Qualitative vs Quantitative Research Methods & Data Analysis

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.
  • Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed numerically. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.
  • Qualitative research gathers non-numerical data (words, images, sounds) to explore subjective experiences and attitudes, often via observation and interviews. It aims to produce detailed descriptions and uncover new insights about the studied phenomenon.

On This Page:

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography .

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis .

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Mixed methods research
  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

  • How it works

"Christmas Offer"

Terms & conditions.

As the Christmas season is upon us, we find ourselves reflecting on the past year and those who we have helped to shape their future. It’s been quite a year for us all! The end of the year brings no greater joy than the opportunity to express to you Christmas greetings and good wishes.

At this special time of year, Research Prospect brings joyful discount of 10% on all its services. May your Christmas and New Year be filled with joy.

We are looking back with appreciation for your loyalty and looking forward to moving into the New Year together.

"Claim this offer"

In unfamiliar and hard times, we have stuck by you. This Christmas, Research Prospect brings you all the joy with exciting discount of 10% on all its services.

Offer valid till 5-1-2024

We love being your partner in success. We know you have been working hard lately, take a break this holiday season to spend time with your loved ones while we make sure you succeed in your academics

Discount code: RP0996Y

researchprospect post subheader

What Is Quantitative Research? | Definition, Methods & Examples

Published by Ellie Cross at October 24th, 2024 , Revised On October 24, 2024

Quantitative research involves gathering and analysing numerical data to make predictions and describe the relationship between two variables. It deals with more than just numbers and integrates theory, hypothesis , proper methodological approach and statistical analysis to answer research questions.

It is a crucial part of market research that relies on numerical data and other computational techniques to gain insights into consumer preferences and opinions. Unlike qualitative research which uses hard evidence to answer a research question, quantitative research is more data-based and uses objective measurements to answer research questions.

What is Quantitative Research?

The meaning of quantitative research can be understood from the word quantitative, which focuses on data such as numbers that can be easily quantified, compared and analysed. This type of research uses both primary and secondary sources to gain data through closed-question poll results, demographic data and census information.

While quantitative data can be gathered through surveys and other methods, it can also be gained from the research studies of third parties. Additionally, this research is widely used in the fields of psychology, economics, accounting, finance and marketing.

Types Of Quantitative Research

There are several kinds of quantitative research with different methodologies and purposes. Each type has its own characteristics and can be used to calculate data in different ways. Here are numerous types of quantitative research:

Correlational Research

Correlational research defines the possibility of a relation existing between two variables. It identifies a relationship to define patterns and trends between two or more study variables.

Example : Cross-sectional studies and cross-section analysis

  • Experimental Research

In experimental research , you investigate if two variables affect each other. This mostly includes studying the effect of independent variables on dependent variables. Experiments are carried out to study the cause and effect between them to establish relationships.

Example: Field and laboratory experiments

  • Descriptive Research

In this type of research, a researcher often studies the characteristics of a dataset. This includes applying mean, median and standard deviation equations to understand the data.

Example: Surveys and observational studies

It is necessary to know that both experimental and correlational research use sampling methods to test hypotheses and generate findings that are applicable to a large population.

Hire an Expert Researcher

Orders completed by our expert writers are

  • Formally drafted in academic style
  • 100% Plagiarism free & 100% Confidential
  • Never resold
  • Include unlimited free revisions
  • Completed to match exact client requirements

a person inclined to do quantitative research

Quantitative Research Methods

Quantitative research methods include both primary and secondary research methods to analyse and gather numerical data. Here is an overview of the various methods employed for quantitative research:

Quantitative Research Advantages & Disadvantages

Quantitative research focuses on gathering numerical data to explain a particular topic, subject or research question. Like any other research, there are strengths of qualitative research. However, there are disadvantages as well which should be considered:

Quantitative Research Vs Qualitative Research

There are two types of research, qualitative research and quantitative research . Unlike quantitative research, qualitative research is exploratory and does not use mathematical and statistical methods to analyse the data gathered. The table below outlines the key differences between qualitative and quantitative research:

Quantitative Research Examples

Here are a few examples of quantitative research that can help understand how the studies are carried out:

A fast-food restaurant notices that there has been a significant drop in their sales. To understand the reasons behind this, they conduct a descriptive research study to gather insights. Numerical data is collected through customer surveys with close-ended questions asking about food quality, customer service, and service speed. This helps them pinpoint that the service speed is a major issue.

A smartphone company has launched a new smartphone with added features and benefits. They display a new marketing campaign in their outlets at every mall. To determine the success of their product, they launched a social media survey based on the Likert scale, where the customers have to rate the features and overall campaign on a scale of 1 to 5 reflecting the level of satisfaction or dissatisfaction. These responses help the brand determine customer’s perceptions, opinions and overall experience.

Frequently Asked Questions

What is research design for quantitative study .

A research design for a quantitative study is a framework that highlights how the research will be carried out. It specifies the research question, variables, sampling method to be used, data analysis methods and the ethical considerations to be taken into view.

What is a CASP quantitative research tool?

CASP (Critical Appraisal Skills Programme) is a quantitative research tool that is used to evaluate the effectiveness and quality of quantitative research studies. It checks the authenticity, accuracy and reliability of the data collected and assists policymakers and researchers in ensuring that it meets the highest standards of research.

What are the different kinds of quantitative research?

Quantitative research can be categorised into several types such as:

  • Cross-sectional Research
  • Correlational Research 
  • Comparative Research 
  • Longitudinal Research

You May Also Like

Primary research deals with research that is objective and accurate by collecting first-hand data & information on a specific subject.

Qualitative research uses surveys, interviews, observations, and case studies to gather and analyse data to create meaningful conclusions.

As Featured On

client logo

USEFUL LINKS

LEARNING RESOURCES

researchprospect-reviews-trust-site

COMPANY DETAILS

Research-Prospect-Writing-Service

Splash Sol LLC

payment mehtod

  • How It Works
  • Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Applied Research

Applied Research – Types, Methods and Examples

Correlational Research Design

Correlational Research – Methods, Types and...

Qualitative Research Methods

Qualitative Research Methods

Descriptive Research Design

Descriptive Research Design – Types, Methods and...

Textual Analysis

Textual Analysis – Types, Examples and Guide

Basic Research

Basic Research – Types, Methods and Examples

Banner Image

Quantitative and Qualitative Research

  • I NEED TO . . .

What is Quantitative Research?

  • What is Qualitative Research?
  • Quantitative vs Qualitative
  • Step 1: Accessing CINAHL
  • Step 2: Create a Keyword Search
  • Step 3: Create a Subject Heading Search
  • Step 4: Repeat Steps 1-3 for Second Concept
  • Step 5: Repeat Steps 1-3 for Quantitative Terms
  • Step 6: Combining All Searches
  • Step 7: Adding Limiters
  • Step 8: Save Your Search!
  • What Kind of Article is This?
  • More Research Help This link opens in a new window

Quantitative methodology is the dominant research framework in the social sciences. It refers to a set of strategies, techniques and assumptions used to study psychological, social and economic processes through the exploration of numeric patterns . Quantitative research gathers a range of numeric data. Some of the numeric data is intrinsically quantitative (e.g. personal income), while in other cases the numeric structure is  imposed (e.g. ‘On a scale from 1 to 10, how depressed did you feel last week?’). The collection of quantitative information allows researchers to conduct simple to extremely sophisticated statistical analyses that aggregate the data (e.g. averages, percentages), show relationships among the data (e.g. ‘Students with lower grade point averages tend to score lower on a depression scale’) or compare across aggregated data (e.g. the USA has a higher gross domestic product than Spain). Quantitative research includes methodologies such as questionnaires, structured observations or experiments and stands in contrast to qualitative research. Qualitative research involves the collection and analysis of narratives and/or open-ended observations through methodologies such as interviews, focus groups or ethnographies.

Coghlan, D., Brydon-Miller, M. (2014).  The SAGE encyclopedia of action research  (Vols. 1-2). London, : SAGE Publications Ltd doi: 10.4135/9781446294406

What is the purpose of quantitative research?

The purpose of quantitative research is to generate knowledge and create understanding about the social world. Quantitative research is used by social scientists, including communication researchers, to observe phenomena or occurrences affecting individuals. Social scientists are concerned with the study of people. Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

Allen, M. (2017).  The SAGE encyclopedia of communication research methods  (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

How do I know if the study is a quantitative design?  What type of quantitative study is it?

Quantitative Research Designs: Descriptive non-experimental, Quasi-experimental or Experimental?

Studies do not always explicitly state what kind of research design is being used.  You will need to know how to decipher which design type is used.  The following video will help you determine the quantitative design type.

  • << Previous: I NEED TO . . .
  • Next: What is Qualitative Research? >>
  • Last Updated: Oct 23, 2024 11:33 AM
  • URL: https://libguides.uta.edu/quantitative_and_qualitative_research

University of Texas Arlington Libraries 702 Planetarium Place · Arlington, TX 76019 · 817-272-3000

  • Internet Privacy
  • Accessibility
  • Problems with a guide? Contact Us.

A Complete Guide to Quantitative Research Methods

quantitative research methods

Numbers are everywhere and drive our day-to-day lives. We take decisions based on numbers, both at work and in our personal lives. For example, an organization may rely on sales numbers to see if it’s succeeding or failing, and a group of friends planning a vacation may look at ticket prices to pick a place.

In the social domain, numbers are just as important. They help identify what interventions are needed, whether ongoing projects are effective, and more. But how do organizations in the social domain get the numbers they need?

This is where quantitative research comes in. Quantitative research is the process of collecting numerical data through standardized techniques, then applying statistical methods to derive insights from it.

When is quantitative research useful?

The goal of quantitative research methods is to collect numerical data from a group of people, then generalize those results to a larger group of people to explain a phenomenon. Researchers generally use quantitative research when they want get objective, conclusive answers.

For example, a chocolate brand may run a survey among a sample of their target group (teenagers in the United States) to check whether they like the taste of the chocolate. The result of this survey would reveal how all teenagers in the U.S. feel about the chocolate.

quantitative research methods, literacy

Similarly, an organization running a project to improve a village’s literacy rate may look at how many people came to their program, how many people dropped out, and each person’s literacy score before and after the program. They can use these metrics to evaluate the overall success of their program.

Unlike  qualitative research , quantitative research is generally not used in the early stages of research for exploring a question or scoping out a problem. It is generally used to answer clear, pre-defined questions in the advanced stages of a research study.

How can you plan a quantitative research exercise?

  • Identify the research problem . An example would be, how well do New Delhi’s government schools ensure that students complete their education?
  • Prepare the research questions that need to be answered to address the research problem. For example, what percentage of students drop out of government schools in New Delhi?
  • Review existing literature on the research problem and questions to ensure that there is no duplication. If someone has already answered this, you can rely on their results.
  • Develop a research plan . This includes identifying the target group, sample , and method of data collection ; conducting data analysis; collating recommendations; and arriving at a conclusion.

What are the advantages of quantitative research methods?

  • Quantitative research methods provide an relatively conclusive answer to the research questions.
  • When the data is collected and analyzed in accordance with standardized, reputable methodology, the results are usually trustworthy.
  • With statistically significant sample sizes, the results can be generalized to an entire target group.

Samples have to be carefully designed and chosen, else their results can’t be generalized. Learn how to choose the right sampling technique for your survey.

What are the limitations of quantitative research methods?

  • Does not account for people’s thoughts or perceptions about what you’re evaluating.
  • Does not explore the “why” and “how” behind a phenomenon.

What quantitative research methods can you use?

Here are four quantitative research methods that you can use to collect data for a quantitative research study:

Questionnaires

This is the most common way to collect quantitative data. A questionnaire (also called a survey) is a series of questions, usually written on paper or a digital form. Researchers give the questionnaire to their sample, and each participant answers the questions. The questions are designed to gather data that will help researchers answer their research questions.

quantitative research methods, closed-ended question, open-ended question, atlan collect

Typically, a questionnaire has closed-ended questions — that is, the participant chooses an answer from the given options. However, a questionnaire may also have quantitative open-ended questions. In the open-ended example above, the participants could write a simple number like “4”, a range like “I usually go one or two times per week” or a more complex response like “Most weeks I go twice, but this week I went 4 times because I kept forgetting my grocery list. During the winter, I only go once a week.”

Understanding closed and open-ended questions is crucial to designing a great survey and collecting high quality data. Learn more with our complete guide about when and how to use closed and open-ended questions.

A good questionnaire should have clear language, correct grammar and spelling, and a clear objective.

Advantages:

  • Questionnaires are often less time consuming than interviews or other in-person quantitative research methods.
  • They’re a common, fairly simple way to collect data.
  • They can be a cost-effective option for gathering data from a large sample.

Limitations:

  • Responses may lack depth and provide limited information.
  • Respondents may lose interest or quit if the questionnaire is long.
  • Respondents may not understand all questions, which would lead to inaccurate responses.

Response bias — a set of factors that lead participants answer a question incorrectly — can be deadly for data quality. Learn how it happens and how to avoid it.

a person inclined to do quantitative research

An interview for quantitative research involves verbal communication between the participant and researcher, whose goal is to gather numerical data. The interview can be conducted face-to-face or over the phone, and it can be structured or unstructured.

In a structured interview, the researcher asks a fixed set of questions to every participant. The questions and their order are pre-decided by the researcher. The interview follows a formal pattern. Structured interviews are more cost efficient and can be less time consuming.

In an unstructured interview, the researcher thinks of his/her questions as the interview proceeds. This type of interview is conversational in nature and can last a few hours. This type of interview allows the researcher to be flexible and ask questions depending on the participant’s responses. This quantitative research method can provide more in-depth information, since it allows researchers to delve deeper into a participant’s response.

  • Interviews can provide more in-depth information.
  • Interviews are more flexible than questionnaires, since interviewers can adapt their questions to each participant or ask follow-up questions.
  • Interviewers can clarify participants’ questions, which will help them get clearer, more accurate data.
  • Interviewing one person at a time can be time-consuming.
  • Travel, interviewer salaries and other expenses can make interviews an expensive data collection tool.
  • With unstructured interviews, it can be difficult to quantify some responses.

One way to speed up interviews is to conduct them with multiple people at one time in a focus group discussion. Learn more about how to conduct a great FGD.

Observation

Observation is a systematic way to collect data by observing people in natural situations or settings. Though it is mostly used for collecting qualitative data, observation can also be used to collect quantitative data.

Observation can be simple or behavioral. Simple observations are usually numerical, like how many cars pass through a given intersection each hour or how many students are asleep during a class. Behavioral observation, on the other hand, observes and interprets people’s behavior, like how many cars are driving dangerously or how engaging a lecturer is.

Simple observation can be a good way to collect numerical data. This can be done by pre-defining clear numerical variables that can be collected during observation — for example, what time employees leave the office. This data can be collected by observing employees over a period of time and recording when each person leaves.

  • Observation is often an inexpensive way to collect data.
  • Since researchers are recording the data themselves (rather than participants reporting the data), most of the collected data will generally be usable.
  • Data collection can be stopped and started by researchers at any time, making it a flexible data collection tool.
  • Researchers need to be extensively trained to undertake observation and record data correctly.
  • Sometimes the environment or research may bias the data, like when participants know they’re being observed.
  • If the situation to be observed sometimes doesn’t happen, researchers may waste a lot of time during data collection.

Simple vs. behavioral is just one type of observation. Learn more about the 5 different types of observation and when you should use each to collect different types of data.

a person inclined to do quantitative research

Since quantitative research depends on numerical data, records (also known as external data) can provide critical information to answer research questions. Records are numbers and statistics that institutions use to track activities, like attendance in a school or the number of patients admitted in a hospital.

For example, the Government of India conducts the Census every 10 years, which is a record of the country’s population. This data can be used by a researcher who is addressing a population-related research problem.

  • Records often include comprehensive data captured over a long period of time.
  • Data collection time is minimal, since the data has already been collected and recorded by someone else.
  • Records often only provide numerical data, not the reason or cause behind the data.
  • Cleaning badly structured or formatted records can take a long time.
  • If a record is incomplete or inaccurate, there is often no way to fix it.

Summing it up

Quantitative research methods are one of the best tools to identify a problem or phenomenon, how widespread it is, and how it is changing over time. After identifying a problem, quantitative research can also be used to come up with a trustworthy solution, identified using numerical data collected through standardized techniques.

Image credits:  Curtis MacNewton ,  Brijesh Nirmal ,  Charles Deluvio , and Atlan.

' src=

Related Posts

a person inclined to do quantitative research

3 Myths About Paper-Based Data Collection

data validations

18 Data Validations That Will Help You Collect Accurate Data

informed consent

Everything You Need to Know About Informed Consent

14 comments.

' src=

Very useful for research

' src=

Very easy to read and informative book. Well written. Thany thanks for the download.

' src=

It is concise and practical as well as easy to understand.

' src=

Nice book but I kind find a way to download it. Kindly let me know how to download it. Thanks

' src=

Hello Micah Nalianya Greetings! Kindly tell me how to download the book. Simeon

' src=

Hi Micah and Simeon! You can download our data collection ebook here: https://socialcops.com/ebooks/data-collection/

' src=

I have loved reviewing the brief write up. Good revision for me. Thanks

' src=

The text contains concise and important tips on data collection techniques.

' src=

Thanks for an explicit and precise outline of data collection methods.

' src=

thank you very much, this guide is really useful and easy to understand. Specially for students that just have started research.

' src=

Thank you so much for sharing me this very important material.

' src=

I am highly impressed with the simply ways you explain methods of collecting data. I am a Monitoring and Evaluation Specialist and I will like to be receiving your regular publications.

' src=

i have benefited from the work. well organized .thank you

' src=

interview is a qualitative method not quantitative.

Write A Comment Cancel Reply

Save my name, email, and website in this browser for the next time I comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

  • The Future of the Modern Data Stack in 2023
  • The Third-Generation Data Catalog Primer
  • The Secrets of a Modern Data Leader
  • The Ultimate Guide to Evaluating Data Lineage
  • How Active Metadata Helps Modern Organizations Embrace the DataOps Way
  • Inside Atlan

Type above and press Enter to search. Press Esc to cancel.

a person inclined to do quantitative research

Qualitative vs Quantitative Research 101

By: Kerryn Warren (PhD, MSc, BSc) | June 2020

Dissertation Coaching

S o, it’s time to decide what type of research approach you’re going to use – qualitative or quantitative . And, chances are, you want to choose the one that fills you with the least amount of dread. The engineers may be keen on quantitative methods because they loathe interacting with human beings and dealing with the “soft” stuff and are far more comfortable with numbers and algorithms. On the other side, the anthropologists are probably more keen on qualitative methods because they literally have the opposite fears.

Qualitative vs Quantitative Research Explained: Data & Analysis

However, when justifying your research, “being afraid” is not a good basis for decision making. Your methodology needs to be informed by your research aims and objectives , not your comfort zone. Plus, it’s quite common that the approach you feared (whether qualitative or quantitative) is actually not that big a deal. Research methods can be learnt (usually a lot faster than you think) and software reduces a lot of the complexity of both quantitative and qualitative data analysis. Conversely, choosing the wrong approach and trying to fit a square peg into a round hole is going to create a lot more pain.

In this post, I’ll explain the qualitative vs quantitative choice in straightforward, plain language with loads of examples. This won’t make you an expert in either, but it should give you a good enough “big picture” understanding so that you can make the right methodological decision for your research.

Qualitative vs Quantitative: Overview

  • Qualitative analysis 101
  • Quantitative analysis 101
  • How to choose which one to use
  • Data collection and analysis for qualitative and quantitative research
  • The pros and cons of both qualitative and quantitative research
  • A quick word on mixed methods

Qualitative Research 101: The Basics

The bathwater is hot.

Let us unpack that a bit. What does that sentence mean? And is it useful?

The answer is: well, it depends. If you’re wanting to know the exact temperature of the bath, then you’re out of luck. But, if you’re wanting to know how someone perceives the temperature of the bathwater, then that sentence can tell you quite a bit if you wear your qualitative hat .

Many a husband and wife have never enjoyed a bath together because of their strongly held, relationship-destroying perceptions of water temperature (or, so I’m told). And while divorce rates due to differences in water-temperature perception would belong more comfortably in “quantitative research”, analyses of the inevitable arguments and disagreements around water temperature belong snugly in the domain of “qualitative research”. This is because qualitative research helps you understand people’s perceptions and experiences  by systematically coding and analysing the data .

With qualitative research, those heated disagreements (excuse the pun) may be analysed in several ways. From interviews to focus groups to direct observation (ideally outside the bathroom, of course). You, as the researcher, could be interested in how the disagreement unfolds, or the emotive language used in the exchange. You might not even be interested in the words at all, but in the body language of someone who has been forced one too many times into (what they believe) was scalding hot water during what should have been a romantic evening. All of these “softer” aspects can be better understood with qualitative research.

In this way, qualitative research can be incredibly rich and detailed , and is often used as a basis to formulate theories and identify patterns. In other words, it’s great for exploratory research (for example, where your objective is to explore what people think or feel), as opposed to confirmatory research (for example, where your objective is to test a hypothesis). Qualitative research is used to understand human perception , world view and the way we describe our experiences. It’s about exploring and understanding a broad question, often with very few preconceived ideas as to what we may find.

But that’s not the only way to analyse bathwater, of course…

Qualitative research helps you understand people's perceptions and experiences by systematically analysing the data.

Quantitative Research 101: The Basics

The bathwater is 45 degrees Celsius.

Now, what does this mean? How can this be used?

I was once told by someone to whom I am definitely not married that he takes regular cold showers. As a person who is terrified of anything that isn’t body temperature or above, this seemed outright ludicrous. But this raises a question: what is the perfect temperature for a bath? Or at least, what is the temperature of people’s baths more broadly? (Assuming, of course, that they are bathing in water that is ideal to them). To answer this question, you need to now put on your quantitative hat .

If we were to ask 100 people to measure the temperature of their bathwater over the course of a week, we could get the average temperature for each person. Say, for instance, that Jane averages at around 46.3°C. And Billy averages around 42°C. A couple of people may like the unnatural chill of 30°C on the average weekday. And there will be a few of those striving for the 48°C that is apparently the legal limit in England (now, there’s a useless fact for you).

With a quantitative approach, this data can be analysed in heaps of ways. We could, for example, analyse these numbers to find the average temperature, or look to see how much these temperatures vary. We could see if there are significant differences in ideal water temperature between the sexes, or if there is some relationship between ideal bath water temperature and age! We could pop this information onto colourful, vibrant graphs , and use fancy words like “significant”, “correlation” and “eigenvalues”. The opportunities for nerding out are endless…

In this way, quantitative research often involves coming into your research with some level of understanding or expectation regarding the outcome, usually in the form of a hypothesis that you want to test. For example:

Hypothesis: Men prefer bathing in lower temperature water than women do.

This hypothesis can then be tested using statistical analysis. The data may suggest that the hypothesis is sound, or it may reveal that there are some nuances regarding people’s preferences. For example, men may enjoy a hotter bath on certain days.

So, as you can see, qualitative and quantitative research each have their own purpose and function. They are, quite simply, different tools for different jobs .

Need a helping hand?

a person inclined to do quantitative research

Qualitative vs Quantitative Research: Which one should you use?

And here I become annoyingly vague again. The answer: it depends. As I alluded to earlier, your choice of research approach depends on what you’re trying to achieve with your research.

If you want to understand a situation with richness and depth , and you don’t have firm expectations regarding what you might find, you’ll likely adopt a qualitative research approach. In other words, if you’re starting on a clean slate and trying to build up a theory (which might later be tested), qualitative research probably makes sense for you.

On the other hand, if you need to test an already-theorised hypothesis , or want to measure and describe something numerically, a quantitative approach will probably be best. For example, you may want to quantitatively test a theory (or even just a hypothesis) that was developed using qualitative research.

Basically, this means that your research approach should be chosen based on your broader research aims , objectives and research questions . If your research is exploratory and you’re unsure what findings may emerge, qualitative research allows you to have open-ended questions and lets people and subjects speak, in some ways, for themselves. Quantitative questions, on the other hand, will not. They’ll often be pre-categorised, or allow you to insert a numeric response. Anything that requires measurement , using a scale, machine or… a thermometer… is going to need a quantitative method.

Let’s look at an example.

Say you want to ask people about their bath water temperature preferences. There are many ways you can do this, using a survey or a questionnaire – here are 3 potential options:

  • How do you feel about your spouse’s bath water temperature preference? (Qualitative. This open-ended question leaves a lot of space so that the respondent can rant in an adequate manner).
  • What is your preferred bath water temperature? (This one’s tricky because most people don’t know or won’t have a thermometer, but this is a quantitative question with a directly numerical answer).
  • Most people who have commented on your bath water temperature have said the following (choose most relevant): It’s too hot. It’s just right. It’s too cold. (Quantitative, because you can add up the number of people who responded in each way and compare them).

The answers provided can be used in a myriad of ways, but, while quantitative responses are easily summarised through counting or calculations, categorised and visualised, qualitative responses need a lot of thought and are re-packaged in a way that tries not to lose too much meaning.

Your research approach should be chosen based on your broader research aims, objectives and research questions.

Qualitative vs Quantitative Research: Data collection and analysis

The approach to collecting and analysing data differs quite a bit between qualitative and quantitative research.

A qualitative research approach often has a small sample size (i.e. a small number of people researched) since each respondent will provide you with pages and pages of information in the form of interview answers or observations. In our water perception analysis, it would be super tedious to watch the arguments of 50 couples unfold in front of us! But 6-10 would be manageable and would likely provide us with interesting insight into the great bathwater debate.

To sum it up, data collection in qualitative research involves relatively small sample sizes but rich and detailed data.

On the other side, quantitative research relies heavily on the ability to gather data from a large sample and use it to explain a far larger population (this is called “generalisability”). In our bathwater analysis, we would need data from hundreds of people for us to be able to make a universal statement (i.e. to generalise), and at least a few dozen to be able to identify a potential pattern. In terms of data collection, we’d probably use a more scalable tool such as an online survey to gather comparatively basic data.

So, compared to qualitative research, data collection for quantitative research involves large sample sizes but relatively basic data.

Both research approaches use analyses that allow you to explain, describe and compare the things that you are interested in. While qualitative research does this through an analysis of words, texts and explanations, quantitative research does this through reducing your data into numerical form or into graphs.

There are dozens of potential analyses which each uses. For example, qualitative analysis might look at the narration (the lamenting story of love lost through irreconcilable water toleration differences), or the content directly (the words of blame, heat and irritation used in an interview). Quantitative analysis  may involve simple calculations for averages , or it might involve more sophisticated analysis that assesses the relationships between two or more variables (for example, personality type and likelihood to commit a hot water-induced crime). We discuss the many analysis options other blog posts, so I won’t bore you with the details here.

Qualitative research often features small sample sizes, whereas quantitative research relies on large, representative samples.

Qualitative vs Quantitative Research: The pros & cons on both sides

Quantitative and qualitative research fundamentally ask different kinds of questions and often have different broader research intentions. As I said earlier, they are different tools for different jobs – so we can’t really pit them off against each other. Regardless, they still each have their pros and cons.

Let’s start with qualitative “pros”

Qualitative research allows for richer , more insightful (and sometimes unexpected) results. This is often what’s needed when we want to dive deeper into a research question . When we want to find out what and how people are thinking and feeling , qualitative is the tool for the job. It’s also important research when it comes to discovery and exploration when you don’t quite know what you are looking for. Qualitative research adds meat to our understanding of the world and is what you’ll use when trying to develop theories.

Qualitative research can be used to explain previously observed phenomena , providing insights that are outside of the bounds of quantitative research, and explaining what is being or has been previously observed. For example, interviewing someone on their cold-bath-induced rage can help flesh out some of the finer (and often lost) details of a research area. We might, for example, learn that some respondents link their bath time experience to childhood memories where hot water was an out of reach luxury. This is something that would never get picked up using a quantitative approach.

There are also a bunch of practical pros to qualitative research. A small sample size means that the researcher can be more selective about who they are approaching. Linked to this is affordability . Unless you have to fork out huge expenses to observe the hunting strategies of the Hadza in Tanzania, then qualitative research often requires less sophisticated and expensive equipment for data collection and analysis.

Qualitative research benefits

Qualitative research also has its “cons”:

A small sample size means that the observations made might not be more broadly applicable. This makes it difficult to repeat a study and get similar results. For instance, what if the people you initially interviewed just happened to be those who are especially passionate about bathwater. What if one of your eight interviews was with someone so enraged by a previous experience of being run a cold bath that she dedicated an entire blog post to using this obscure and ridiculous example?

But sample is only one caveat to this research. A researcher’s bias in analysing the data can have a profound effect on the interpretation of said data. In this way, the researcher themselves can limit their own research. For instance, what if they didn’t think to ask a very important or cornerstone question because of previously held prejudices against the person they are interviewing?

Adding to this, researcher inexperience is an additional limitation . Interviewing and observing are skills honed in over time. If the qualitative researcher is not aware of their own biases and limitations, both in the data collection and analysis phase, this could make their research very difficult to replicate, and the theories or frameworks they use highly problematic.

Qualitative research takes a long time to collect and analyse data from a single source. This is often one of the reasons sample sizes are pretty small. That one hour interview? You are probably going to need to listen to it a half a dozen times. And read the recorded transcript of it a half a dozen more. Then take bits and pieces of the interview and reformulate and categorize it, along with the rest of the interviews.

Qualitative research can suffer from low generalisability, researcher bias, and  can take a long time to execute well.

Now let’s turn to quantitative “pros”:

Even simple quantitative techniques can visually and descriptively support or reject assumptions or hypotheses . Want to know the percentage of women who are tired of cold water baths? Boom! Here is the percentage, and a pie chart. And the pie chart is a picture of a real pie in order to placate the hungry, angry mob of cold-water haters.

Quantitative research is respected as being objective and viable . This is useful for supporting or enforcing public opinion and national policy. And if the analytical route doesn’t work, the remainder of the pie can be thrown at politicians who try to enforce maximum bath water temperature standards. Clear, simple, and universally acknowledged. Adding to this, large sample sizes, calculations of significance and half-eaten pies, don’t only tell you WHAT is happening in your data, but the likelihood that what you are seeing is real and repeatable in future research. This is an important cornerstone of the scientific method.

Quantitative research can be pretty fast . The method of data collection is faster on average: for instance, a quantitative survey is far quicker for the subject than a qualitative interview. The method of data analysis is also faster on average. In fact, if you are really fancy, you can code and automate your analyses as your data comes in! This means that you don’t necessarily have to worry about including a long analysis period into your research time.

Lastly – sometimes, not always, quantitative research may ensure a greater level of anonymity , which is an important ethical consideration . A survey may seem less personally invasive than an interview, for instance, and this could potentially also lead to greater honesty. Of course, this isn’t always the case. Without a sufficient sample size, respondents can still worry about anonymity – for example, a survey within a small department.

Quantitative research is typically considered to be more objective, quicker to execute and provides greater anonymity to respondents.

But there are also quantitative “cons”:

Quantitative research can be comparatively reductive – in other words, it can lead to an oversimplification of a situation. Because quantitative analysis often focuses on the averages and the general relationships between variables, it tends to ignore the outliers. Why is that one person having an ice bath once a week? With quantitative research, you might never know…

It requires large sample sizes to be used meaningfully. In order to claim that your data and results are meaningful regarding the population you are studying, you need to have a pretty chunky dataset. You need large numbers to achieve “statistical power” and “statistically significant” results – often those large sample sizes are difficult to achieve, especially for budgetless or self-funded research such as a Masters dissertation or thesis.

Quantitative techniques require a bit of practice and understanding (often more understanding than most people who use them have). And not just to do, but also to read and interpret what others have done, and spot the potential flaws in their research design (and your own). If you come from a statistics background, this won’t be a problem – but most students don’t have this luxury.

Finally, because of the assumption of objectivity (“it must be true because its numbers”), quantitative researchers are less likely to interrogate and be explicit about their own biases in their research. Sample selection, the kinds of questions asked, and the method of analysis are all incredibly important choices, but they tend to not be given as much attention by researchers, exactly because of the assumption of objectivity.

Quantitative research can be comparatively reductive - in other words, it can lead to an oversimplification of a situation.

Mixed methods: a happy medium?

Some of the richest research I’ve seen involved a mix of qualitative and quantitative research. Quantitative research allowed the researcher to paint “birds-eye view” of the issue or topic, while qualitative research enabled a richer understanding. This is the essence of mixed-methods research – it tries to achieve the best of both worlds .

In practical terms, this can take place by having open-ended questions as a part of your research survey. It can happen by having a qualitative separate section (like several interviews) to your otherwise quantitative research (an initial survey, from which, you could invite specific interviewees). Maybe it requires observations: some of which you expect to see, and can easily record, classify and quantify, and some of which are novel, and require deeper description.

A word of warning – just like with choosing a qualitative or quantitative research project, mixed methods should be chosen purposefully , where the research aims, objectives and research questions drive the method chosen. Don’t choose a mixed-methods approach just because you’re unsure of whether to use quantitative or qualitative research. Pulling off mixed methods research well is not an easy task, so approach with caution!

Recap: Qualitative vs Quantitative Research

So, just to recap what we have learned in this post about the great qual vs quant debate:

  • Qualitative research is ideal for research which is exploratory in nature (e.g. formulating a theory or hypothesis), whereas quantitative research lends itself to research which is more confirmatory (e.g. hypothesis testing)
  • Qualitative research uses data in the form of words, phrases, descriptions or ideas. It is time-consuming and therefore only has a small sample size .
  • Quantitative research uses data in the form of numbers and can be visualised in the form of graphs. It requires large sample sizes to be meaningful.
  • Your choice in methodology should have more to do with the kind of question you are asking than your fears or previously-held assumptions.
  • Mixed methods can be a happy medium, but should be used purposefully.
  • Bathwater temperature is a contentious and severely under-studied research topic.

Research Bootcamps

Learn More About Quantitative:

Triangulation: The Ultimate Credibility Enhancer

Triangulation: The Ultimate Credibility Enhancer

Triangulation is one of the best ways to enhance the credibility of your research. Learn about the different options here.

Inferential Statistics 101: Simple Explainer (With Examples)

Inferential Statistics 101: Simple Explainer (With Examples)

Learn about the key concepts and tests within inferential statistics, including t-tests, ANOVA, chi-square, correlation and regression.

Descriptive Statistics 101: Simple Explainer (With Examples)

Descriptive Statistics 101: Simple Explainer (With Examples)

Learn about the key concepts and measures within descriptive statistics, including measures of central tendency and dispersion.

Validity & Reliability: Explained Simply

Validity & Reliability: Explained Simply

Learn about validity and reliability within the context of research methodology. Plain-language explainer video with loads of examples.

Research Design 101: Qualitative & Quantitative

Research Design 101: Qualitative & Quantitative

Learn about research design for both qualitative and quantitative studies. Includes plain-language explanations and examples.

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

Martha

It was helpful

NANJE WILSON ITUKA

thanks much it has given me an inside on research. i still have issue coming out with my methodology from the topic below: strategies for the improvement of infastructure resilience to natural phenomena

Joreme

Waoo! Simplifies language. I have read this several times and had probs. Today it is very clear. Bravo

Trackbacks/Pingbacks

  • What Is Research Methodology? Simple Definition (With Examples) - Grad Coach - […] Qualitative, quantitative and mixed-methods are different types of methodologies, distinguished by whether they focus on words, numbers or both. This…

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

a person inclined to do quantitative research

  • Print Friendly

IMAGES

  1. Quantitative Research Process

    a person inclined to do quantitative research

  2. What is Quantitative Research? Definition, Methods, Types, and Examples

    a person inclined to do quantitative research

  3. Quantitative Research -What Is It, Examples, Methods, Advantages

    a person inclined to do quantitative research

  4. The Steps of Quantitative Research ~ ReviseSociologyReviseSociology

    a person inclined to do quantitative research

  5. What is Quantitative Research?

    a person inclined to do quantitative research

  6. Quantitative Research

    a person inclined to do quantitative research

VIDEO

  1. Quantitative Research Made Easy! 📊💡 #shorts #research

  2. Defining Undergraduate Research and Inquiry

  3. Only 2 indicators

  4. Only 2 indicators

  5. Average

  6. How Much Do Quants Really Make?

COMMENTS

  1. What Is Quantitative Research? | Definition, Uses & Methods

    Quantitative research is the opposite of qualitative research, which involves collecting and analyzing non-numerical data (e.g., text, video, or audio). Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  2. What Is Quantitative Research? An Overview and Guidelines

    In summary, quantitative research offers a structured, objective framework geared for hypothesis testing and generalizable insights, while non-quantitative research provides a finer-grained, context-sensitive exploration of phenomena.

  3. Qualitative vs Quantitative Research: What's the Difference?

    Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed numerically. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.

  4. Quantitative Research - A Complete Guide - ResearchProspect

    Quantitative research involves gathering and analysing numerical data to make predictions and describe the relationship between two variables. It deals with more than just numbers and integrates theory, hypothesis, proper methodological approach and statistical analysis to answer research questions. It is a crucial part of market research that ...

  5. Quantitative Research – Methods, Types and Analysis

    Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions. This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected.

  6. Quantitative and Qualitative Research - University of Texas ...

    Quantitative research is a way to learn about a particular group of people, known as a sample population. Using scientific inquiry, quantitative research relies on data that are observed or measured to examine questions about the sample population.

  7. A Complete Guide to Quantitative Research Methods

    The goal of quantitative research methods is to collect numerical data from a group of people, then generalize those results to a larger group of people to explain a phenomenon. Researchers generally use quantitative research when they want get objective, conclusive answers.

  8. Qualitative vs. Quantitative Research | Differences, Examples ...

    Revised on June 22, 2023. When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research is expressed in numbers and graphs.

  9. Introduction to quantitative research - SAGE Publications Inc

    Quantitative research is ‘Explaining phenomena by collecting numerical data that are analysed using mathematically based methods (in particu- lar statistics)’.

  10. Qualitative vs Quantitative Research 101 - Grad Coach

    Qualitative research is ideal for research which is exploratory in nature (e.g. formulating a theory or hypothesis), whereas quantitative research lends itself to research which is more confirmatory (e.g. hypothesis testing)