease detection.
  • Biotechnology in crop improvement: Pros and cons.
  • Nanotechnology in agriculture: Scope and limitations.
  • Role of robotics in livestock management.
  • Agricultural waste management through technology.
  • Is hydroponics the future of farming?

Technological Research Topics on Environment

Our planet is facing numerous environmental challenges, and technology may hold the key to solving many of these. With innovations ranging from renewable energy sources to waste management systems, the realm of technology offers a plethora of research angles. So, if you're curious about the intersection of technology and environment, this list of research topics is for you:

  • Innovations in waste management: A technology review.
  • The role of AI in predicting climate change impacts.
  • Renewable energy: Advancements in solar technology.
  • The impact of electric vehicles on carbon emissions.
  • Can smart agriculture help solve world hunger?
  • Role of technology in water purification and conservation.
  • The impact of IoT devices on energy consumption.
  • Technology solutions for oil spills.
  • Satellite technology in environmental monitoring.
  • Technological advances in forest conservation.
  • Green buildings: Sustainable construction technology.
  • Bioengineering: A solution to soil erosion?
  • Impact of nanotechnology on environmental conservation.
  • Ocean clean-up initiatives: Evaluating existing technology.
  • How can technology help in reducing air pollution?

>> View more: Environmental Science Research Topics

Energy & Power Technology Topics for Research Paper

Energy and power are two pivotal areas where technology is bringing unprecedented changes. You can investigate renewable energy sources or efficient power transmission. If you're excited about exploring the intricacies of energy and power advancements, here are some engaging technology topics for research papers:

  • Assessing the efficiency of wind energy technologies.
  • Power storage: Current and future technology.
  • Solar panel technology: Recent advancements and future predictions.
  • Can nuclear fusion be the answer to our energy crisis?
  • Smart grid technology: A revolution in power distribution.
  • Evaluating the impact of hydropower on ecosystems.
  • The role of AI in optimizing power consumption.
  • Biofuels vs. fossil fuels: A comparative study.
  • Electric vehicle charging infrastructure: Technological challenges and solutions.
  • Technology advancements in geothermal power.
  • How is IoT technology helping in energy conservation?
  • Harnessing wave and tidal energy: Technological possibilities.
  • Role of nanotechnology in improving solar cell efficiency.
  • Power transmission losses: Can technology provide a solution?
  • Assessing the future of coal technology in the era of renewable energy.

Research Topics about Technology in Finance

The finance sector has seen drastic changes with the rise of technology, which has revolutionized the way financial transactions are conducted and services are offered. Consider these research topics in technology applied in the finance sector:

  • Rise of cryptocurrency: An evaluation of Bitcoin's impact.
  • Algorithmic trading: How does it reshape financial markets?
  • Role of AI and machine learning in financial forecasting.
  • Technological challenges in implementing digital banking.
  • How is blockchain technology transforming financial services?
  • Cybersecurity risks in online banking: Identifying solutions.
  • FinTech startups: Disrupting traditional finance systems.
  • Role of technology in financial inclusion.
  • Assessing the impact of mobile wallets on the banking sector.
  • Automation in finance: Opportunities and threats.
  • Role of big data analytics in financial decision making.
  • AI-based robo-advisors vs. human financial advisors.
  • The future of insurance technology (InsurTech).
  • Can technology solve the issue of financial fraud?
  • Impact of regulatory technology (RegTech) in maintaining compliance.

>> More ideas: Finance Research Topics

War Technology Research Paper Topics

The nature of warfare has transformed significantly with the evolution of technology, shifting the battlegrounds from land, sea, and air to the realms of cyber and space. This transition opens up a range of topics to explore. Here are some research topics in the realm of war technology:

  • Drones in warfare: Ethical implications.
  • Cyber warfare: Assessing threats and defense strategies.
  • Autonomous weapons: A boon or a curse?
  • Implications of artificial intelligence in modern warfare.
  • Role of technology in intelligence gathering.
  • Satellite technology and its role in modern warfare.
  • The future of naval warfare: Autonomous ships and submarines.
  • Hypersonic weapons: Changing the dynamics of war.
  • Impact of nuclear technology in warfare.
  • Technology and warfare: Exploring the relationship.
  • Information warfare: The role of social media.
  • Space warfare: Future possibilities and implications.
  • Bio-warfare: Understanding technology's role in development and prevention.
  • Impact of virtual reality on military training.
  • War technology and international law: A critical examination.

Food Technology Topics for Research Papers

Food technology is a field that deals with the study of food production, preservation, and safety. It involves understanding how various techniques can be applied to increase shelf life and improve nutrition value of foods. Check out our collection of food technology research paper topic ideas:

  • Lab-grown meats: Sustainable solution or a mere hype?
  • How AI is enhancing food safety and quality?
  • Precision agriculture: Revolutionizing farming practices.
  • GMOs: Assessing benefits and potential risks.
  • Role of robotics in food manufacturing and packaging.
  • Smart kitchens: Streamlining cooking through technology.
  • Nanofood: Tiny technology, big impact.
  • Sustainable food systems: Role of technology.
  • Food traceability: Ensuring transparency and accountability.
  • Food delivery apps: Changing the face of dining out.
  • The rise of plant-based alternatives and their production technologies.
  • Virtual and augmented reality in culinary experiences.
  • Technology in mitigating food waste.
  • Innovations in food packaging: Impact on freshness and sustainability.
  • IoT in smart farming: Improving yield and reducing waste.

Entertainment Technology Topics

Entertainment technology is reinventing the ways we experience amusement. This industry is always presenting new angles for research and discussion, be it the rise of virtual reality in movies or the influence of streaming platforms on the music industry. Here's a list of unique research topics related to entertainment technology:

  • Impact of virtual reality on the movie industry.
  • Streaming platforms vs traditional media: A comparative study.
  • Technology in music: Evolution and future prospects.
  • eSports: Rise of a new form of entertainment.
  • Augmented reality in theme parks.
  • The transformation of theater with digital technology.
  • AI and film editing: Redefining the art.
  • The role of technology in the rise of independent cinema.
  • Podcasts: Revolutionizing radio with technology.
  • Immersive technologies in art exhibitions.
  • The influence of technology on fashion shows and design.
  • Livestreaming concerts: A new norm in the music industry?
  • Drones in entertainment: Applications and ethics.
  • Social media as an entertainment platform.
  • The transformation of journalism in the era of digital entertainment.

Technology Research Questions

As we navigate the ever-changing landscape of technology, numerous intriguing questions arise. Below, we present new research questions about technology that can fuel your intellectual pursuit.

  • What potential does quantum computing hold for resolving complex problems?
  • How will advancements in AI impact job security across different sectors?
  • In what ways can blockchain technology reform the existing financial systems?
  • How is nanotechnology revolutionizing the field of medicine?
  • What are the ethical implications surrounding the use of facial recognition technology?
  • How will the introduction of 6G change our communication patterns?
  • In what ways is green technology contributing to sustainable development?
  • Can virtual reality transform the way we approach education?
  • How are biometrics enhancing the security measures in today's digital world?
  • How is space technology influencing our understanding of the universe?
  • What role can technology play in solving the global water crisis?
  • How can technology be leveraged to combat climate change effectively?
  • How is technology transforming the landscape of modern agriculture?
  • Can technological advancements lead to a fully renewable energy-dependent world?
  • How does technology influence the dynamics of modern warfare?

Bottom Line on Research Topics in Technology

Technology is a rapidly evolving field, and there's always something new to explore. Whether you're writing for the computer sciences, information technology or food technology realm, there are endless ideas that you can research on. Pick one of these technology research paper topics and jumpstart your project.

Illustration

Trust professionals to ‘ write a research paper for me !’ Our team of expert writers is ready to assist you in crafting an exceptional research paper on any topic. Just reach out, and we'll provide you with high-quality work tailored to your needs.

Joe_Eckel_1_ab59a03630.jpg

Joe Eckel is an expert on Dissertations writing. He makes sure that each student gets precious insights on composing A-grade academic writing.

You may also like

how to write a research paper

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Research paper

How to Write a Research Paper | A Beginner's Guide

A research paper is a piece of academic writing that provides analysis, interpretation, and argument based on in-depth independent research.

Research papers are similar to academic essays , but they are usually longer and more detailed assignments, designed to assess not only your writing skills but also your skills in scholarly research. Writing a research paper requires you to demonstrate a strong knowledge of your topic, engage with a variety of sources, and make an original contribution to the debate.

This step-by-step guide takes you through the entire writing process, from understanding your assignment to proofreading your final draft.

Instantly correct all language mistakes in your text

Upload your document to correct all your mistakes in minutes

upload-your-document-ai-proofreader

Table of contents

Understand the assignment, choose a research paper topic, conduct preliminary research, develop a thesis statement, create a research paper outline, write a first draft of the research paper, write the introduction, write a compelling body of text, write the conclusion, the second draft, the revision process, research paper checklist, free lecture slides.

Completing a research paper successfully means accomplishing the specific tasks set out for you. Before you start, make sure you thoroughly understanding the assignment task sheet:

  • Read it carefully, looking for anything confusing you might need to clarify with your professor.
  • Identify the assignment goal, deadline, length specifications, formatting, and submission method.
  • Make a bulleted list of the key points, then go back and cross completed items off as you’re writing.

Carefully consider your timeframe and word limit: be realistic, and plan enough time to research, write, and edit.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

There are many ways to generate an idea for a research paper, from brainstorming with pen and paper to talking it through with a fellow student or professor.

You can try free writing, which involves taking a broad topic and writing continuously for two or three minutes to identify absolutely anything relevant that could be interesting.

You can also gain inspiration from other research. The discussion or recommendations sections of research papers often include ideas for other specific topics that require further examination.

Once you have a broad subject area, narrow it down to choose a topic that interests you, m eets the criteria of your assignment, and i s possible to research. Aim for ideas that are both original and specific:

  • A paper following the chronology of World War II would not be original or specific enough.
  • A paper on the experience of Danish citizens living close to the German border during World War II would be specific and could be original enough.

Note any discussions that seem important to the topic, and try to find an issue that you can focus your paper around. Use a variety of sources , including journals, books, and reliable websites, to ensure you do not miss anything glaring.

Do not only verify the ideas you have in mind, but look for sources that contradict your point of view.

  • Is there anything people seem to overlook in the sources you research?
  • Are there any heated debates you can address?
  • Do you have a unique take on your topic?
  • Have there been some recent developments that build on the extant research?

In this stage, you might find it helpful to formulate some research questions to help guide you. To write research questions, try to finish the following sentence: “I want to know how/what/why…”

A thesis statement is a statement of your central argument — it establishes the purpose and position of your paper. If you started with a research question, the thesis statement should answer it. It should also show what evidence and reasoning you’ll use to support that answer.

The thesis statement should be concise, contentious, and coherent. That means it should briefly summarize your argument in a sentence or two, make a claim that requires further evidence or analysis, and make a coherent point that relates to every part of the paper.

You will probably revise and refine the thesis statement as you do more research, but it can serve as a guide throughout the writing process. Every paragraph should aim to support and develop this central claim.

A research paper outline is essentially a list of the key topics, arguments, and evidence you want to include, divided into sections with headings so that you know roughly what the paper will look like before you start writing.

A structure outline can help make the writing process much more efficient, so it’s worth dedicating some time to create one.

Your first draft won’t be perfect — you can polish later on. Your priorities at this stage are as follows:

  • Maintaining forward momentum — write now, perfect later.
  • Paying attention to clear organization and logical ordering of paragraphs and sentences, which will help when you come to the second draft.
  • Expressing your ideas as clearly as possible, so you know what you were trying to say when you come back to the text.

You do not need to start by writing the introduction. Begin where it feels most natural for you — some prefer to finish the most difficult sections first, while others choose to start with the easiest part. If you created an outline, use it as a map while you work.

Do not delete large sections of text. If you begin to dislike something you have written or find it doesn’t quite fit, move it to a different document, but don’t lose it completely — you never know if it might come in useful later.

Paragraph structure

Paragraphs are the basic building blocks of research papers. Each one should focus on a single claim or idea that helps to establish the overall argument or purpose of the paper.

Example paragraph

George Orwell’s 1946 essay “Politics and the English Language” has had an enduring impact on thought about the relationship between politics and language. This impact is particularly obvious in light of the various critical review articles that have recently referenced the essay. For example, consider Mark Falcoff’s 2009 article in The National Review Online, “The Perversion of Language; or, Orwell Revisited,” in which he analyzes several common words (“activist,” “civil-rights leader,” “diversity,” and more). Falcoff’s close analysis of the ambiguity built into political language intentionally mirrors Orwell’s own point-by-point analysis of the political language of his day. Even 63 years after its publication, Orwell’s essay is emulated by contemporary thinkers.

Citing sources

It’s also important to keep track of citations at this stage to avoid accidental plagiarism . Each time you use a source, make sure to take note of where the information came from.

You can use our free citation generators to automatically create citations and save your reference list as you go.

APA Citation Generator MLA Citation Generator

The research paper introduction should address three questions: What, why, and how? After finishing the introduction, the reader should know what the paper is about, why it is worth reading, and how you’ll build your arguments.

What? Be specific about the topic of the paper, introduce the background, and define key terms or concepts.

Why? This is the most important, but also the most difficult, part of the introduction. Try to provide brief answers to the following questions: What new material or insight are you offering? What important issues does your essay help define or answer?

How? To let the reader know what to expect from the rest of the paper, the introduction should include a “map” of what will be discussed, briefly presenting the key elements of the paper in chronological order.

The major struggle faced by most writers is how to organize the information presented in the paper, which is one reason an outline is so useful. However, remember that the outline is only a guide and, when writing, you can be flexible with the order in which the information and arguments are presented.

One way to stay on track is to use your thesis statement and topic sentences . Check:

  • topic sentences against the thesis statement;
  • topic sentences against each other, for similarities and logical ordering;
  • and each sentence against the topic sentence of that paragraph.

Be aware of paragraphs that seem to cover the same things. If two paragraphs discuss something similar, they must approach that topic in different ways. Aim to create smooth transitions between sentences, paragraphs, and sections.

The research paper conclusion is designed to help your reader out of the paper’s argument, giving them a sense of finality.

Trace the course of the paper, emphasizing how it all comes together to prove your thesis statement. Give the paper a sense of finality by making sure the reader understands how you’ve settled the issues raised in the introduction.

You might also discuss the more general consequences of the argument, outline what the paper offers to future students of the topic, and suggest any questions the paper’s argument raises but cannot or does not try to answer.

You should not :

  • Offer new arguments or essential information
  • Take up any more space than necessary
  • Begin with stock phrases that signal you are ending the paper (e.g. “In conclusion”)

There are four main considerations when it comes to the second draft.

  • Check how your vision of the paper lines up with the first draft and, more importantly, that your paper still answers the assignment.
  • Identify any assumptions that might require (more substantial) justification, keeping your reader’s perspective foremost in mind. Remove these points if you cannot substantiate them further.
  • Be open to rearranging your ideas. Check whether any sections feel out of place and whether your ideas could be better organized.
  • If you find that old ideas do not fit as well as you anticipated, you should cut them out or condense them. You might also find that new and well-suited ideas occurred to you during the writing of the first draft — now is the time to make them part of the paper.

The goal during the revision and proofreading process is to ensure you have completed all the necessary tasks and that the paper is as well-articulated as possible. You can speed up the proofreading process by using the AI proofreader .

Global concerns

  • Confirm that your paper completes every task specified in your assignment sheet.
  • Check for logical organization and flow of paragraphs.
  • Check paragraphs against the introduction and thesis statement.

Fine-grained details

Check the content of each paragraph, making sure that:

  • each sentence helps support the topic sentence.
  • no unnecessary or irrelevant information is present.
  • all technical terms your audience might not know are identified.

Next, think about sentence structure , grammatical errors, and formatting . Check that you have correctly used transition words and phrases to show the connections between your ideas. Look for typos, cut unnecessary words, and check for consistency in aspects such as heading formatting and spellings .

Finally, you need to make sure your paper is correctly formatted according to the rules of the citation style you are using. For example, you might need to include an MLA heading  or create an APA title page .

Scribbr’s professional editors can help with the revision process with our award-winning proofreading services.

Discover our paper editing service

Checklist: Research paper

I have followed all instructions in the assignment sheet.

My introduction presents my topic in an engaging way and provides necessary background information.

My introduction presents a clear, focused research problem and/or thesis statement .

My paper is logically organized using paragraphs and (if relevant) section headings .

Each paragraph is clearly focused on one central idea, expressed in a clear topic sentence .

Each paragraph is relevant to my research problem or thesis statement.

I have used appropriate transitions  to clarify the connections between sections, paragraphs, and sentences.

My conclusion provides a concise answer to the research question or emphasizes how the thesis has been supported.

My conclusion shows how my research has contributed to knowledge or understanding of my topic.

My conclusion does not present any new points or information essential to my argument.

I have provided an in-text citation every time I refer to ideas or information from a source.

I have included a reference list at the end of my paper, consistently formatted according to a specific citation style .

I have thoroughly revised my paper and addressed any feedback from my professor or supervisor.

I have followed all formatting guidelines (page numbers, headers, spacing, etc.).

You've written a great paper. Make sure it's perfect with the help of a Scribbr editor!

Open Google Slides Download PowerPoint

Is this article helpful?

Other students also liked.

  • Writing a Research Paper Introduction | Step-by-Step Guide
  • Writing a Research Paper Conclusion | Step-by-Step Guide
  • Research Paper Format | APA, MLA, & Chicago Templates

More interesting articles

  • Academic Paragraph Structure | Step-by-Step Guide & Examples
  • Checklist: Writing a Great Research Paper
  • How to Create a Structured Research Paper Outline | Example
  • How to Write a Discussion Section | Tips & Examples
  • How to Write Recommendations in Research | Examples & Tips
  • How to Write Topic Sentences | 4 Steps, Examples & Purpose
  • Research Paper Appendix | Example & Templates
  • Research Paper Damage Control | Managing a Broken Argument
  • What Is a Theoretical Framework? | Guide to Organizing

"I thought AI Proofreading was useless but.."

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

U.S. flag

An official website of the United States government

Here’s how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( Lock A locked padlock ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

https://www.nist.gov/information-technology

yellow-green circuit board in the middle of a background that looks like circuit lines, blue on black

Information Technology

Advancing the state-of-the-art in IT in such applications as cyber security and biometrics, NIST accelerates the development and deployment of systems that are reliable, usable, interoperable, and secure; advances measurement science through innovations in mathematics, statistics, and computer science; and conducts research to develop the measurements and standards infrastructure for emerging information technologies and applications.

The Research

Projects & programs, face recognition vendor test (frvt), health it at nist - program overview.

Logo that says NIST Cloud Computing Program and has a half blue cloud

NIST Cloud Computing Program - NCCP

Steven Satterfield in the NIST CAVE

Visualization

Additional resources links.

Illustration that shows an outline of a face and then icons to represent different areas of AI including heart (health), lock (cyber), windmills (energy), steering wheel (cars) and manufacturing arm

NIST Seeks Comments on AI Risk Management Framework Guidance, Workshop Date Set

A person types on a laptop behind floating translucent graphics related to AI, computer code and a brain scan.

U.S. AI Safety Institute Signs Agreements Regarding AI Safety Research, Testing and Evaluation With Anthropic and OpenAI

Icons for methods of establishing online identity, including a password and a physical ID card, are shown near a screen reading "ACCESS GRANTED."

NIST Releases Second Public Draft of Digital Identity Guidelines for Final Review

A headshot photo of summer intern Theresa Thomas standing outside on a patio at NIST’s campus.

Spotlight: SURF Student Theresa Thomas Helps With Making a Database on the Circular Economy More Accessible

Stay in touch.

Sign up for our newsletter to stay up to date with the latest research, trends, and news for Information Technology.

Upcoming Events

Ai metrology colloquia series.

Technical Language Processing Meeting with image showing Artificial intelligence looking at smart city, connected with planet through global mobile internet on phone.

Technical Language Processing Community of Interest 2024 Meeting

Unleashing AI Innovation, Enabling Trust Symposium

Unleashing AI Innovation, Enabling Trust

Safeguarding Health Information: Building Assurance through HIPAA Security 2024

Safeguarding Health Information: Building Assurance through HIPAA Security 2024

Research Papers - Science topic

Ashish Waghe

  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

PrepScholar

Choose Your Test

  • Search Blogs By Category
  • College Admissions
  • AP and IB Exams
  • GPA and Coursework

113 Great Research Paper Topics

author image

General Education

feature_pencilpaper

One of the hardest parts of writing a research paper can be just finding a good topic to write about. Fortunately we've done the hard work for you and have compiled a list of 113 interesting research paper topics. They've been organized into ten categories and cover a wide range of subjects so you can easily find the best topic for you.

In addition to the list of good research topics, we've included advice on what makes a good research paper topic and how you can use your topic to start writing a great paper.

What Makes a Good Research Paper Topic?

Not all research paper topics are created equal, and you want to make sure you choose a great topic before you start writing. Below are the three most important factors to consider to make sure you choose the best research paper topics.

#1: It's Something You're Interested In

A paper is always easier to write if you're interested in the topic, and you'll be more motivated to do in-depth research and write a paper that really covers the entire subject. Even if a certain research paper topic is getting a lot of buzz right now or other people seem interested in writing about it, don't feel tempted to make it your topic unless you genuinely have some sort of interest in it as well.

#2: There's Enough Information to Write a Paper

Even if you come up with the absolute best research paper topic and you're so excited to write about it, you won't be able to produce a good paper if there isn't enough research about the topic. This can happen for very specific or specialized topics, as well as topics that are too new to have enough research done on them at the moment. Easy research paper topics will always be topics with enough information to write a full-length paper.

Trying to write a research paper on a topic that doesn't have much research on it is incredibly hard, so before you decide on a topic, do a bit of preliminary searching and make sure you'll have all the information you need to write your paper.

#3: It Fits Your Teacher's Guidelines

Don't get so carried away looking at lists of research paper topics that you forget any requirements or restrictions your teacher may have put on research topic ideas. If you're writing a research paper on a health-related topic, deciding to write about the impact of rap on the music scene probably won't be allowed, but there may be some sort of leeway. For example, if you're really interested in current events but your teacher wants you to write a research paper on a history topic, you may be able to choose a topic that fits both categories, like exploring the relationship between the US and North Korea. No matter what, always get your research paper topic approved by your teacher first before you begin writing.

113 Good Research Paper Topics

Below are 113 good research topics to help you get you started on your paper. We've organized them into ten categories to make it easier to find the type of research paper topics you're looking for.

Arts/Culture

  • Discuss the main differences in art from the Italian Renaissance and the Northern Renaissance .
  • Analyze the impact a famous artist had on the world.
  • How is sexism portrayed in different types of media (music, film, video games, etc.)? Has the amount/type of sexism changed over the years?
  • How has the music of slaves brought over from Africa shaped modern American music?
  • How has rap music evolved in the past decade?
  • How has the portrayal of minorities in the media changed?

music-277279_640

Current Events

  • What have been the impacts of China's one child policy?
  • How have the goals of feminists changed over the decades?
  • How has the Trump presidency changed international relations?
  • Analyze the history of the relationship between the United States and North Korea.
  • What factors contributed to the current decline in the rate of unemployment?
  • What have been the impacts of states which have increased their minimum wage?
  • How do US immigration laws compare to immigration laws of other countries?
  • How have the US's immigration laws changed in the past few years/decades?
  • How has the Black Lives Matter movement affected discussions and view about racism in the US?
  • What impact has the Affordable Care Act had on healthcare in the US?
  • What factors contributed to the UK deciding to leave the EU (Brexit)?
  • What factors contributed to China becoming an economic power?
  • Discuss the history of Bitcoin or other cryptocurrencies  (some of which tokenize the S&P 500 Index on the blockchain) .
  • Do students in schools that eliminate grades do better in college and their careers?
  • Do students from wealthier backgrounds score higher on standardized tests?
  • Do students who receive free meals at school get higher grades compared to when they weren't receiving a free meal?
  • Do students who attend charter schools score higher on standardized tests than students in public schools?
  • Do students learn better in same-sex classrooms?
  • How does giving each student access to an iPad or laptop affect their studies?
  • What are the benefits and drawbacks of the Montessori Method ?
  • Do children who attend preschool do better in school later on?
  • What was the impact of the No Child Left Behind act?
  • How does the US education system compare to education systems in other countries?
  • What impact does mandatory physical education classes have on students' health?
  • Which methods are most effective at reducing bullying in schools?
  • Do homeschoolers who attend college do as well as students who attended traditional schools?
  • Does offering tenure increase or decrease quality of teaching?
  • How does college debt affect future life choices of students?
  • Should graduate students be able to form unions?

body_highschoolsc

  • What are different ways to lower gun-related deaths in the US?
  • How and why have divorce rates changed over time?
  • Is affirmative action still necessary in education and/or the workplace?
  • Should physician-assisted suicide be legal?
  • How has stem cell research impacted the medical field?
  • How can human trafficking be reduced in the United States/world?
  • Should people be able to donate organs in exchange for money?
  • Which types of juvenile punishment have proven most effective at preventing future crimes?
  • Has the increase in US airport security made passengers safer?
  • Analyze the immigration policies of certain countries and how they are similar and different from one another.
  • Several states have legalized recreational marijuana. What positive and negative impacts have they experienced as a result?
  • Do tariffs increase the number of domestic jobs?
  • Which prison reforms have proven most effective?
  • Should governments be able to censor certain information on the internet?
  • Which methods/programs have been most effective at reducing teen pregnancy?
  • What are the benefits and drawbacks of the Keto diet?
  • How effective are different exercise regimes for losing weight and maintaining weight loss?
  • How do the healthcare plans of various countries differ from each other?
  • What are the most effective ways to treat depression ?
  • What are the pros and cons of genetically modified foods?
  • Which methods are most effective for improving memory?
  • What can be done to lower healthcare costs in the US?
  • What factors contributed to the current opioid crisis?
  • Analyze the history and impact of the HIV/AIDS epidemic .
  • Are low-carbohydrate or low-fat diets more effective for weight loss?
  • How much exercise should the average adult be getting each week?
  • Which methods are most effective to get parents to vaccinate their children?
  • What are the pros and cons of clean needle programs?
  • How does stress affect the body?
  • Discuss the history of the conflict between Israel and the Palestinians.
  • What were the causes and effects of the Salem Witch Trials?
  • Who was responsible for the Iran-Contra situation?
  • How has New Orleans and the government's response to natural disasters changed since Hurricane Katrina?
  • What events led to the fall of the Roman Empire?
  • What were the impacts of British rule in India ?
  • Was the atomic bombing of Hiroshima and Nagasaki necessary?
  • What were the successes and failures of the women's suffrage movement in the United States?
  • What were the causes of the Civil War?
  • How did Abraham Lincoln's assassination impact the country and reconstruction after the Civil War?
  • Which factors contributed to the colonies winning the American Revolution?
  • What caused Hitler's rise to power?
  • Discuss how a specific invention impacted history.
  • What led to Cleopatra's fall as ruler of Egypt?
  • How has Japan changed and evolved over the centuries?
  • What were the causes of the Rwandan genocide ?

main_lincoln

  • Why did Martin Luther decide to split with the Catholic Church?
  • Analyze the history and impact of a well-known cult (Jonestown, Manson family, etc.)
  • How did the sexual abuse scandal impact how people view the Catholic Church?
  • How has the Catholic church's power changed over the past decades/centuries?
  • What are the causes behind the rise in atheism/ agnosticism in the United States?
  • What were the influences in Siddhartha's life resulted in him becoming the Buddha?
  • How has media portrayal of Islam/Muslims changed since September 11th?

Science/Environment

  • How has the earth's climate changed in the past few decades?
  • How has the use and elimination of DDT affected bird populations in the US?
  • Analyze how the number and severity of natural disasters have increased in the past few decades.
  • Analyze deforestation rates in a certain area or globally over a period of time.
  • How have past oil spills changed regulations and cleanup methods?
  • How has the Flint water crisis changed water regulation safety?
  • What are the pros and cons of fracking?
  • What impact has the Paris Climate Agreement had so far?
  • What have NASA's biggest successes and failures been?
  • How can we improve access to clean water around the world?
  • Does ecotourism actually have a positive impact on the environment?
  • Should the US rely on nuclear energy more?
  • What can be done to save amphibian species currently at risk of extinction?
  • What impact has climate change had on coral reefs?
  • How are black holes created?
  • Are teens who spend more time on social media more likely to suffer anxiety and/or depression?
  • How will the loss of net neutrality affect internet users?
  • Analyze the history and progress of self-driving vehicles.
  • How has the use of drones changed surveillance and warfare methods?
  • Has social media made people more or less connected?
  • What progress has currently been made with artificial intelligence ?
  • Do smartphones increase or decrease workplace productivity?
  • What are the most effective ways to use technology in the classroom?
  • How is Google search affecting our intelligence?
  • When is the best age for a child to begin owning a smartphone?
  • Has frequent texting reduced teen literacy rates?

body_iphone2

How to Write a Great Research Paper

Even great research paper topics won't give you a great research paper if you don't hone your topic before and during the writing process. Follow these three tips to turn good research paper topics into great papers.

#1: Figure Out Your Thesis Early

Before you start writing a single word of your paper, you first need to know what your thesis will be. Your thesis is a statement that explains what you intend to prove/show in your paper. Every sentence in your research paper will relate back to your thesis, so you don't want to start writing without it!

As some examples, if you're writing a research paper on if students learn better in same-sex classrooms, your thesis might be "Research has shown that elementary-age students in same-sex classrooms score higher on standardized tests and report feeling more comfortable in the classroom."

If you're writing a paper on the causes of the Civil War, your thesis might be "While the dispute between the North and South over slavery is the most well-known cause of the Civil War, other key causes include differences in the economies of the North and South, states' rights, and territorial expansion."

#2: Back Every Statement Up With Research

Remember, this is a research paper you're writing, so you'll need to use lots of research to make your points. Every statement you give must be backed up with research, properly cited the way your teacher requested. You're allowed to include opinions of your own, but they must also be supported by the research you give.

#3: Do Your Research Before You Begin Writing

You don't want to start writing your research paper and then learn that there isn't enough research to back up the points you're making, or, even worse, that the research contradicts the points you're trying to make!

Get most of your research on your good research topics done before you begin writing. Then use the research you've collected to create a rough outline of what your paper will cover and the key points you're going to make. This will help keep your paper clear and organized, and it'll ensure you have enough research to produce a strong paper.

What's Next?

Are you also learning about dynamic equilibrium in your science class? We break this sometimes tricky concept down so it's easy to understand in our complete guide to dynamic equilibrium .

Thinking about becoming a nurse practitioner? Nurse practitioners have one of the fastest growing careers in the country, and we have all the information you need to know about what to expect from nurse practitioner school .

Want to know the fastest and easiest ways to convert between Fahrenheit and Celsius? We've got you covered! Check out our guide to the best ways to convert Celsius to Fahrenheit (or vice versa).

These recommendations are based solely on our knowledge and experience. If you purchase an item through one of our links, PrepScholar may receive a commission.

Trending Now

How to Get Into Harvard and the Ivy League

How to Get a Perfect 4.0 GPA

How to Write an Amazing College Essay

What Exactly Are Colleges Looking For?

ACT vs. SAT: Which Test Should You Take?

When should you take the SAT or ACT?

Get Your Free

PrepScholar

Find Your Target SAT Score

Free Complete Official SAT Practice Tests

How to Get a Perfect SAT Score, by an Expert Full Scorer

Score 800 on SAT Math

Score 800 on SAT Reading and Writing

How to Improve Your Low SAT Score

Score 600 on SAT Math

Score 600 on SAT Reading and Writing

Find Your Target ACT Score

Complete Official Free ACT Practice Tests

How to Get a Perfect ACT Score, by a 36 Full Scorer

Get a 36 on ACT English

Get a 36 on ACT Math

Get a 36 on ACT Reading

Get a 36 on ACT Science

How to Improve Your Low ACT Score

Get a 24 on ACT English

Get a 24 on ACT Math

Get a 24 on ACT Reading

Get a 24 on ACT Science

Stay Informed

Get the latest articles and test prep tips!

Follow us on Facebook (icon)

Christine graduated from Michigan State University with degrees in Environmental Biology and Geography and received her Master's from Duke University. In high school she scored in the 99th percentile on the SAT and was named a National Merit Finalist. She has taught English and biology in several countries.

Ask a Question Below

Have any questions about this article or other topics? Ask below and we'll reply!

IMAGES

  1. How to Write a Research Paper Outline With Examples?

    research papers on it

  2. Research Paper Format

    research papers on it

  3. Types of research papers

    research papers on it

  4. Research Paper Format

    research papers on it

  5. 10 Easy Steps: How to Format Scientific Paper in 2024

    research papers on it

  6. 😎 What is a research paper. Write A Research Paper. 2019-02-24

    research papers on it

VIDEO

  1. Research Paper Example: Full Step-By-Step Tutorial

  2. How to write a research paper during bachelor’s degree?

  3. How scientific papers are published

  4. How to do research? and How to write a research paper?

  5. Different Types of Research Papers

  6. BEST WAY TO FIND RESEARCH PAPERS 🔥

COMMENTS

  1. (PDF) Current Trends In Information Technology: Which ...

    The paper covers various technological trends, such as the rise of cloud computing, social media, and mobile computing. It also explores the ways in which IT experts can benefit from these changes ...

  2. Journal of Information Technology: Sage Journals

    Journal of Information Technology

  3. Information technology

    Information technology - Latest research and news

  4. Information Technology: News, Articles, Research, & Case Studies

    Information Technology. New research on information technology from Harvard Business School faculty on issues including the HealthCare.gov fiasco, online privacy concerns, and the civic benefits of technologies that utilize citizen-created data. Page 1 of 64 Results →. 03 Sep 2024. Research & Ideas.

  5. Artificial intelligence in information systems research: A systematic

    Artificial intelligence in information systems research

  6. Computer Science and Engineering

    This conceptual research paper is written to discuss the implementation of the A.D.A.B model in technology -based and technical subjects such as Computer Science, Engineering, Technical and so on ...

  7. (PDF) Information technology in research

    This paper presents a systematic mapping study that found 50 papers in the intersection of EA and EI, these papers were surveyed, analysed, and classified with respect to research focus, research ...

  8. Gartner IT Research Reports Index

    Gartner IT Research Reports Index

  9. Technological Innovation: Articles, Research, & Case Studies on

    Articles, Research, & Case Studies on Technological Innovation

  10. Articles

    Articles | Journal of Cloud Computing - SpringerOpen

  11. computer science Latest Research Papers

    Software Developer . Hiring Process . Qualitative Survey. Computer science ( CS ) majors are in high demand and account for a large part of national computer and information technology job market applicants. Employment in this sector is projected to grow 12% between 2018 and 2028, which is faster than the average of all other occupations.

  12. 100 Technology Topics for Research Papers

    100 Technology Topics for Research Papers

  13. 1000 Computer Science Thesis Topics and Ideas

    This section offers a well-organized and extensive list of 1000 computer science thesis topics, designed to illuminate diverse pathways for academic inquiry and innovation. Whether your interest lies in the emerging trends of artificial intelligence or the practical applications of web development, this assortment spans 25 critical areas of ...

  14. 150+ Research Paper Topics For Information Technology

    Technology research questions should be succinct, specific, and unique, while also demonstrating a relationship to the topic of the technology research paper. It should be researchable and answerable through problem or issue analysis. Ensure that it is simple to grasp and that it is written inside the research paper's word limit and deadline.

  15. Technology Research Paper

    Technology Research Paper. This sample technology research paper features: 8300 words (approx. 27 pages), an outline, and a bibliography with 48 sources. Browse other research paper examples for more inspiration. If you need a thorough research paper written according to all the academic standards, you can always turn to our experienced writers ...

  16. MIT Open Access Articles

    MIT Open Access Articles

  17. Information Technology Research Papers

    The current research aims to provide a profound analysis of 15 (out of 844) research papers published in highly standard journals and conference proceedings throughout the past 10 years, from 2009 to 2019. This review study can be considered a pivotal reference for scholars as it fills in some gaps in knowledge management especially in IT and ...

  18. 450+ Technology Research Topics & Ideas for Your Paper

    450 Technology Research Topics: Best Ideas for Students

  19. Connected Papers

    Connected Papers | Find and explore academic papers

  20. How to Write a Research Paper

    How to Write a Research Paper | A Beginner's Guide

  21. Information Technology

    Information Technology | NIST

  22. 110553 PDFs

    110553 PDFs | Review articles in RESEARCH PAPERS

  23. 113 Great Research Paper Topics

    113 Great Research Paper Topics