Select a year to see courses

Learn online or on-campus during the term or school holidays

  • OC Test Preparation
  • Selective School Test Preparation
  • Maths Acceleration
  • English Advanced
  • Maths Standard
  • Maths Advanced
  • Maths Extension 1
  • English Standard
  • Maths Extension 2

Get HSC exam ready in just a week

  • UCAT Exam Preparation

Select a year to see available courses

  • English Units 1/2
  • Maths Methods Units 1/2
  • Biology Units 1/2
  • Chemistry Units 1/2
  • Physics Units 1/2
  • English Units 3/4
  • Maths Methods Units 3/4
  • Biology Unit 3/4
  • Chemistry Unit 3/4
  • Physics Unit 3/4
  • UCAT Preparation Course
  • Matrix Learning Methods
  • Matrix Term Courses
  • Matrix Holiday Courses
  • Matrix+ Online Courses
  • Campus overview
  • Castle Hill
  • Strathfield
  • Sydney City
  • Year 3 NAPLAN Guide
  • OC Test Guide
  • Selective Schools Guide
  • NSW Primary School Rankings
  • NSW High School Rankings
  • NSW High Schools Guide
  • ATAR & Scaling Guide
  • HSC Study Planning Kit
  • Student Success Secrets
  • Reading List
  • Year 6 English
  • Year 7 & 8 English
  • Year 9 English
  • Year 10 English
  • Year 11 English Standard
  • Year 11 English Advanced
  • Year 12 English Standard
  • Year 12 English Advanced
  • HSC English Skills
  • How To Write An Essay
  • How to Analyse Poetry
  • English Techniques Toolkit
  • Year 7 Maths
  • Year 8 Maths
  • Year 9 Maths
  • Year 10 Maths
  • Year 11 Maths Advanced
  • Year 11 Maths Extension 1
  • Year 12 Maths Standard 2
  • Year 12 Maths Advanced
  • Year 12 Maths Extension 1
  • Year 12 Maths Extension 2

Science guides to help you get ahead

  • Year 11 Biology
  • Year 11 Chemistry
  • Year 11 Physics
  • Year 12 Biology
  • Year 12 Chemistry
  • Year 12 Physics
  • Physics Practical Skills
  • Periodic Table
  • VIC School Rankings
  • VCE English Study Guide
  • Set Location
  • 1300 008 008
  • 1300 634 117

Welcome to Matrix Education

To ensure we are showing you the most relevant content, please select your location below.

How to Write a Scientific Report | Step-by-Step Guide

Got to document an experiment but don't know how? In this post, we'll guide you step-by-step through how to write a scientific report and provide you with an example.

' src=

Get free study tips and resources delivered to your inbox.

Join 75,893 students who already have a head start.

" * " indicates required fields

You might also like

  • 7 Tips to Help Your Child Study English at Home
  • Tips For Matrix Year 11 Subject Selection
  • 10 Things You Must Know About Context for Year 9 English
  • Ultimate King Lear Cheatsheet | English Advanced
  • How to Show, Not Tell – 7 Creative Writing Dos and Don’ts

Related courses

Year 9 science, year 10 science.

Is your teacher expecting you to write an experimental report for every class experiment? Are you still unsure about how to write a scientific report properly? Don’t fear! We’ll guide you through all parts of a scientific report, step-by-step.

How to write a scientific report:

  • What is a scientific report
  • General rules for writing Scientific reports
  • Introduction/Background information
  • Risk assessment

What is a scientific report?

A scientific report documents all aspects of an experimental investigation. This includes:

  • The aim of the experiment
  • The hypothesis
  • An introduction to the relevant background theory
  • The methods used
  • The results
  • A discussion of the results
  • The conclusion

Scientific reports allow their readers to understand the experiment without doing it themselves. These reports also give others the opportunity to check the methodology of the experiment to ensure the validity of the results.

scientific method writing assignment

Download your free experimental report template

A template to teach you to write perfect science reports

Done! Your download has been emailed.

Please allow a few minutes for it to land in your inbox.

scientific method writing assignment

We take your privacy seriously. T&Cs  and  Privacy Policy .

A scientific report is written in several stages. We write the introduction, aim, and hypothesis before performing the experiment, record the results during the experiment, and complete the discussion and conclusions after the experiment.

But, before we delve deeper into how to write a scientific report, we need to have a science experiment to write about! Choose an experiment to use as an example from our 7 Simple Experiments You Can Do At Home article.

blog-how-to-write-a-scientific-report-experiment

General rules for writing scientific reports

Learning how to write a scientific report is different from writing English essays or speeches.

You have to use:

  • Passive voice (which you should avoid when writing for other subjects like English!)
  • Past-tense language
  • Headings and subheadings
  • A pencil to draw scientific diagrams and graphs
  • Simple and clear lines for scientific diagrams
  • Tables and graphs where necessary

Structure of scientific reports

Now that you know the general rules on how to write scientific reports, let’s look at the conventions for their structure!

The title should simply introduce what your experiment is about.

The Role of Light in Photosynthesis

2. Introduction/Background information

Write a paragraph that gives your readers background information to understand your experiment.

This includes explaining scientific theories, processes, and other related knowledge.

Photosynthesis is a vital process for life. It occurs when plants intake carbon dioxide, water, and light, and results in the production of glucose and water. The light required for photosynthesis is absorbed by chlorophyll, the green pigment of plants, which is contained in the chloroplasts.

The glucose produced through photosynthesis is stored as starch, which is used as an energy source for the plant and its consumers.

The presence of starch in the leaves of a plant indicates that photosynthesis has occurred.

blog-how-to-write-a-scientific-report-photosynthesis

The aim tells us what is going to be tested in the experiment. This should be short, concise, and clear.

The aim of the experiment is to test whether light is required for photosynthesis to occur.

4. Hypothesis

The hypothesis is what you predict the outcome of the experiment will be. You have to use background information to make an educated prediction.

It is predicted that photosynthesis will occur only in leaves that are exposed to light and not in leaves that are not exposed to light. This will be indicated by the presence or absence of starch in the leaves.

5. Risk assessment

Identify the hazards related to the experiment and explain how you would prevent or minimise the risks. A hazard is something that can cause harm, and a risk is how likely it is that harm will occur because of the hazard.

A table is an excellent way to present your risk assessment.

Remember, you have to specify the  type of harm that can occur because of the hazard. It’s not enough to simply identify the hazard.

  • Do not write:  “Scissors are sharp.”
  • Instead, write: “Scissors are sharp and can cause injury.”

blog-how-to-write-a-scientific-report-photosynthesis-risk

The method has 3 parts:

  • A list of every material used
  • Steps of what you did in the experiment
  • A scientific diagram of the experimental apparatus

Let’s break down what you need to do for each section.

6a. Materials

This must list every piece of equipment and material used in the experiment.

Remember, you need to specify the amount of each material you used.

  • 1 geranium plant
  • Aluminium foil
  • 2 test tubes
  • 1 test tube rack
  • 1 pair of scissors
  • 1 250 mL beaker
  • 1 pair of forceps
  • 1 10 mL measuring cylinder
  • Iodine solution (5 mL)
  • Methylated spirit (50 mL)
  • Boiling water
  • 2 Petri dishes

blog-how-to-write-a-scientific-report-photosynthesis-material

As a rule of thumb, you should write the method clearly and in a way that readers can repeat the experiment and get similar results.

Using a numbered list for the steps of your experimental procedure is much clearer than writing a whole paragraph of text.  The steps should:

  • Be written in a sequential order, based on when they were performed
  • Specify any equipment that was used
  • Specify the quantity of any materials that were used

You also need to use past tense and passive voice when you’re writing your method. Scientific reports are supposed to show the readers what you did in the experiment, not what you will do.

  • Aluminium foil was used to fully cover a leaf of the geranium plant. The plant was left in the sun for three days.
  • On the third day, the covered leaf and 1 non-covered leaf were collected from the plant. The foil was removed from the covered leaf, and a 1 cm square was cut from each leaf using a pair of scissors.
  • 150 mL of water was boiled in a kettle and poured into a 250 mL beaker.
  • Using forceps, the 1 cm square of covered leaf was placed into the beaker of boiling water for 2 minutes. It was then placed in a test tube labelled “dark”.
  • The water in the beaker was discarded and replaced with 150 mL of freshly boiled water.
  • Using forceps, the 1 cm square non-covered leaf was placed into the beaker of boiling water for 2 minutes. It was then placed in a test tube labelled “light”.
  • 5 mL of methylated spirit was measured with a measuring cylinder and poured into each test tube so that the leaves were fully covered.
  • The water in the beaker was replaced with 150 mL of freshly boiled water and both the “light” and “dark” test tubes were immersed in the beaker of boiling water for 5 minutes.
  • The leaves were collected from each test tube with forceps, rinsed under cold running water, and placed onto separate labelled Petri dishes.
  • 3 drops of iodine solution were added to each leaf.
  • Both Petri dishes were placed side by side and observations were recorded.
  • The experiment was repeated 5 times, and results were compared between different groups.

6c. Diagram

After you complete your steps, it’s time to draw your scientific diagrams! Here are some rules for drawing scientific diagrams:

  • Always use a pencil to draw your scientific diagrams.
  • Use simple, sharp, 2D lines and shapes to draw your diagram. Don’t draw 3D shapes or use shading.
  • Label everything in your diagram.
  • Use thin, straight lines to label your diagram. Don’t use arrows.
  • Ensure that the label lines touch the outline of the equipment you are labelling and do not cross over it or stop short of it.
  • The label lines should never cross over each other.
  • Use a ruler for any straight lines in your diagram.
  • Draw a sufficiently large diagram so all components can be seen clearly.

blog-how-to-write-a-scientific-report-scientific-diagram-photosynthesis

This is where you document the results of your experiment. The data that you record for your experiment will generally be qualitative and/or quantitative.

Qualitative data is data that relates to qualities and is based on observations (qualitative – quality). This type of data is descriptive and is recorded in words. For example, the colour changed from green to orange, or the liquid became hot.

Quantitative data refers to n umerical data (quantitative – quantity). This type of data is recorded using numbers and is either measured or counted. For example, the plant grew 5.2 cm, or there were 5 frogs.

The way you record your results is important. Most of the time, a table is the best way to do this.

Here are some rules to using tables

  • Use a pencil and a ruler to draw your table.
  • Draw neat and straight lines.
  • Ensure that the table is closed (connect all your lines).
  • Don’t cross your lines (erase any lines that stick out of the table).
  • Use appropriate columns and rows.
  • Properly name each column and row (including the units of measurement in brackets).
  • Do not write your units in the body of your table (units belong in the header).
  • Always include a title.

Note : If your results require calculations, clearly write each step.

Observations of the effects of light on the amount of starch in plant leaves.

blog-how-to-write-a-scientific-report-photosynthesis-results

If quantitative data was recorded, the data is often also plotted on a graph.

8. Discussion

The discussion is where you analyse and interpret your results, and identify any experimental errors or possible areas of improvements.

You should divide your discussion as follows.

1. Trend in the results

Describe the ‘trend’ in your results. That is, the relationship you observed between your independent and dependent variables.

The independent variable is the variable that you’re changing in the experiment. In this experiment, it’s the amount of light that the leaves are exposed to.

The dependent variable is the variable that you’re measuring in the experiment. In this experiment, it’s the presence of starch in the leaves.

The presence of starch is indicated when the addition of iodine causes the leaf to turn dark purple. The results show that starch was present in the leaves that were exposed to light, while the leaves that were not exposed to light did not contain starch.

2. Scientific explanation

Give an explanation of the results using scientific knowledge, theories, and any other scientific resources you find.

As starch is produced during photosynthesis, these results show that light plays a key role in photosynthesis.

3. Validity 

Validity refers to whether or not your results are valid. This can be done by examining your variables.

VA lidity =  VA riables

Identify the independent, dependent, controlled variables, and the control experiment (if you have one).

The controlled variables are the variables that you keep the same across all tests e.g. the size of the leaf sample.

The control experiment is where you don’t apply an independent variable. It is untouched for the whole experiment.

Ensure that you never change more than one variable at a time!

The independent variable of the experiment was the amount of light that the leaves were exposed to (the covered and uncovered geranium leaf), while the dependent variable was the presence of starch. The controlled variables were the size of the leaf sample, the duration of the experiment, the amount of time the solutions were heated, and the amount of iodine solution used.

4. Reliability 

Identify how you ensured the reliability of the results.

RE liability = RE petition

Show that you repeated your experiments, cross-checked your results with other groups, or collated your results with the class.

The reliability of the results was ensured by repeating the experiment 5 times and comparing results with other groups. Since other groups obtained comparable results, the results are reliable.

5. Accuracy

You should discuss accuracy if your results are in the form of quantitative data (numerical), and there is an accepted value for the result.

Accuracy wouldn’t be discussed for our photosynthesis experiment as qualitative data was collected. But, it would be discussed if we were measuring gravity using a pendulum:

The measured value of gravity was 9.8 m/s 2 , which is in agreement with the accepted value of 9.8 m/s 2 .

6. Possible improvements 

Point out any errors or risks you found in the experiment and suggest a method to improve it.

If there are none, then suggest new ways to improve the experimental design, and/or minimise error and risks.

blog-how-to-write-a-scientific-report-improve

Possible improvements could be made by including control experiments. For example, testing whether the iodine solution turns dark purple when added to water or methylated spirits. This would help to ensure that the purple colour observed in the experiments is due to the presence of starch in the leaves rather than impurities.

9. Conclusion

State whether the aim was achieved and if your hypothesis was supported.

The aim of the investigation was achieved, and it was found that light is required for photosynthesis to occur. This was evidenced by the presence of starch in leaves that had been exposed to light, and the absence of starch in leaves that had been unexposed. These results support the proposed hypothesis.

Learn everything you need to know about Science

Gain the confidence and skills to ace Science!

Learn one term ahead of school with the Subject Matter Experts!

Learn more ?

CTA Isabelle Teaching Physics

Written by Matrix Science Team

' src=

© Matrix Education and www.matrix.edu.au, 2023. Unauthorised use and/or duplication of this material without express and written permission from this site’s author and/or owner is strictly prohibited. Excerpts and links may be used, provided that full and clear credit is given to Matrix Education and www.matrix.edu.au with appropriate and specific direction to the original content.

Year 9 Science tutoring at Matrix is known for helping students build a strong foundation before studying Biology, Chemistry or Physics in senior school.

Learning methods available

Level 9 Science tutoring program

Year 10 Science tutoring at Matrix is known for helping students build a strong foundation before studying Biology, Chemistry or Physics in Year 11 and 12.

Level 10 Science tutoring program for Victorian students

Related articles

blog hero 3 hot tips to study science effectively

3 Hot Tips To Study Science Effectively

Do you feel like you spend days on end studying for Science, but never improving? Well, maybe you're not studying effectively! So, we put together the 3 hottest tips to help you study for Science effectively.

the ultimate lord of the flies cheatsheet - Hero Images 5- Blog Guides

The Ultimate ‘Lord of the Flies’ Cheatsheet

Get a better grasp of 'Lord of the Flies' plots, characters, themes, and context with this article!

scientific method writing assignment

The Ultimate Short Story Reading List | Flash Fiction, Short Stories, & Novellas

Scroll down to see the top short fiction texts you need to read to take your English skills to the next level.

The Writing Center • University of North Carolina at Chapel Hill

Scientific Reports

What this handout is about.

This handout provides a general guide to writing reports about scientific research you’ve performed. In addition to describing the conventional rules about the format and content of a lab report, we’ll also attempt to convey why these rules exist, so you’ll get a clearer, more dependable idea of how to approach this writing situation. Readers of this handout may also find our handout on writing in the sciences useful.

Background and pre-writing

Why do we write research reports.

You did an experiment or study for your science class, and now you have to write it up for your teacher to review. You feel that you understood the background sufficiently, designed and completed the study effectively, obtained useful data, and can use those data to draw conclusions about a scientific process or principle. But how exactly do you write all that? What is your teacher expecting to see?

To take some of the guesswork out of answering these questions, try to think beyond the classroom setting. In fact, you and your teacher are both part of a scientific community, and the people who participate in this community tend to share the same values. As long as you understand and respect these values, your writing will likely meet the expectations of your audience—including your teacher.

So why are you writing this research report? The practical answer is “Because the teacher assigned it,” but that’s classroom thinking. Generally speaking, people investigating some scientific hypothesis have a responsibility to the rest of the scientific world to report their findings, particularly if these findings add to or contradict previous ideas. The people reading such reports have two primary goals:

  • They want to gather the information presented.
  • They want to know that the findings are legitimate.

Your job as a writer, then, is to fulfill these two goals.

How do I do that?

Good question. Here is the basic format scientists have designed for research reports:

  • Introduction

Methods and Materials

This format, sometimes called “IMRAD,” may take slightly different shapes depending on the discipline or audience; some ask you to include an abstract or separate section for the hypothesis, or call the Discussion section “Conclusions,” or change the order of the sections (some professional and academic journals require the Methods section to appear last). Overall, however, the IMRAD format was devised to represent a textual version of the scientific method.

The scientific method, you’ll probably recall, involves developing a hypothesis, testing it, and deciding whether your findings support the hypothesis. In essence, the format for a research report in the sciences mirrors the scientific method but fleshes out the process a little. Below, you’ll find a table that shows how each written section fits into the scientific method and what additional information it offers the reader.

Thinking of your research report as based on the scientific method, but elaborated in the ways described above, may help you to meet your audience’s expectations successfully. We’re going to proceed by explicitly connecting each section of the lab report to the scientific method, then explaining why and how you need to elaborate that section.

Although this handout takes each section in the order in which it should be presented in the final report, you may for practical reasons decide to compose sections in another order. For example, many writers find that composing their Methods and Results before the other sections helps to clarify their idea of the experiment or study as a whole. You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you.

What should I do before drafting the lab report?

The best way to prepare to write the lab report is to make sure that you fully understand everything you need to about the experiment. Obviously, if you don’t quite know what went on during the lab, you’re going to find it difficult to explain the lab satisfactorily to someone else. To make sure you know enough to write the report, complete the following steps:

  • What are we going to do in this lab? (That is, what’s the procedure?)
  • Why are we going to do it that way?
  • What are we hoping to learn from this experiment?
  • Why would we benefit from this knowledge?
  • Consult your lab supervisor as you perform the lab. If you don’t know how to answer one of the questions above, for example, your lab supervisor will probably be able to explain it to you (or, at least, help you figure it out).
  • Plan the steps of the experiment carefully with your lab partners. The less you rush, the more likely it is that you’ll perform the experiment correctly and record your findings accurately. Also, take some time to think about the best way to organize the data before you have to start putting numbers down. If you can design a table to account for the data, that will tend to work much better than jotting results down hurriedly on a scrap piece of paper.
  • Record the data carefully so you get them right. You won’t be able to trust your conclusions if you have the wrong data, and your readers will know you messed up if the other three people in your group have “97 degrees” and you have “87.”
  • Consult with your lab partners about everything you do. Lab groups often make one of two mistakes: two people do all the work while two have a nice chat, or everybody works together until the group finishes gathering the raw data, then scrams outta there. Collaborate with your partners, even when the experiment is “over.” What trends did you observe? Was the hypothesis supported? Did you all get the same results? What kind of figure should you use to represent your findings? The whole group can work together to answer these questions.
  • Consider your audience. You may believe that audience is a non-issue: it’s your lab TA, right? Well, yes—but again, think beyond the classroom. If you write with only your lab instructor in mind, you may omit material that is crucial to a complete understanding of your experiment, because you assume the instructor knows all that stuff already. As a result, you may receive a lower grade, since your TA won’t be sure that you understand all the principles at work. Try to write towards a student in the same course but a different lab section. That student will have a fair degree of scientific expertise but won’t know much about your experiment particularly. Alternatively, you could envision yourself five years from now, after the reading and lectures for this course have faded a bit. What would you remember, and what would you need explained more clearly (as a refresher)?

Once you’ve completed these steps as you perform the experiment, you’ll be in a good position to draft an effective lab report.

Introductions

How do i write a strong introduction.

For the purposes of this handout, we’ll consider the Introduction to contain four basic elements: the purpose, the scientific literature relevant to the subject, the hypothesis, and the reasons you believed your hypothesis viable. Let’s start by going through each element of the Introduction to clarify what it covers and why it’s important. Then we can formulate a logical organizational strategy for the section.

The inclusion of the purpose (sometimes called the objective) of the experiment often confuses writers. The biggest misconception is that the purpose is the same as the hypothesis. Not quite. We’ll get to hypotheses in a minute, but basically they provide some indication of what you expect the experiment to show. The purpose is broader, and deals more with what you expect to gain through the experiment. In a professional setting, the hypothesis might have something to do with how cells react to a certain kind of genetic manipulation, but the purpose of the experiment is to learn more about potential cancer treatments. Undergraduate reports don’t often have this wide-ranging a goal, but you should still try to maintain the distinction between your hypothesis and your purpose. In a solubility experiment, for example, your hypothesis might talk about the relationship between temperature and the rate of solubility, but the purpose is probably to learn more about some specific scientific principle underlying the process of solubility.

For starters, most people say that you should write out your working hypothesis before you perform the experiment or study. Many beginning science students neglect to do so and find themselves struggling to remember precisely which variables were involved in the process or in what way the researchers felt that they were related. Write your hypothesis down as you develop it—you’ll be glad you did.

As for the form a hypothesis should take, it’s best not to be too fancy or complicated; an inventive style isn’t nearly so important as clarity here. There’s nothing wrong with beginning your hypothesis with the phrase, “It was hypothesized that . . .” Be as specific as you can about the relationship between the different objects of your study. In other words, explain that when term A changes, term B changes in this particular way. Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails.

Not a hypothesis:

“It was hypothesized that there is a significant relationship between the temperature of a solvent and the rate at which a solute dissolves.”

Hypothesis:

“It was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases.”

Put more technically, most hypotheses contain both an independent and a dependent variable. The independent variable is what you manipulate to test the reaction; the dependent variable is what changes as a result of your manipulation. In the example above, the independent variable is the temperature of the solvent, and the dependent variable is the rate of solubility. Be sure that your hypothesis includes both variables.

Justify your hypothesis

You need to do more than tell your readers what your hypothesis is; you also need to assure them that this hypothesis was reasonable, given the circumstances. In other words, use the Introduction to explain that you didn’t just pluck your hypothesis out of thin air. (If you did pluck it out of thin air, your problems with your report will probably extend beyond using the appropriate format.) If you posit that a particular relationship exists between the independent and the dependent variable, what led you to believe your “guess” might be supported by evidence?

Scientists often refer to this type of justification as “motivating” the hypothesis, in the sense that something propelled them to make that prediction. Often, motivation includes what we already know—or rather, what scientists generally accept as true (see “Background/previous research” below). But you can also motivate your hypothesis by relying on logic or on your own observations. If you’re trying to decide which solutes will dissolve more rapidly in a solvent at increased temperatures, you might remember that some solids are meant to dissolve in hot water (e.g., bouillon cubes) and some are used for a function precisely because they withstand higher temperatures (they make saucepans out of something). Or you can think about whether you’ve noticed sugar dissolving more rapidly in your glass of iced tea or in your cup of coffee. Even such basic, outside-the-lab observations can help you justify your hypothesis as reasonable.

Background/previous research

This part of the Introduction demonstrates to the reader your awareness of how you’re building on other scientists’ work. If you think of the scientific community as engaging in a series of conversations about various topics, then you’ll recognize that the relevant background material will alert the reader to which conversation you want to enter.

Generally speaking, authors writing journal articles use the background for slightly different purposes than do students completing assignments. Because readers of academic journals tend to be professionals in the field, authors explain the background in order to permit readers to evaluate the study’s pertinence for their own work. You, on the other hand, write toward a much narrower audience—your peers in the course or your lab instructor—and so you must demonstrate that you understand the context for the (presumably assigned) experiment or study you’ve completed. For example, if your professor has been talking about polarity during lectures, and you’re doing a solubility experiment, you might try to connect the polarity of a solid to its relative solubility in certain solvents. In any event, both professional researchers and undergraduates need to connect the background material overtly to their own work.

Organization of this section

Most of the time, writers begin by stating the purpose or objectives of their own work, which establishes for the reader’s benefit the “nature and scope of the problem investigated” (Day 1994). Once you have expressed your purpose, you should then find it easier to move from the general purpose, to relevant material on the subject, to your hypothesis. In abbreviated form, an Introduction section might look like this:

“The purpose of the experiment was to test conventional ideas about solubility in the laboratory [purpose] . . . According to Whitecoat and Labrat (1999), at higher temperatures the molecules of solvents move more quickly . . . We know from the class lecture that molecules moving at higher rates of speed collide with one another more often and thus break down more easily [background material/motivation] . . . Thus, it was hypothesized that as the temperature of a solvent increases, the rate at which a solute will dissolve in that solvent increases [hypothesis].”

Again—these are guidelines, not commandments. Some writers and readers prefer different structures for the Introduction. The one above merely illustrates a common approach to organizing material.

How do I write a strong Materials and Methods section?

As with any piece of writing, your Methods section will succeed only if it fulfills its readers’ expectations, so you need to be clear in your own mind about the purpose of this section. Let’s review the purpose as we described it above: in this section, you want to describe in detail how you tested the hypothesis you developed and also to clarify the rationale for your procedure. In science, it’s not sufficient merely to design and carry out an experiment. Ultimately, others must be able to verify your findings, so your experiment must be reproducible, to the extent that other researchers can follow the same procedure and obtain the same (or similar) results.

Here’s a real-world example of the importance of reproducibility. In 1989, physicists Stanley Pons and Martin Fleischman announced that they had discovered “cold fusion,” a way of producing excess heat and power without the nuclear radiation that accompanies “hot fusion.” Such a discovery could have great ramifications for the industrial production of energy, so these findings created a great deal of interest. When other scientists tried to duplicate the experiment, however, they didn’t achieve the same results, and as a result many wrote off the conclusions as unjustified (or worse, a hoax). To this day, the viability of cold fusion is debated within the scientific community, even though an increasing number of researchers believe it possible. So when you write your Methods section, keep in mind that you need to describe your experiment well enough to allow others to replicate it exactly.

With these goals in mind, let’s consider how to write an effective Methods section in terms of content, structure, and style.

Sometimes the hardest thing about writing this section isn’t what you should talk about, but what you shouldn’t talk about. Writers often want to include the results of their experiment, because they measured and recorded the results during the course of the experiment. But such data should be reserved for the Results section. In the Methods section, you can write that you recorded the results, or how you recorded the results (e.g., in a table), but you shouldn’t write what the results were—not yet. Here, you’re merely stating exactly how you went about testing your hypothesis. As you draft your Methods section, ask yourself the following questions:

  • How much detail? Be precise in providing details, but stay relevant. Ask yourself, “Would it make any difference if this piece were a different size or made from a different material?” If not, you probably don’t need to get too specific. If so, you should give as many details as necessary to prevent this experiment from going awry if someone else tries to carry it out. Probably the most crucial detail is measurement; you should always quantify anything you can, such as time elapsed, temperature, mass, volume, etc.
  • Rationale: Be sure that as you’re relating your actions during the experiment, you explain your rationale for the protocol you developed. If you capped a test tube immediately after adding a solute to a solvent, why did you do that? (That’s really two questions: why did you cap it, and why did you cap it immediately?) In a professional setting, writers provide their rationale as a way to explain their thinking to potential critics. On one hand, of course, that’s your motivation for talking about protocol, too. On the other hand, since in practical terms you’re also writing to your teacher (who’s seeking to evaluate how well you comprehend the principles of the experiment), explaining the rationale indicates that you understand the reasons for conducting the experiment in that way, and that you’re not just following orders. Critical thinking is crucial—robots don’t make good scientists.
  • Control: Most experiments will include a control, which is a means of comparing experimental results. (Sometimes you’ll need to have more than one control, depending on the number of hypotheses you want to test.) The control is exactly the same as the other items you’re testing, except that you don’t manipulate the independent variable-the condition you’re altering to check the effect on the dependent variable. For example, if you’re testing solubility rates at increased temperatures, your control would be a solution that you didn’t heat at all; that way, you’ll see how quickly the solute dissolves “naturally” (i.e., without manipulation), and you’ll have a point of reference against which to compare the solutions you did heat.

Describe the control in the Methods section. Two things are especially important in writing about the control: identify the control as a control, and explain what you’re controlling for. Here is an example:

“As a control for the temperature change, we placed the same amount of solute in the same amount of solvent, and let the solution stand for five minutes without heating it.”

Structure and style

Organization is especially important in the Methods section of a lab report because readers must understand your experimental procedure completely. Many writers are surprised by the difficulty of conveying what they did during the experiment, since after all they’re only reporting an event, but it’s often tricky to present this information in a coherent way. There’s a fairly standard structure you can use to guide you, and following the conventions for style can help clarify your points.

  • Subsections: Occasionally, researchers use subsections to report their procedure when the following circumstances apply: 1) if they’ve used a great many materials; 2) if the procedure is unusually complicated; 3) if they’ve developed a procedure that won’t be familiar to many of their readers. Because these conditions rarely apply to the experiments you’ll perform in class, most undergraduate lab reports won’t require you to use subsections. In fact, many guides to writing lab reports suggest that you try to limit your Methods section to a single paragraph.
  • Narrative structure: Think of this section as telling a story about a group of people and the experiment they performed. Describe what you did in the order in which you did it. You may have heard the old joke centered on the line, “Disconnect the red wire, but only after disconnecting the green wire,” where the person reading the directions blows everything to kingdom come because the directions weren’t in order. We’re used to reading about events chronologically, and so your readers will generally understand what you did if you present that information in the same way. Also, since the Methods section does generally appear as a narrative (story), you want to avoid the “recipe” approach: “First, take a clean, dry 100 ml test tube from the rack. Next, add 50 ml of distilled water.” You should be reporting what did happen, not telling the reader how to perform the experiment: “50 ml of distilled water was poured into a clean, dry 100 ml test tube.” Hint: most of the time, the recipe approach comes from copying down the steps of the procedure from your lab manual, so you may want to draft the Methods section initially without consulting your manual. Later, of course, you can go back and fill in any part of the procedure you inadvertently overlooked.
  • Past tense: Remember that you’re describing what happened, so you should use past tense to refer to everything you did during the experiment. Writers are often tempted to use the imperative (“Add 5 g of the solid to the solution”) because that’s how their lab manuals are worded; less frequently, they use present tense (“5 g of the solid are added to the solution”). Instead, remember that you’re talking about an event which happened at a particular time in the past, and which has already ended by the time you start writing, so simple past tense will be appropriate in this section (“5 g of the solid were added to the solution” or “We added 5 g of the solid to the solution”).
  • Active: We heated the solution to 80°C. (The subject, “we,” performs the action, heating.)
  • Passive: The solution was heated to 80°C. (The subject, “solution,” doesn’t do the heating–it is acted upon, not acting.)

Increasingly, especially in the social sciences, using first person and active voice is acceptable in scientific reports. Most readers find that this style of writing conveys information more clearly and concisely. This rhetorical choice thus brings two scientific values into conflict: objectivity versus clarity. Since the scientific community hasn’t reached a consensus about which style it prefers, you may want to ask your lab instructor.

How do I write a strong Results section?

Here’s a paradox for you. The Results section is often both the shortest (yay!) and most important (uh-oh!) part of your report. Your Materials and Methods section shows how you obtained the results, and your Discussion section explores the significance of the results, so clearly the Results section forms the backbone of the lab report. This section provides the most critical information about your experiment: the data that allow you to discuss how your hypothesis was or wasn’t supported. But it doesn’t provide anything else, which explains why this section is generally shorter than the others.

Before you write this section, look at all the data you collected to figure out what relates significantly to your hypothesis. You’ll want to highlight this material in your Results section. Resist the urge to include every bit of data you collected, since perhaps not all are relevant. Also, don’t try to draw conclusions about the results—save them for the Discussion section. In this section, you’re reporting facts. Nothing your readers can dispute should appear in the Results section.

Most Results sections feature three distinct parts: text, tables, and figures. Let’s consider each part one at a time.

This should be a short paragraph, generally just a few lines, that describes the results you obtained from your experiment. In a relatively simple experiment, one that doesn’t produce a lot of data for you to repeat, the text can represent the entire Results section. Don’t feel that you need to include lots of extraneous detail to compensate for a short (but effective) text; your readers appreciate discrimination more than your ability to recite facts. In a more complex experiment, you may want to use tables and/or figures to help guide your readers toward the most important information you gathered. In that event, you’ll need to refer to each table or figure directly, where appropriate:

“Table 1 lists the rates of solubility for each substance”

“Solubility increased as the temperature of the solution increased (see Figure 1).”

If you do use tables or figures, make sure that you don’t present the same material in both the text and the tables/figures, since in essence you’ll just repeat yourself, probably annoying your readers with the redundancy of your statements.

Feel free to describe trends that emerge as you examine the data. Although identifying trends requires some judgment on your part and so may not feel like factual reporting, no one can deny that these trends do exist, and so they properly belong in the Results section. Example:

“Heating the solution increased the rate of solubility of polar solids by 45% but had no effect on the rate of solubility in solutions containing non-polar solids.”

This point isn’t debatable—you’re just pointing out what the data show.

As in the Materials and Methods section, you want to refer to your data in the past tense, because the events you recorded have already occurred and have finished occurring. In the example above, note the use of “increased” and “had,” rather than “increases” and “has.” (You don’t know from your experiment that heating always increases the solubility of polar solids, but it did that time.)

You shouldn’t put information in the table that also appears in the text. You also shouldn’t use a table to present irrelevant data, just to show you did collect these data during the experiment. Tables are good for some purposes and situations, but not others, so whether and how you’ll use tables depends upon what you need them to accomplish.

Tables are useful ways to show variation in data, but not to present a great deal of unchanging measurements. If you’re dealing with a scientific phenomenon that occurs only within a certain range of temperatures, for example, you don’t need to use a table to show that the phenomenon didn’t occur at any of the other temperatures. How useful is this table?

A table labeled Effect of Temperature on Rate of Solubility with temperature of solvent values in 10-degree increments from -20 degrees Celsius to 80 degrees Celsius that does not show a corresponding rate of solubility value until 50 degrees Celsius.

As you can probably see, no solubility was observed until the trial temperature reached 50°C, a fact that the text part of the Results section could easily convey. The table could then be limited to what happened at 50°C and higher, thus better illustrating the differences in solubility rates when solubility did occur.

As a rule, try not to use a table to describe any experimental event you can cover in one sentence of text. Here’s an example of an unnecessary table from How to Write and Publish a Scientific Paper , by Robert A. Day:

A table labeled Oxygen requirements of various species of Streptomyces showing the names of organisms and two columns that indicate growth under aerobic conditions and growth under anaerobic conditions with a plus or minus symbol for each organism in the growth columns to indicate value.

As Day notes, all the information in this table can be summarized in one sentence: “S. griseus, S. coelicolor, S. everycolor, and S. rainbowenski grew under aerobic conditions, whereas S. nocolor and S. greenicus required anaerobic conditions.” Most readers won’t find the table clearer than that one sentence.

When you do have reason to tabulate material, pay attention to the clarity and readability of the format you use. Here are a few tips:

  • Number your table. Then, when you refer to the table in the text, use that number to tell your readers which table they can review to clarify the material.
  • Give your table a title. This title should be descriptive enough to communicate the contents of the table, but not so long that it becomes difficult to follow. The titles in the sample tables above are acceptable.
  • Arrange your table so that readers read vertically, not horizontally. For the most part, this rule means that you should construct your table so that like elements read down, not across. Think about what you want your readers to compare, and put that information in the column (up and down) rather than in the row (across). Usually, the point of comparison will be the numerical data you collect, so especially make sure you have columns of numbers, not rows.Here’s an example of how drastically this decision affects the readability of your table (from A Short Guide to Writing about Chemistry , by Herbert Beall and John Trimbur). Look at this table, which presents the relevant data in horizontal rows:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in rows horizontally.

It’s a little tough to see the trends that the author presumably wants to present in this table. Compare this table, in which the data appear vertically:

A table labeled Boyle's Law Experiment: Measuring Volume as a Function of Pressure that presents the trial number, length of air sample in millimeters, and height difference in inches of mercury, each of which is presented in columns vertically.

The second table shows how putting like elements in a vertical column makes for easier reading. In this case, the like elements are the measurements of length and height, over five trials–not, as in the first table, the length and height measurements for each trial.

  • Make sure to include units of measurement in the tables. Readers might be able to guess that you measured something in millimeters, but don’t make them try.
  • Don’t use vertical lines as part of the format for your table. This convention exists because journals prefer not to have to reproduce these lines because the tables then become more expensive to print. Even though it’s fairly unlikely that you’ll be sending your Biology 11 lab report to Science for publication, your readers still have this expectation. Consequently, if you use the table-drawing option in your word-processing software, choose the option that doesn’t rely on a “grid” format (which includes vertical lines).

How do I include figures in my report?

Although tables can be useful ways of showing trends in the results you obtained, figures (i.e., illustrations) can do an even better job of emphasizing such trends. Lab report writers often use graphic representations of the data they collected to provide their readers with a literal picture of how the experiment went.

When should you use a figure?

Remember the circumstances under which you don’t need a table: when you don’t have a great deal of data or when the data you have don’t vary a lot. Under the same conditions, you would probably forgo the figure as well, since the figure would be unlikely to provide your readers with an additional perspective. Scientists really don’t like their time wasted, so they tend not to respond favorably to redundancy.

If you’re trying to decide between using a table and creating a figure to present your material, consider the following a rule of thumb. The strength of a table lies in its ability to supply large amounts of exact data, whereas the strength of a figure is its dramatic illustration of important trends within the experiment. If you feel that your readers won’t get the full impact of the results you obtained just by looking at the numbers, then a figure might be appropriate.

Of course, an undergraduate class may expect you to create a figure for your lab experiment, if only to make sure that you can do so effectively. If this is the case, then don’t worry about whether to use figures or not—concentrate instead on how best to accomplish your task.

Figures can include maps, photographs, pen-and-ink drawings, flow charts, bar graphs, and section graphs (“pie charts”). But the most common figure by far, especially for undergraduates, is the line graph, so we’ll focus on that type in this handout.

At the undergraduate level, you can often draw and label your graphs by hand, provided that the result is clear, legible, and drawn to scale. Computer technology has, however, made creating line graphs a lot easier. Most word-processing software has a number of functions for transferring data into graph form; many scientists have found Microsoft Excel, for example, a helpful tool in graphing results. If you plan on pursuing a career in the sciences, it may be well worth your while to learn to use a similar program.

Computers can’t, however, decide for you how your graph really works; you have to know how to design your graph to meet your readers’ expectations. Here are some of these expectations:

  • Keep it as simple as possible. You may be tempted to signal the complexity of the information you gathered by trying to design a graph that accounts for that complexity. But remember the purpose of your graph: to dramatize your results in a manner that’s easy to see and grasp. Try not to make the reader stare at the graph for a half hour to find the important line among the mass of other lines. For maximum effectiveness, limit yourself to three to five lines per graph; if you have more data to demonstrate, use a set of graphs to account for it, rather than trying to cram it all into a single figure.
  • Plot the independent variable on the horizontal (x) axis and the dependent variable on the vertical (y) axis. Remember that the independent variable is the condition that you manipulated during the experiment and the dependent variable is the condition that you measured to see if it changed along with the independent variable. Placing the variables along their respective axes is mostly just a convention, but since your readers are accustomed to viewing graphs in this way, you’re better off not challenging the convention in your report.
  • Label each axis carefully, and be especially careful to include units of measure. You need to make sure that your readers understand perfectly well what your graph indicates.
  • Number and title your graphs. As with tables, the title of the graph should be informative but concise, and you should refer to your graph by number in the text (e.g., “Figure 1 shows the increase in the solubility rate as a function of temperature”).
  • Many editors of professional scientific journals prefer that writers distinguish the lines in their graphs by attaching a symbol to them, usually a geometric shape (triangle, square, etc.), and using that symbol throughout the curve of the line. Generally, readers have a hard time distinguishing dotted lines from dot-dash lines from straight lines, so you should consider staying away from this system. Editors don’t usually like different-colored lines within a graph because colors are difficult and expensive to reproduce; colors may, however, be great for your purposes, as long as you’re not planning to submit your paper to Nature. Use your discretion—try to employ whichever technique dramatizes the results most effectively.
  • Try to gather data at regular intervals, so the plot points on your graph aren’t too far apart. You can’t be sure of the arc you should draw between the plot points if the points are located at the far corners of the graph; over a fifteen-minute interval, perhaps the change occurred in the first or last thirty seconds of that period (in which case your straight-line connection between the points is misleading).
  • If you’re worried that you didn’t collect data at sufficiently regular intervals during your experiment, go ahead and connect the points with a straight line, but you may want to examine this problem as part of your Discussion section.
  • Make your graph large enough so that everything is legible and clearly demarcated, but not so large that it either overwhelms the rest of the Results section or provides a far greater range than you need to illustrate your point. If, for example, the seedlings of your plant grew only 15 mm during the trial, you don’t need to construct a graph that accounts for 100 mm of growth. The lines in your graph should more or less fill the space created by the axes; if you see that your data is confined to the lower left portion of the graph, you should probably re-adjust your scale.
  • If you create a set of graphs, make them the same size and format, including all the verbal and visual codes (captions, symbols, scale, etc.). You want to be as consistent as possible in your illustrations, so that your readers can easily make the comparisons you’re trying to get them to see.

How do I write a strong Discussion section?

The discussion section is probably the least formalized part of the report, in that you can’t really apply the same structure to every type of experiment. In simple terms, here you tell your readers what to make of the Results you obtained. If you have done the Results part well, your readers should already recognize the trends in the data and have a fairly clear idea of whether your hypothesis was supported. Because the Results can seem so self-explanatory, many students find it difficult to know what material to add in this last section.

Basically, the Discussion contains several parts, in no particular order, but roughly moving from specific (i.e., related to your experiment only) to general (how your findings fit in the larger scientific community). In this section, you will, as a rule, need to:

Explain whether the data support your hypothesis

  • Acknowledge any anomalous data or deviations from what you expected

Derive conclusions, based on your findings, about the process you’re studying

  • Relate your findings to earlier work in the same area (if you can)

Explore the theoretical and/or practical implications of your findings

Let’s look at some dos and don’ts for each of these objectives.

This statement is usually a good way to begin the Discussion, since you can’t effectively speak about the larger scientific value of your study until you’ve figured out the particulars of this experiment. You might begin this part of the Discussion by explicitly stating the relationships or correlations your data indicate between the independent and dependent variables. Then you can show more clearly why you believe your hypothesis was or was not supported. For example, if you tested solubility at various temperatures, you could start this section by noting that the rates of solubility increased as the temperature increased. If your initial hypothesis surmised that temperature change would not affect solubility, you would then say something like,

“The hypothesis that temperature change would not affect solubility was not supported by the data.”

Note: Students tend to view labs as practical tests of undeniable scientific truths. As a result, you may want to say that the hypothesis was “proved” or “disproved” or that it was “correct” or “incorrect.” These terms, however, reflect a degree of certainty that you as a scientist aren’t supposed to have. Remember, you’re testing a theory with a procedure that lasts only a few hours and relies on only a few trials, which severely compromises your ability to be sure about the “truth” you see. Words like “supported,” “indicated,” and “suggested” are more acceptable ways to evaluate your hypothesis.

Also, recognize that saying whether the data supported your hypothesis or not involves making a claim to be defended. As such, you need to show the readers that this claim is warranted by the evidence. Make sure that you’re very explicit about the relationship between the evidence and the conclusions you draw from it. This process is difficult for many writers because we don’t often justify conclusions in our regular lives. For example, you might nudge your friend at a party and whisper, “That guy’s drunk,” and once your friend lays eyes on the person in question, she might readily agree. In a scientific paper, by contrast, you would need to defend your claim more thoroughly by pointing to data such as slurred words, unsteady gait, and the lampshade-as-hat. In addition to pointing out these details, you would also need to show how (according to previous studies) these signs are consistent with inebriation, especially if they occur in conjunction with one another. To put it another way, tell your readers exactly how you got from point A (was the hypothesis supported?) to point B (yes/no).

Acknowledge any anomalous data, or deviations from what you expected

You need to take these exceptions and divergences into account, so that you qualify your conclusions sufficiently. For obvious reasons, your readers will doubt your authority if you (deliberately or inadvertently) overlook a key piece of data that doesn’t square with your perspective on what occurred. In a more philosophical sense, once you’ve ignored evidence that contradicts your claims, you’ve departed from the scientific method. The urge to “tidy up” the experiment is often strong, but if you give in to it you’re no longer performing good science.

Sometimes after you’ve performed a study or experiment, you realize that some part of the methods you used to test your hypothesis was flawed. In that case, it’s OK to suggest that if you had the chance to conduct your test again, you might change the design in this or that specific way in order to avoid such and such a problem. The key to making this approach work, though, is to be very precise about the weakness in your experiment, why and how you think that weakness might have affected your data, and how you would alter your protocol to eliminate—or limit the effects of—that weakness. Often, inexperienced researchers and writers feel the need to account for “wrong” data (remember, there’s no such animal), and so they speculate wildly about what might have screwed things up. These speculations include such factors as the unusually hot temperature in the room, or the possibility that their lab partners read the meters wrong, or the potentially defective equipment. These explanations are what scientists call “cop-outs,” or “lame”; don’t indicate that the experiment had a weakness unless you’re fairly certain that a) it really occurred and b) you can explain reasonably well how that weakness affected your results.

If, for example, your hypothesis dealt with the changes in solubility at different temperatures, then try to figure out what you can rationally say about the process of solubility more generally. If you’re doing an undergraduate lab, chances are that the lab will connect in some way to the material you’ve been covering either in lecture or in your reading, so you might choose to return to these resources as a way to help you think clearly about the process as a whole.

This part of the Discussion section is another place where you need to make sure that you’re not overreaching. Again, nothing you’ve found in one study would remotely allow you to claim that you now “know” something, or that something isn’t “true,” or that your experiment “confirmed” some principle or other. Hesitate before you go out on a limb—it’s dangerous! Use less absolutely conclusive language, including such words as “suggest,” “indicate,” “correspond,” “possibly,” “challenge,” etc.

Relate your findings to previous work in the field (if possible)

We’ve been talking about how to show that you belong in a particular community (such as biologists or anthropologists) by writing within conventions that they recognize and accept. Another is to try to identify a conversation going on among members of that community, and use your work to contribute to that conversation. In a larger philosophical sense, scientists can’t fully understand the value of their research unless they have some sense of the context that provoked and nourished it. That is, you have to recognize what’s new about your project (potentially, anyway) and how it benefits the wider body of scientific knowledge. On a more pragmatic level, especially for undergraduates, connecting your lab work to previous research will demonstrate to the TA that you see the big picture. You have an opportunity, in the Discussion section, to distinguish yourself from the students in your class who aren’t thinking beyond the barest facts of the study. Capitalize on this opportunity by putting your own work in context.

If you’re just beginning to work in the natural sciences (as a first-year biology or chemistry student, say), most likely the work you’ll be doing has already been performed and re-performed to a satisfactory degree. Hence, you could probably point to a similar experiment or study and compare/contrast your results and conclusions. More advanced work may deal with an issue that is somewhat less “resolved,” and so previous research may take the form of an ongoing debate, and you can use your own work to weigh in on that debate. If, for example, researchers are hotly disputing the value of herbal remedies for the common cold, and the results of your study suggest that Echinacea diminishes the symptoms but not the actual presence of the cold, then you might want to take some time in the Discussion section to recapitulate the specifics of the dispute as it relates to Echinacea as an herbal remedy. (Consider that you have probably already written in the Introduction about this debate as background research.)

This information is often the best way to end your Discussion (and, for all intents and purposes, the report). In argumentative writing generally, you want to use your closing words to convey the main point of your writing. This main point can be primarily theoretical (“Now that you understand this information, you’re in a better position to understand this larger issue”) or primarily practical (“You can use this information to take such and such an action”). In either case, the concluding statements help the reader to comprehend the significance of your project and your decision to write about it.

Since a lab report is argumentative—after all, you’re investigating a claim, and judging the legitimacy of that claim by generating and collecting evidence—it’s often a good idea to end your report with the same technique for establishing your main point. If you want to go the theoretical route, you might talk about the consequences your study has for the field or phenomenon you’re investigating. To return to the examples regarding solubility, you could end by reflecting on what your work on solubility as a function of temperature tells us (potentially) about solubility in general. (Some folks consider this type of exploration “pure” as opposed to “applied” science, although these labels can be problematic.) If you want to go the practical route, you could end by speculating about the medical, institutional, or commercial implications of your findings—in other words, answer the question, “What can this study help people to do?” In either case, you’re going to make your readers’ experience more satisfying, by helping them see why they spent their time learning what you had to teach them.

Works consulted

We consulted these works while writing this handout. This is not a comprehensive list of resources on the handout’s topic, and we encourage you to do your own research to find additional publications. Please do not use this list as a model for the format of your own reference list, as it may not match the citation style you are using. For guidance on formatting citations, please see the UNC Libraries citation tutorial . We revise these tips periodically and welcome feedback.

American Psychological Association. 2010. Publication Manual of the American Psychological Association . 6th ed. Washington, DC: American Psychological Association.

Beall, Herbert, and John Trimbur. 2001. A Short Guide to Writing About Chemistry , 2nd ed. New York: Longman.

Blum, Deborah, and Mary Knudson. 1997. A Field Guide for Science Writers: The Official Guide of the National Association of Science Writers . New York: Oxford University Press.

Booth, Wayne C., Gregory G. Colomb, Joseph M. Williams, Joseph Bizup, and William T. FitzGerald. 2016. The Craft of Research , 4th ed. Chicago: University of Chicago Press.

Briscoe, Mary Helen. 1996. Preparing Scientific Illustrations: A Guide to Better Posters, Presentations, and Publications , 2nd ed. New York: Springer-Verlag.

Council of Science Editors. 2014. Scientific Style and Format: The CSE Manual for Authors, Editors, and Publishers , 8th ed. Chicago & London: University of Chicago Press.

Davis, Martha. 2012. Scientific Papers and Presentations , 3rd ed. London: Academic Press.

Day, Robert A. 1994. How to Write and Publish a Scientific Paper , 4th ed. Phoenix: Oryx Press.

Porush, David. 1995. A Short Guide to Writing About Science . New York: Longman.

Williams, Joseph, and Joseph Bizup. 2017. Style: Lessons in Clarity and Grace , 12th ed. Boston: Pearson.

You may reproduce it for non-commercial use if you use the entire handout and attribute the source: The Writing Center, University of North Carolina at Chapel Hill

Make a Gift

  • Science, Tech, Math ›
  • Chemistry ›
  • Scientific Method ›

Six Steps of the Scientific Method

Learn What Makes Each Stage Important

ThoughtCo. / Hugo Lin 

  • Scientific Method
  • Chemical Laws
  • Periodic Table
  • Projects & Experiments
  • Biochemistry
  • Physical Chemistry
  • Medical Chemistry
  • Chemistry In Everyday Life
  • Famous Chemists
  • Activities for Kids
  • Abbreviations & Acronyms
  • Weather & Climate
  • Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
  • B.A., Physics and Mathematics, Hastings College

The scientific method is a systematic way of learning about the world around us. The key difference between the scientific method and other ways of acquiring knowledge is that, when using the scientific method, we make hypotheses and then test them with an experiment.

Anyone can use the scientific method to acquire knowledge by asking questions and then working to find the answers to those questions. Below are the six steps involved in the scientific method and variables you may encounter when working with this method.

The Six Steps

The number of steps in the scientific method can vary from one description to another (which mainly happens when data and analysis are separated into separate steps), however, below is a fairly standard list of the six steps you'll likely be expected to know for any science class:

  • Purpose/Question Ask a question.
  • Research Conduct background research. Write down your sources so you can cite your references. In the modern era, you might conduct much of your research online. As you read articles and papers online, ensure you scroll to the bottom of the text to check the author's references. Even if you can't access the full text of a published article, you can usually view the abstract to see the summary of other experiments . Interview experts on a topic. The more you know about a subject, the easier it'll be to conduct your investigation.
  • Hypothesis Propose a hypothesis . This is a sort of educated guess about what you expect your research to reveal. A hypothesis is a statement used to predict the outcome of an experiment. Usually, a hypothesis is written in terms of cause and effect. Alternatively, it may describe the relationship between two phenomena. The null hypothesis or the no-difference hypothesis is one type of hypothesis that's easy to test because it assumes changing a variable will not affect the outcome. In reality, you probably expect a change, but rejecting a hypothesis may be more useful than accepting one.
  • Experiment Design and experiment to test your hypothesis. An experiment has an independent and dependent variable. You change or control the independent variable and record the effect it has on the dependent variable . It's important to change only one variable for an experiment rather than try to combine the effects of variables in an experiment. For example, if you want to test the effects of light intensity and fertilizer concentration on the growth rate of a plant, you're looking at two separate experiments.
  • Data/Analysis Record observations and analyze the meaning of the data. Often, you'll prepare a table or graph of the data. Don't throw out data points you think are bad or that don't support your predictions. Some of the most incredible discoveries in science were made because the data looked wrong! Once you have the data, you may need to perform a mathematical analysis to support or refute your hypothesis.
  • Conclusion Conclude whether to accept or reject your hypothesis. There's no right or wrong outcome to an experiment, so either result is fine. Accepting a hypothesis doesn't necessarily mean it's correct! Sometimes repeating an experiment may give a different result. In other cases, a hypothesis may predict an outcome, yet you might draw an incorrect conclusion. Communicate your results. You can compile your results into a lab report or formally submit them as a paper . Whether you accept or reject the hypothesis, you likely learned something about the subject and may wish to revise the original hypothesis or form a new one for a future experiment.

When Are There Seven Steps?

Some teach the scientific method with seven steps instead of six. In the seven-step model, the first step is to make observations. Even if you don't make observations formally, you should think about prior experiences with a subject to ask a question or solve a problem.

Formal observations are a type of brainstorming that can help you find an idea and form a hypothesis. Observe your subject and record everything about it. Include colors, timing, sounds, temperatures, changes, behavior, and anything that strikes you as interesting or significant.

When you design an experiment, you're controlling and measuring variables. There are three types of variables:

  • Controlled Variables:  You can have as many  controlled variables  as you like. These are parts of the experiment that you try to keep constant throughout an experiment so they won't interfere with your test. Writing down controlled variables is a good idea because it helps make your experiment  reproducible , which is important in science! If you have trouble duplicating results from one experiment to another, there may be a controlled variable you missed.
  • Independent Variable:  This is the variable you control.
  • Dependent Variable:  This is the variable you measure. It's called the dependent variable because it  depends  on the independent variable.
  • Null Hypothesis Examples
  • Scientific Method Flow Chart
  • Random Error vs. Systematic Error
  • What Is an Experimental Constant?
  • Scientific Variable
  • What Is a Hypothesis? (Science)
  • What Are the Elements of a Good Hypothesis?
  • What Are Examples of a Hypothesis?
  • What Is a Testable Hypothesis?
  • Scientific Hypothesis Examples
  • Scientific Method Vocabulary Terms
  • Understanding Simple vs Controlled Experiments
  • The Role of a Controlled Variable in an Experiment
  • What Is the Difference Between a Control Variable and Control Group?
  • What Is a Controlled Experiment?
  • DRY MIX Experiment Variables Acronym
  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Scientific Method Steps in Psychology Research

Steps, Uses, and Key Terms

Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

scientific method writing assignment

Emily is a board-certified science editor who has worked with top digital publishing brands like Voices for Biodiversity, Study.com, GoodTherapy, Vox, and Verywell.

scientific method writing assignment

Verywell / Theresa Chiechi

How do researchers investigate psychological phenomena? They utilize a process known as the scientific method to study different aspects of how people think and behave.

When conducting research, the scientific method steps to follow are:

  • Observe what you want to investigate
  • Ask a research question and make predictions
  • Test the hypothesis and collect data
  • Examine the results and draw conclusions
  • Report and share the results 

This process not only allows scientists to investigate and understand different psychological phenomena but also provides researchers and others a way to share and discuss the results of their studies.

Generally, there are five main steps in the scientific method, although some may break down this process into six or seven steps. An additional step in the process can also include developing new research questions based on your findings.

What Is the Scientific Method?

What is the scientific method and how is it used in psychology?

The scientific method consists of five steps. It is essentially a step-by-step process that researchers can follow to determine if there is some type of relationship between two or more variables.

By knowing the steps of the scientific method, you can better understand the process researchers go through to arrive at conclusions about human behavior.

Scientific Method Steps

While research studies can vary, these are the basic steps that psychologists and scientists use when investigating human behavior.

The following are the scientific method steps:

Step 1. Make an Observation

Before a researcher can begin, they must choose a topic to study. Once an area of interest has been chosen, the researchers must then conduct a thorough review of the existing literature on the subject. This review will provide valuable information about what has already been learned about the topic and what questions remain to be answered.

A literature review might involve looking at a considerable amount of written material from both books and academic journals dating back decades.

The relevant information collected by the researcher will be presented in the introduction section of the final published study results. This background material will also help the researcher with the first major step in conducting a psychology study: formulating a hypothesis.

Step 2. Ask a Question

Once a researcher has observed something and gained some background information on the topic, the next step is to ask a question. The researcher will form a hypothesis, which is an educated guess about the relationship between two or more variables

For example, a researcher might ask a question about the relationship between sleep and academic performance: Do students who get more sleep perform better on tests at school?

In order to formulate a good hypothesis, it is important to think about different questions you might have about a particular topic.

You should also consider how you could investigate the causes. Falsifiability is an important part of any valid hypothesis. In other words, if a hypothesis was false, there needs to be a way for scientists to demonstrate that it is false.

Step 3. Test Your Hypothesis and Collect Data

Once you have a solid hypothesis, the next step of the scientific method is to put this hunch to the test by collecting data. The exact methods used to investigate a hypothesis depend on exactly what is being studied. There are two basic forms of research that a psychologist might utilize: descriptive research or experimental research.

Descriptive research is typically used when it would be difficult or even impossible to manipulate the variables in question. Examples of descriptive research include case studies, naturalistic observation , and correlation studies. Phone surveys that are often used by marketers are one example of descriptive research.

Correlational studies are quite common in psychology research. While they do not allow researchers to determine cause-and-effect, they do make it possible to spot relationships between different variables and to measure the strength of those relationships. 

Experimental research is used to explore cause-and-effect relationships between two or more variables. This type of research involves systematically manipulating an independent variable and then measuring the effect that it has on a defined dependent variable .

One of the major advantages of this method is that it allows researchers to actually determine if changes in one variable actually cause changes in another.

While psychology experiments are often quite complex, a simple experiment is fairly basic but does allow researchers to determine cause-and-effect relationships between variables. Most simple experiments use a control group (those who do not receive the treatment) and an experimental group (those who do receive the treatment).

Step 4. Examine the Results and Draw Conclusions

Once a researcher has designed the study and collected the data, it is time to examine this information and draw conclusions about what has been found.  Using statistics , researchers can summarize the data, analyze the results, and draw conclusions based on this evidence.

So how does a researcher decide what the results of a study mean? Not only can statistical analysis support (or refute) the researcher’s hypothesis; it can also be used to determine if the findings are statistically significant.

When results are said to be statistically significant, it means that it is unlikely that these results are due to chance.

Based on these observations, researchers must then determine what the results mean. In some cases, an experiment will support a hypothesis, but in other cases, it will fail to support the hypothesis.

So what happens if the results of a psychology experiment do not support the researcher's hypothesis? Does this mean that the study was worthless?

Just because the findings fail to support the hypothesis does not mean that the research is not useful or informative. In fact, such research plays an important role in helping scientists develop new questions and hypotheses to explore in the future.

After conclusions have been drawn, the next step is to share the results with the rest of the scientific community. This is an important part of the process because it contributes to the overall knowledge base and can help other scientists find new research avenues to explore.

Step 5. Report the Results

The final step in a psychology study is to report the findings. This is often done by writing up a description of the study and publishing the article in an academic or professional journal. The results of psychological studies can be seen in peer-reviewed journals such as  Psychological Bulletin , the  Journal of Social Psychology ,  Developmental Psychology , and many others.

The structure of a journal article follows a specified format that has been outlined by the  American Psychological Association (APA) . In these articles, researchers:

  • Provide a brief history and background on previous research
  • Present their hypothesis
  • Identify who participated in the study and how they were selected
  • Provide operational definitions for each variable
  • Describe the measures and procedures that were used to collect data
  • Explain how the information collected was analyzed
  • Discuss what the results mean

Why is such a detailed record of a psychological study so important? By clearly explaining the steps and procedures used throughout the study, other researchers can then replicate the results. The editorial process employed by academic and professional journals ensures that each article that is submitted undergoes a thorough peer review, which helps ensure that the study is scientifically sound.

Once published, the study becomes another piece of the existing puzzle of our knowledge base on that topic.

Before you begin exploring the scientific method steps, here's a review of some key terms and definitions that you should be familiar with:

  • Falsifiable : The variables can be measured so that if a hypothesis is false, it can be proven false
  • Hypothesis : An educated guess about the possible relationship between two or more variables
  • Variable : A factor or element that can change in observable and measurable ways
  • Operational definition : A full description of exactly how variables are defined, how they will be manipulated, and how they will be measured

Uses for the Scientific Method

The  goals of psychological studies  are to describe, explain, predict and perhaps influence mental processes or behaviors. In order to do this, psychologists utilize the scientific method to conduct psychological research. The scientific method is a set of principles and procedures that are used by researchers to develop questions, collect data, and reach conclusions.

Goals of Scientific Research in Psychology

Researchers seek not only to describe behaviors and explain why these behaviors occur; they also strive to create research that can be used to predict and even change human behavior.

Psychologists and other social scientists regularly propose explanations for human behavior. On a more informal level, people make judgments about the intentions, motivations , and actions of others on a daily basis.

While the everyday judgments we make about human behavior are subjective and anecdotal, researchers use the scientific method to study psychology in an objective and systematic way. The results of these studies are often reported in popular media, which leads many to wonder just how or why researchers arrived at the conclusions they did.

Examples of the Scientific Method

Now that you're familiar with the scientific method steps, it's useful to see how each step could work with a real-life example.

Say, for instance, that researchers set out to discover what the relationship is between psychotherapy and anxiety .

  • Step 1. Make an observation : The researchers choose to focus their study on adults ages 25 to 40 with generalized anxiety disorder.
  • Step 2. Ask a question : The question they want to answer in their study is: Do weekly psychotherapy sessions reduce symptoms in adults ages 25 to 40 with generalized anxiety disorder?
  • Step 3. Test your hypothesis : Researchers collect data on participants' anxiety symptoms . They work with therapists to create a consistent program that all participants undergo. Group 1 may attend therapy once per week, whereas group 2 does not attend therapy.
  • Step 4. Examine the results : Participants record their symptoms and any changes over a period of three months. After this period, people in group 1 report significant improvements in their anxiety symptoms, whereas those in group 2 report no significant changes.
  • Step 5. Report the results : Researchers write a report that includes their hypothesis, information on participants, variables, procedure, and conclusions drawn from the study. In this case, they say that "Weekly therapy sessions are shown to reduce anxiety symptoms in adults ages 25 to 40."

Of course, there are many details that go into planning and executing a study such as this. But this general outline gives you an idea of how an idea is formulated and tested, and how researchers arrive at results using the scientific method.

Erol A. How to conduct scientific research ? Noro Psikiyatr Ars . 2017;54(2):97-98. doi:10.5152/npa.2017.0120102

University of Minnesota. Psychologists use the scientific method to guide their research .

Shaughnessy, JJ, Zechmeister, EB, & Zechmeister, JS. Research Methods In Psychology . New York: McGraw Hill Education; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

IMAGES

  1. Writing a scientific report S1

    scientific method writing assignment

  2. The Scientific Method Worksheet

    scientific method writing assignment

  3. Scientific Method Write Up by Science with Miss Z

    scientific method writing assignment

  4. Scientific Method Chart

    scientific method writing assignment

  5. Scientific Method Online Assignment by Northeast Education

    scientific method writing assignment

  6. Amy Brown Science: Can Your Students Write a Clear and Concise Lab

    scientific method writing assignment

VIDEO

  1. USING THE SCIENTIFIC METHOD| ANSWER/ QUESTION| PROF.ZAIN SIDDIQUE

  2. Day 2: Basics of Scientific Research Writing (Batch 18)

  3. ASSIGNMENT TAKS 1: SCIENTIFIC METHOD AND CREATIONIST METHOD (STS)

  4. Scientific Method

  5. Best Answer Writing Method for Subjective Paper🤯||Prashant kirad #motivation #competitiveexams #cbse

  6. ASSIGNMENT TASK 1: SCIENTIFIC METHOD AND CREATIONIST METHOD

COMMENTS

  1. PDF Scientific Method Worksheet

    Exploring the Scientific Method The scientific method is a process that scientists use to better understand the world around them. It includes making observations and asking a question, forming a hypothesis, designing an experiment, collecting and analyzing data, and drawing a conclusion. This is sometimes also referred to as scientific inquiry.

  2. Steps of the Scientific Method

    The six steps of the scientific method include: 1) asking a question about something you observe, 2) doing background research to learn what is already known about the topic, 3) constructing a hypothesis, 4) experimenting to test the hypothesis, 5) analyzing the data from the experiment and drawing conclusions, and 6) communicating the results ...

  3. How to Write a Research Paper: the LEAP approach (+cheat sheet)

    Reading Time: 13 minutes In this article I will show you how to write a research paper using the four LEAP writing steps. The LEAP academic writing approach is a step-by-step method for turning research results into a published paper.. The LEAP writing approach has been the cornerstone of the 70 + research papers that I have authored and the 3700+ citations these paper have accumulated within ...

  4. How To Write A Lab Report

    A lab report conveys the aim, methods, results, and conclusions of a scientific experiment. The main purpose of a lab report is to demonstrate your understanding of the scientific method by performing and evaluating a hands-on lab experiment. This type of assignment is usually shorter than a research paper.

  5. How to Write a Scientific Report

    Here are some rules for drawing scientific diagrams: Always use a pencil to draw your scientific diagrams. Use simple, sharp, 2D lines and shapes to draw your diagram. Don't draw 3D shapes or use shading. Label everything in your diagram. Use thin, straight lines to label your diagram. Don't use arrows.

  6. Scientific Writing Made Easy: A Step‐by‐Step Guide to Undergraduate

    Scientific writing is often a difficult and arduous task for many students. It follows a different format and deviates in structure from how we were initially taught to write, or even how we currently write for English, history, or social science classes. This can make the scientific writing process appear overwhelming, especially when ...

  7. Scientific Reports

    Scientific method step: ... You might consider using each assignment to practice different approaches to drafting the report, to find the order that works best for you. ... Readers of scientific writing are rarely content with the idea that a relationship between two terms exists—they want to know what that relationship entails. Not a hypothesis:

  8. 6 Steps of the Scientific Method

    The Six Steps. The number of steps in the scientific method can vary from one description to another (which mainly happens when data and analysis are separated into separate steps), however, below is a fairly standard list of the six steps you'll likely be expected to know for any science class: Purpose/Question. Ask a question.

  9. PDF Writing for Science: A Primer

    The second difference is the style of writing. Scientific writing is direct and to the point. Scientific writing is designed to present a problem, a hypothesis, clear and precise methods for testing the hypothesis, results, and discussion. It allows others to replicate the procedure exactly. It looks for clarity and directness.

  10. The Scientific Method Steps, Uses, and Key Terms

    The scientific method is a set of principles and procedures that are used by researchers to develop questions, collect data, and reach conclusions. Goals of Scientific Research in Psychology Researchers seek not only to describe behaviors and explain why these behaviors occur; they also strive to create research that can be used to predict and ...