6 Hypothesis Examples in Psychology
The hypothesis is one of the most important steps of psychological research. Hypothesis refers to an assumption or the temporary statement made by the researcher before the execution of the experiment, regarding the possible outcome of that experiment. A hypothesis can be tested through various scientific and statistical tools. It is a logical guess based on previous knowledge and investigations related to the problem under investigation. In this article, we’ll learn about the significance of the hypothesis, the sources of the hypothesis, and the various examples of the hypothesis.
Sources of Hypothesis
The formulation of a good hypothesis is not an easy task. One needs to take care of the various crucial steps to get an accurate hypothesis. The hypothesis formulation demands both the creativity of the researcher and his/her years of experience. The researcher needs to use critical thinking to avoid committing any errors such as choosing the wrong hypothesis. Although the hypothesis is considered the first step before further investigations such as data collection for the experiment, the hypothesis formulation also requires some amount of data collection. The data collection for the hypothesis formulation refers to the review of literature related to the concerned topic, and understanding of the previous research on the related topic. Following are some of the main sources of the hypothesis that may help the researcher to formulate a good hypothesis.
- Reviewing the similar studies and literature related to a similar problem.
- Examining the available data concerned with the problem.
- Discussing the problem with the colleagues, or the professional researchers about the problem under investigation.
- Thorough research and investigation by conducting field interviews or surveys on the people that are directly concerned with the problem under investigation.
- Sometimes ‘institution’ of the well known and experienced researcher is also considered as a good source of the hypothesis formulation.
Real Life Hypothesis Examples
1. null hypothesis and alternative hypothesis examples.
Every research problem-solving procedure begins with the formulation of the null hypothesis and the alternative hypothesis. The alternative hypothesis assumes the existence of the relationship between the variables under study, while the null hypothesis denies the relationship between the variables under study. Following are examples of the null hypothesis and the alternative hypothesis based on the research problem.
Research Problem: What is the benefit of eating an apple daily on your health?
Alternative Hypothesis: Eating an apple daily reduces the chances of visiting the doctor.
Null Hypothesis : Eating an apple daily does not impact the frequency of visiting the doctor.
Research Problem: What is the impact of spending a lot of time on mobiles on the attention span of teenagers.
Alternative Problem: Spending time on the mobiles and attention span have a negative correlation.
Null Hypothesis: There does not exist any correlation between the use of mobile by teenagers on their attention span.
Research Problem: What is the impact of providing flexible working hours to the employees on the job satisfaction level.
Alternative Hypothesis : Employees who get the option of flexible working hours have better job satisfaction than the employees who don’t get the option of flexible working hours.
Null Hypothesis: There is no association between providing flexible working hours and job satisfaction.
2. Simple Hypothesis Examples
The hypothesis that includes only one independent variable (predictor variable) and one dependent variable (outcome variable) is termed the simple hypothesis. For example, the children are more likely to get clinical depression if their parents had also suffered from the clinical depression. Here, the independent variable is the parents suffering from clinical depression and the dependent or the outcome variable is the clinical depression observed in their child/children. Other examples of the simple hypothesis are given below,
- If the management provides the official snack breaks to the employees, the employees are less likely to take the off-site breaks. Here, providing snack breaks is the independent variable and the employees are less likely to take the off-site break is the dependent variable.
3. Complex Hypothesis Examples
If the hypothesis includes more than one independent (predictor variable) or more than one dependent variable (outcome variable) it is known as the complex hypothesis. For example, clinical depression in children is associated with a family clinical depression history and a stressful and hectic lifestyle. In this case, there are two independent variables, i.e., family history of clinical depression and hectic and stressful lifestyle, and one dependent variable, i.e., clinical depression. Following are some more examples of the complex hypothesis,
4. Logical Hypothesis Examples
If there are not many pieces of evidence and studies related to the concerned problem, then the researcher can take the help of the general logic to formulate the hypothesis. The logical hypothesis is proved true through various logic. For example, if the researcher wants to prove that the animal needs water for its survival, then this can be logically verified through the logic that ‘living beings can not survive without the water.’ Following are some more examples of logical hypotheses,
- Tia is not good at maths, hence she will not choose the accounting sector as her career.
- If there is a correlation between skin cancer and ultraviolet rays, then the people who are more exposed to the ultraviolet rays are more prone to skin cancer.
- The beings belonging to the different planets can not breathe in the earth’s atmosphere.
- The creatures living in the sea use anaerobic respiration as those living outside the sea use aerobic respiration.
5. Empirical Hypothesis Examples
The empirical hypothesis comes into existence when the statement is being tested by conducting various experiments. This hypothesis is not just an idea or notion, instead, it refers to the statement that undergoes various trials and errors, and various extraneous variables can impact the result. The trials and errors provide a set of results that can be testable over time. Following are the examples of the empirical hypothesis,
- The hungry cat will quickly reach the endpoint through the maze, if food is placed at the endpoint then the cat is not hungry.
- The people who consume vitamin c have more glowing skin than the people who consume vitamin E.
- Hair growth is faster after the consumption of Vitamin E than vitamin K.
- Plants will grow faster with fertilizer X than with fertilizer Y.
6. Statistical Hypothesis Examples
The statements that can be proven true by using the various statistical tools are considered the statistical hypothesis. The researcher uses statistical data about an area or the group in the analysis of the statistical hypothesis. For example, if you study the IQ level of the women belonging to nation X, it would be practically impossible to measure the IQ level of each woman belonging to nation X. Here, statistical methods come to the rescue. The researcher can choose the sample population, i.e., women belonging to the different states or provinces of the nation X, and conduct the statistical tests on this sample population to get the average IQ of the women belonging to the nation X. Following are the examples of the statistical hypothesis.
- 30 per cent of the women belonging to the nation X are working.
- 50 per cent of the people living in the savannah are above the age of 70 years.
- 45 per cent of the poor people in the United States are uneducated.
Significance of Hypothesis
A hypothesis is very crucial in experimental research as it aims to predict any particular outcome of the experiment. Hypothesis plays an important role in guiding the researchers to focus on the concerned area of research only. However, the hypothesis is not required by all researchers. The type of research that seeks for finding facts, i.e., historical research, does not need the formulation of the hypothesis. In the historical research, the researchers look for the pieces of evidence related to the human life, the history of a particular area, or the occurrence of any event, this means that the researcher does not have a strong basis to make an assumption in these types of researches, hence hypothesis is not needed in this case. As stated by Hillway (1964)
When fact-finding alone is the aim of the study, a hypothesis is not required.”
The hypothesis may not be an important part of the descriptive or historical studies, but it is a crucial part for the experimental researchers. Following are some of the points that show the importance of formulating a hypothesis before conducting the experiment.
- Hypothesis provides a tentative statement about the outcome of the experiment that can be validated and tested. It helps the researcher to directly focus on the problem under investigation by collecting the relevant data according to the variables mentioned in the hypothesis.
- Hypothesis facilitates a direction to the experimental research. It helps the researcher in analysing what is relevant for the study and what’s not. It prevents the researcher’s time as he does not need to waste time on reviewing the irrelevant research and literature, and also prevents the researcher from collecting the irrelevant data.
- Hypothesis helps the researcher in choosing the appropriate sample, statistical tests to conduct, variables to be studied and the research methodology. The hypothesis also helps the study from being generalised as it focuses on the limited and exact problem under investigation.
- Hypothesis act as a framework for deducing the outcomes of the experiment. The researcher can easily test the different hypotheses for understanding the interaction among the various variables involved in the study. On this basis of the results obtained from the testing of various hypotheses, the researcher can formulate the final meaningful report.
Related Posts
Incrementalism in Policy Making
Convergent Thinking Examples
Accounting for Hire Purchase
Social Cognitive Theory
Examples of a Line in Real Life
3 Allegory of the Cave Examples in Real Life
Add comment cancel reply.
Type 1 and Type 2 Errors in Statistics
Saul McLeod, PhD
Editor-in-Chief for Simply Psychology
BSc (Hons) Psychology, MRes, PhD, University of Manchester
Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.
Learn about our Editorial Process
On This Page:
A statistically significant result cannot prove that a research hypothesis is correct (which implies 100% certainty). Because a p -value is based on probabilities, there is always a chance of making an incorrect conclusion regarding accepting or rejecting the null hypothesis ( H 0 ).
Anytime we make a decision using statistics, there are four possible outcomes, with two representing correct decisions and two representing errors.
The chances of committing these two types of errors are inversely proportional: that is, decreasing type I error rate increases type II error rate and vice versa.
As the significance level (α) increases, it becomes easier to reject the null hypothesis, decreasing the chance of missing a real effect (Type II error, β). If the significance level (α) goes down, it becomes harder to reject the null hypothesis , increasing the chance of missing an effect while reducing the risk of falsely finding one (Type I error).
Type I error
A type 1 error is also known as a false positive and occurs when a researcher incorrectly rejects a true null hypothesis. Simply put, it’s a false alarm.
This means that you report that your findings are significant when they have occurred by chance.
The probability of making a type 1 error is represented by your alpha level (α), the p- value below which you reject the null hypothesis.
A p -value of 0.05 indicates that you are willing to accept a 5% chance of getting the observed data (or something more extreme) when the null hypothesis is true.
You can reduce your risk of committing a type 1 error by setting a lower alpha level (like α = 0.01). For example, a p-value of 0.01 would mean there is a 1% chance of committing a Type I error.
However, using a lower value for alpha means that you will be less likely to detect a true difference if one really exists (thus risking a type II error).
Scenario: Drug Efficacy Study
Imagine a pharmaceutical company is testing a new drug, named “MediCure”, to determine if it’s more effective than a placebo at reducing fever. They experimented with two groups: one receives MediCure, and the other received a placebo.
- Null Hypothesis (H0) : MediCure is no more effective at reducing fever than the placebo.
- Alternative Hypothesis (H1) : MediCure is more effective at reducing fever than the placebo.
After conducting the study and analyzing the results, the researchers found a p-value of 0.04.
If they use an alpha (α) level of 0.05, this p-value is considered statistically significant, leading them to reject the null hypothesis and conclude that MediCure is more effective than the placebo.
However, MediCure has no actual effect, and the observed difference was due to random variation or some other confounding factor. In this case, the researchers have incorrectly rejected a true null hypothesis.
Error : The researchers have made a Type 1 error by concluding that MediCure is more effective when it isn’t.
Implications
Resource Allocation : Making a Type I error can lead to wastage of resources. If a business believes a new strategy is effective when it’s not (based on a Type I error), they might allocate significant financial and human resources toward that ineffective strategy.
Unnecessary Interventions : In medical trials, a Type I error might lead to the belief that a new treatment is effective when it isn’t. As a result, patients might undergo unnecessary treatments, risking potential side effects without any benefit.
Reputation and Credibility : For researchers, making repeated Type I errors can harm their professional reputation. If they frequently claim groundbreaking results that are later refuted, their credibility in the scientific community might diminish.
Type II error
A type 2 error (or false negative) happens when you accept the null hypothesis when it should actually be rejected.
Here, a researcher concludes there is not a significant effect when actually there really is.
The probability of making a type II error is called Beta (β), which is related to the power of the statistical test (power = 1- β). You can decrease your risk of committing a type II error by ensuring your test has enough power.
You can do this by ensuring your sample size is large enough to detect a practical difference when one truly exists.
Scenario: Efficacy of a New Teaching Method
Educational psychologists are investigating the potential benefits of a new interactive teaching method, named “EduInteract”, which utilizes virtual reality (VR) technology to teach history to middle school students.
They hypothesize that this method will lead to better retention and understanding compared to the traditional textbook-based approach.
- Null Hypothesis (H0) : The EduInteract VR teaching method does not result in significantly better retention and understanding of history content than the traditional textbook method.
- Alternative Hypothesis (H1) : The EduInteract VR teaching method results in significantly better retention and understanding of history content than the traditional textbook method.
The researchers designed an experiment where one group of students learns a history module using the EduInteract VR method, while a control group learns the same module using a traditional textbook.
After a week, the student’s retention and understanding are tested using a standardized assessment.
Upon analyzing the results, the psychologists found a p-value of 0.06. Using an alpha (α) level of 0.05, this p-value isn’t statistically significant.
Therefore, they fail to reject the null hypothesis and conclude that the EduInteract VR method isn’t more effective than the traditional textbook approach.
However, let’s assume that in the real world, the EduInteract VR truly enhances retention and understanding, but the study failed to detect this benefit due to reasons like small sample size, variability in students’ prior knowledge, or perhaps the assessment wasn’t sensitive enough to detect the nuances of VR-based learning.
Error : By concluding that the EduInteract VR method isn’t more effective than the traditional method when it is, the researchers have made a Type 2 error.
This could prevent schools from adopting a potentially superior teaching method that might benefit students’ learning experiences.
Missed Opportunities : A Type II error can lead to missed opportunities for improvement or innovation. For example, in education, if a more effective teaching method is overlooked because of a Type II error, students might miss out on a better learning experience.
Potential Risks : In healthcare, a Type II error might mean overlooking a harmful side effect of a medication because the research didn’t detect its harmful impacts. As a result, patients might continue using a harmful treatment.
Stagnation : In the business world, making a Type II error can result in continued investment in outdated or less efficient methods. This can lead to stagnation and the inability to compete effectively in the marketplace.
How do Type I and Type II errors relate to psychological research and experiments?
Type I errors are like false alarms, while Type II errors are like missed opportunities. Both errors can impact the validity and reliability of psychological findings, so researchers strive to minimize them to draw accurate conclusions from their studies.
How does sample size influence the likelihood of Type I and Type II errors in psychological research?
Sample size in psychological research influences the likelihood of Type I and Type II errors. A larger sample size reduces the chances of Type I errors, which means researchers are less likely to mistakenly find a significant effect when there isn’t one.
A larger sample size also increases the chances of detecting true effects, reducing the likelihood of Type II errors.
Are there any ethical implications associated with Type I and Type II errors in psychological research?
Yes, there are ethical implications associated with Type I and Type II errors in psychological research.
Type I errors may lead to false positive findings, resulting in misleading conclusions and potentially wasting resources on ineffective interventions. This can harm individuals who are falsely diagnosed or receive unnecessary treatments.
Type II errors, on the other hand, may result in missed opportunities to identify important effects or relationships, leading to a lack of appropriate interventions or support. This can also have negative consequences for individuals who genuinely require assistance.
Therefore, minimizing these errors is crucial for ethical research and ensuring the well-being of participants.
Further Information
- Publication manual of the American Psychological Association
- Statistics for Psychology Book Download
Alternative Hypothesis
- Reference work entry
- Cite this reference work entry
458 Accesses
An alternative hypothesis is the hypothesis which differs from the hypothesis being tested.
The alternative hypothesis is usually denoted by H 1 .
See hypothesis and hypothesis testing .
MATHEMATICAL ASPECTS
During the hypothesis testing of a parameter of a population , the null hypothesis is presented in the following way:
where θ is the parameter of the population that is to be estimated, and \( { \theta _0 } \) is the presumed value of this parameter. The alternative hypothesis can then take three different forms:
\( { H_1 \colon \theta > \theta_0 } \)
\( { H_1 \colon \theta < \theta_0 } \)
\( { H_1 \colon \theta \neq \theta_0 } \)
In the first two cases, the hypothesis test is called the one-sided , whereas in the third case it is called the two-sided .
The alternative hypothesis can also take three different forms during the hypothesis testing of parameters of two populations . If the null hypothesis treats the two parameters \(...
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save.
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
- Available as PDF
- Read on any device
- Instant download
- Own it forever
Tax calculation will be finalised at checkout
Purchases are for personal use only
Institutional subscriptions
Lehmann, E.I., Romann, S.P.: Testing Statistical Hypothesis, 3rd edn. Springer, New York (2005)
Google Scholar
Download references
Rights and permissions
Reprints and permissions
Copyright information
© 2008 Springer-Verlag
About this entry
Cite this entry.
(2008). Alternative Hypothesis. In: The Concise Encyclopedia of Statistics. Springer, New York, NY. https://doi.org/10.1007/978-0-387-32833-1_4
Download citation
DOI : https://doi.org/10.1007/978-0-387-32833-1_4
Publisher Name : Springer, New York, NY
Print ISBN : 978-0-387-31742-7
Online ISBN : 978-0-387-32833-1
eBook Packages : Mathematics and Statistics Reference Module Computer Science and Engineering
Share this entry
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
- Publish with us
Policies and ethics
- Find a journal
- Track your research
- Bipolar Disorder
- Therapy Center
- When To See a Therapist
- Types of Therapy
- Best Online Therapy
- Best Couples Therapy
- Managing Stress
- Sleep and Dreaming
- Understanding Emotions
- Self-Improvement
- Healthy Relationships
- Student Resources
- Personality Types
- Guided Meditations
- Verywell Mind Insights
- 2024 Verywell Mind 25
- Mental Health in the Classroom
- Editorial Process
- Meet Our Review Board
- Crisis Support
How to Write a Great Hypothesis
Hypothesis Definition, Format, Examples, and Tips
Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
Amy Morin, LCSW, is a psychotherapist and international bestselling author. Her books, including "13 Things Mentally Strong People Don't Do," have been translated into more than 40 languages. Her TEDx talk, "The Secret of Becoming Mentally Strong," is one of the most viewed talks of all time.
Verywell / Alex Dos Diaz
- The Scientific Method
Hypothesis Format
Falsifiability of a hypothesis.
- Operationalization
Hypothesis Types
Hypotheses examples.
- Collecting Data
A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.
Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."
At a Glance
A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.
The Hypothesis in the Scientific Method
In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:
- Forming a question
- Performing background research
- Creating a hypothesis
- Designing an experiment
- Collecting data
- Analyzing the results
- Drawing conclusions
- Communicating the results
The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.
Unless you are creating an exploratory study, your hypothesis should always explain what you expect to happen.
In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.
Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.
In many cases, researchers may find that the results of an experiment do not support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.
In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."
In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."
Elements of a Good Hypothesis
So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:
- Is your hypothesis based on your research on a topic?
- Can your hypothesis be tested?
- Does your hypothesis include independent and dependent variables?
Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the journal articles you read . Many authors will suggest questions that still need to be explored.
How to Formulate a Good Hypothesis
To form a hypothesis, you should take these steps:
- Collect as many observations about a topic or problem as you can.
- Evaluate these observations and look for possible causes of the problem.
- Create a list of possible explanations that you might want to explore.
- After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.
In the scientific method , falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.
Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that if something was false, then it is possible to demonstrate that it is false.
One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.
The Importance of Operational Definitions
A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.
Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.
For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.
These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.
Replicability
One of the basic principles of any type of scientific research is that the results must be replicable.
Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.
Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.
To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.
Hypothesis Checklist
- Does your hypothesis focus on something that you can actually test?
- Does your hypothesis include both an independent and dependent variable?
- Can you manipulate the variables?
- Can your hypothesis be tested without violating ethical standards?
The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:
- Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
- Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
- Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
- Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
- Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
- Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.
A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the dependent variable if you change the independent variable .
The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."
A few examples of simple hypotheses:
- "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
- "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."
- "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
- "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."
Examples of a complex hypothesis include:
- "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
- "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."
Examples of a null hypothesis include:
- "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
- "There is no difference in scores on a memory recall task between children and adults."
- "There is no difference in aggression levels between children who play first-person shooter games and those who do not."
Examples of an alternative hypothesis:
- "People who take St. John's wort supplements will have less anxiety than those who do not."
- "Adults will perform better on a memory task than children."
- "Children who play first-person shooter games will show higher levels of aggression than children who do not."
Collecting Data on Your Hypothesis
Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.
Descriptive Research Methods
Descriptive research such as case studies , naturalistic observations , and surveys are often used when conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.
Once a researcher has collected data using descriptive methods, a correlational study can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.
Experimental Research Methods
Experimental methods are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).
Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually cause another to change.
The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.
Thompson WH, Skau S. On the scope of scientific hypotheses . R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607
Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:]. Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z
Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004
Nosek BA, Errington TM. What is replication ? PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691
Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies . Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18
Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.
By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."
IMAGES
VIDEO
COMMENTS
A research hypothesis, in its plural form "hypotheses," is a specific, testable prediction about the anticipated results of a study, established at its outset. The research hypothesis is often referred to as the alternative hypothesis.
Learn how to write null and alternative hypotheses for different statistical tests and research questions. The null hypothesis claims no effect in the population, while the alternative hypothesis claims an effect.
The alternative hypothesis is simply the reverse of the null hypothesis, and there are three options, depending on where we expect the difference to lie. Thus, our alternative hypothesis is the mathematical way of stating our research question.
The p-value in statistics quantifies the evidence against a null hypothesis. A low p-value suggests data is inconsistent with the null, potentially favoring an alternative hypothesis. Common significance thresholds are 0.05 or 0.01.
The alternative hypothesis assumes the existence of the relationship between the variables under study, while the null hypothesis denies the relationship between the variables under study. Following are examples of the null hypothesis and the alternative hypothesis based on the research problem.
Alternative Hypothesis (H1): MediCure is more effective at reducing fever than the placebo. After conducting the study and analyzing the results, the researchers found a p-value of 0.04.
PSYCH 330: Introduction to Psychology Statistics 7: Introduction to Hypothesis Testing 7.4: The Alternative Hypothesis
In statistics, alternative hypothesis is often denoted as Ha or H1. Hypotheses are formulated to compare in a statistical hypothesis test. In the domain of inferential statistics, two rival hypotheses can be compared by explanatory power and predictive power.
An alternative hypothesis is the hypothesis which differs from the hypothesis being tested. The alternative hypothesis is usually denoted by H 1. HISTORY. See hypothesis and hypothesis testing. MATHEMATICAL ASPECTS. During the hypothesis testing of a parameter of a population, the null hypothesis is presented in the following way:
A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.