Problem Solving in Mathematics

  • Math Tutorials
  • Pre Algebra & Algebra
  • Exponential Decay
  • Worksheets By Grade

The main reason for learning about math is to become a better problem solver in all aspects of life. Many problems are multistep and require some type of systematic approach. There are a couple of things you need to do when solving problems. Ask yourself exactly what type of information is being asked for: Is it one of addition, subtraction, multiplication , or division? Then determine all the information that is being given to you in the question.

Mathematician George Pólya’s book, “ How to Solve It: A New Aspect of Mathematical Method ,” written in 1957, is a great guide to have on hand. The ideas below, which provide you with general steps or strategies to solve math problems, are similar to those expressed in Pólya’s book and should help you untangle even the most complicated math problem.

Use Established Procedures

Learning how to solve problems in mathematics is knowing what to look for. Math problems often require established procedures and knowing what procedure to apply. To create procedures, you have to be familiar with the problem situation and be able to collect the appropriate information, identify a strategy or strategies, and use the strategy appropriately.

Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

Look for Clue Words

Think of yourself as a math detective. The first thing to do when you encounter a math problem is to look for clue words. This is one of the most important skills you can develop. If you begin to solve problems by looking for clue words, you will find that those words often indicate an operation.

Common clue words for addition  problems:

Common clue words for  subtraction  problems:

  • How much more

Common clue words for multiplication problems:

Common clue words for division problems:

Although clue words will vary a bit from problem to problem, you'll soon learn to recognize which words mean what in order to perform the correct operation.

Read the Problem Carefully

This, of course, means looking for clue words as outlined in the previous section. Once you’ve identified your clue words, highlight or underline them. This will let you know what kind of problem you’re dealing with. Then do the following:

  • Ask yourself if you've seen a problem similar to this one. If so, what is similar about it?
  • What did you need to do in that instance?
  • What facts are you given about this problem?
  • What facts do you still need to find out about this problem?

Develop a Plan and Review Your Work

Based on what you discovered by reading the problem carefully and identifying similar problems you’ve encountered before, you can then:

  • Define your problem-solving strategy or strategies. This might mean identifying patterns, using known formulas, using sketches, and even guessing and checking.
  • If your strategy doesn't work, it may lead you to an ah-ha moment and to a strategy that does work.

If it seems like you’ve solved the problem, ask yourself the following:

  • Does your solution seem probable?
  • Does it answer the initial question?
  • Did you answer using the language in the question?
  • Did you answer using the same units?

If you feel confident that the answer is “yes” to all questions, consider your problem solved.

Tips and Hints

Some key questions to consider as you approach the problem may be:

  • What are the keywords in the problem?
  • Do I need a data visual, such as a diagram, list, table, chart, or graph?
  • Is there a formula or equation that I'll need? If so, which one?
  • Will I need to use a calculator? Is there a pattern I can use or follow?

Read the problem carefully, and decide on a method to solve the problem. Once you've finished working the problem, check your work and ensure that your answer makes sense and that you've used the same terms and or units in your answer.

  • Examples of Problem Solving with 4 Block
  • Using Percents - Calculating Commissions
  • What to Know About Business Math
  • Parentheses, Braces, and Brackets in Math
  • How to Solve a System of Linear Equations
  • How to Solve Proportions to Adjust a Recipe
  • Calculate the Exact Number of Days
  • What Is a Ratio? Definition and Examples
  • Changing From Base 10 to Base 2
  • Finding the Percent of Change Between Numbers
  • Learn About Natural Numbers, Whole Numbers, and Integers
  • How to Calculate Commissions Using Percents
  • Overview of the Stem-and-Leaf Plot
  • Understanding Place Value
  • Probability and Chance
  • Evaluating Functions With Graphs

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

what is problem solving in math

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Powerful online learning at your pace

Math Coach's Corner

What IS Problem-Solving?

Ask teachers about problem-solving strategies, and you’re opening a can of worms! Opinions about the “best” way to teach problem-solving are all over the board. And teachers will usually argue for their process quite passionately.

When I first started teaching math over 25 years ago, it was very common to teach “keywords” to help students determine the operation to use when solving a word problem. For example, if you see the word “total” in the problem, you always add. Rather than help students become better problem solvers, the use of keywords actually resulted in students who don’t even feel the need to read and understand the problem–just look for the keywords, pick out the numbers, and do the operation indicated by the keyword.

This post contains affiliate links, which simply means that when you use my link and purchase a product, I receive a small commission. There is no additional cost to you, and I only link to books and products that I personally use and recommend.

Another common strategy for teaching problem-solving is the use of acrostics that students can easily remember to perform the “steps” in problem-solving. CUBES is an example. Just as with keywords, however, students often follow the steps with little understanding. As an example, a common step is to underline or highlight the question. But if you ask students why they are underlining or highlighting the question, they often can’t tell you. The question is , in fact, super important, but they’ve not been told why. They’ve been told to underline the question, so they do.

The problem with both keywords and the rote-step strategies is that both methods try to turn something that is inherently messy into an algorithm! It’s way past time that we leave both methods behind.

First, we need to broaden the definition of problem-solving. Somewhere along the line, problem-solving became synonymous with “word problems.” In reality, it’s so much more. Every one of us solves dozens or hundreds of problems every single day, and most of us haven’t solved a word problem in years. Problem-solving is often described as  figuring out what to do when you don’t  know what to do.  My power went out unexpectedly this morning, and I have work to do. That’s a problem that I had to solve. I had to think about what the problem was, what my options were, and formulate a plan to solve the problem. No keywords. No acrostics. I’m using my phone as a hotspot and hoping my laptop battery doesn’t run out. Problem solved. For now.

If you want to get back to what problem-solving really is, you should consult the work of George Polya. His book, How to Solve It , which was first published in 1945, outlined four principles for problem-solving. The four principles are: understand the problem, devise a plan, carry out the plan, and look back. This document from UC Berkeley’s Mathematics department is a great 4-page overview of Polya’s process. You can probably see that the keyword and rote-steps strategies were likely based on Polya’s method, but it really got out of hand. We need to help students think , not just follow steps.

I created both primary and intermediate posters based on Polya’s principles. Grab your copies for free here !

what is problem solving in math

I would LOVE to hear your comments about problem-solving!

what is problem solving in math

Similar Posts

Using Guiding Questions to Probe Student Understanding

Using Guiding Questions to Probe Student Understanding

There is a huge shift in mathematics education away from memorizing procedures and toward deeper conceptual understanding. How do we achieve that? One way is by asking the right questions….

The Power of Part/Whole Thinking

The Power of Part/Whole Thinking

Part/whole thinking begins in Kindergarten when students are expected to learn the number combinations for the numbers through 10. Below you see a graphic representation for the combinations for 5….

Fuss Free Number of the Day

Fuss Free Number of the Day

I snapped a few pictures of these “Number of the Day” posters from a presenter at a conference because I loved how they showed the simplicity of incorporating meaningful math…

Standards for Mathematical Practice…The Missing Link for Deep Understanding

Standards for Mathematical Practice…The Missing Link for Deep Understanding

Let’s be clear, the Standards for Mathematical Practice are not new. According to the Common Core State Standards for Mathematics: The Standards for Mathematical Practice describe varieties of expertise that…

Place Value, CRA Style

Place Value, CRA Style

What is CRA you ask? It stands for concrete, representational, and abstract, and it’s a research-based instructional sequence that results in a deeper understanding of mathematics concepts. Concrete learning is…

Using the Near Doubles Strategy for Addition

Using the Near Doubles Strategy for Addition

Using a strategy-based approach helps students master their back addition and subtraction facts. One such strategy for tackling those harder facts, like 7 + 8, is the Near Doubles strategy….

Do you tutor teachers?

I do professional development for district and schools, and I have online courses.

You make a great point when you mentioned that teaching students to look for “keywords” is not teaching students to become better problem solvers. I was once guilty of using the CUBES strategy, but have since learned to provide students with opportunity to grapple with solving a problem and not providing them with specified steps to follow.

I think we’ve ALL been there! We learn and we do better. 🙂

Love this article and believe that we can do so much better as math teachers than just teaching key words! Do you have an editable version of this document? We are wanting to use something similar for our school, but would like to tweak it just a bit. Thank you!

I’m sorry, but because of the clip art and fonts I use, I am not able to provide an editable version.

Hi Donna! I am working on my dissertation that focuses on problem-solving. May I use your intermediate poster as a figure, giving credit to you in my citation with your permission, for my section on Polya’s Traditional Problem-Solving Steps? You laid out the process so succinctly with examples that my research could greatly benefit from this image. Thank you in advance!

Absolutely! Good luck with your dissertation!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

what is problem solving in math

VISIT MY TPT STORE

University of Cambridge logo white

Or search by topic

Number and algebra.

  • Place value and the number system
  • Fractions, decimals, percentages, ratio and proportion
  • Calculations and numerical methods
  • Algebraic expressions, equations and formulae
  • Coordinates, functions and graphs
  • Patterns, sequences and structure
  • Properties of numbers

Geometry and measure

  • 3D geometry, shape and space
  • Transformations and constructions
  • Vectors and matrices
  • Measuring and calculating with units
  • Pythagoras and trigonometry
  • Angles, polygons, and geometrical proof

Probability and statistics

  • Handling, processing and representing data
  • Probability (spec_group)

Working mathematically

  • Thinking mathematically
  • Mathematical mindsets

Advanced mathematics

  • Decision mathematics and combinatorics
  • Advanced probability and statistics

For younger learners

  • Early years foundation stage

Problem Solving

Problem solving and the new curriculum

Problem solving and the new curriculum

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing a classroom culture that supports a problem-solving approach to mathematics

Developing excellence in problem solving with young learners

Developing excellence in problem solving with young learners

Using NRICH Tasks to Develop Key Problem-solving Skills

Using NRICH Tasks to Develop Key Problem-solving Skills

Trial and Improvement at KS1

Trial and Improvement at KS1

Trial and Improvement at KS2

Trial and Improvement at KS2

Working Systematically

Working Systematically - Primary teachers

Number Patterns

Number Patterns

Working Backwards at KS1

Working Backwards at KS1

Working Backwards at KS2

Working Backwards at KS2

Reasoning

Visualising at KS1 - Primary teachers

Visualising at KS2

Visualising at KS2 - Primary teachers

Conjecturing and Generalising at KS1

Conjecturing and Generalising at KS1 - Primary teachers

Conjecturing and Generalising at KS2

Conjecturing and Generalising at KS2 - Primary teachers

Wonder Math

How to Improve Problem-Solving Skills: Mathematics and Critical Thinking

how-to-improve-problem-solving-skills

In today’s rapidly changing world, problem-solving has become a quintessential skill. When we discuss the topic, it’s natural to ask, “What is problem-solving?” and “How can we enhance this skill, particularly in children?” The discipline of mathematics offers a rich platform to explore these questions. Through math, not only do we delve into numbers and equations, but we also explore how to improve problem-solving skills and how to develop critical thinking skills in math. Let’s embark on this enlightening journey together.

What is Problem-Solving?

At its core, problem-solving involves identifying a challenge and finding a solution. But it’s not always as straightforward as it sounds. So, what is problem-solving? True problem-solving requires a combination of creative thinking and logical reasoning. Mathematics, in many ways, embodies this blend. When a student approaches a math problem, they must discern the issue at hand, consider various methods to tackle it, and then systematically execute their chosen strategy.

But what is problem-solving in a broader context? It’s a life skill. Whether we’re deciding the best route to a destination, determining how to save for a big purchase, or even figuring out how to fix a broken appliance, we’re using problem-solving.

How to Develop Critical Thinking Skills in Math

Critical thinking goes hand in hand with problem-solving. But exactly how to develop critical thinking skills in math might not be immediately obvious. Here are a few strategies:

  • Contextual Learning: Teaching math within a story or real-life scenario makes it relevant. When students see math as a tool to navigate the world around them, they naturally begin to think critically about solutions.
  • Open-ended Questions: Instead of merely seeking the “right” answer, encourage students to explain their thought processes. This nudges them to think deeply about their approach.
  • Group Discussions: Collaborative learning can foster different perspectives, prompting students to consider multiple ways to solve a problem.
  • Challenging Problems: Occasionally introducing problems that are a bit beyond a student’s current skill level can stimulate critical thinking. They will have to stretch their understanding and think outside the box.

What are the Six Basic Steps of the Problem-Solving Process?

Understanding how to improve problem-solving skills often comes down to familiarizing oneself with the systematic approach to challenges. So, what are the six basic steps of the problem-solving process?

  • Identification: Recognize and define the problem.
  • Analysis: Understand the problem’s intricacies and nuances.
  • Generation of Alternatives: Think of different ways to approach the challenge.
  • Decision Making: Choose the most suitable method to address the problem.
  • Implementation: Put the chosen solution into action.
  • Evaluation: Reflect on the solution’s effectiveness and learn from the outcome.

By embedding these steps into mathematical education, we provide students with a structured framework. When they wonder about how to improve problem-solving skills or how to develop critical thinking skills in math, they can revert to this process, refining their approach with each new challenge.

Making Math Fun and Relevant

At Wonder Math, we believe that the key to developing robust problem-solving skills lies in making math enjoyable and pertinent. When students see math not just as numbers on a page but as a captivating story or a real-world problem to be solved, their engagement skyrockets. And with heightened engagement comes enhanced understanding.

As educators and parents, it’s crucial to continuously ask ourselves: how can we demonstrate to our children what problem-solving is? How can we best teach them how to develop critical thinking skills in math? And how can we instill in them an understanding of the six basic steps of the problem-solving process?

The answer, we believe, lies in active learning, contextual teaching, and a genuine passion for the beauty of mathematics.

The Underlying Beauty of Mathematics

Often, people perceive mathematics as a rigid discipline confined to numbers and formulas. However, this is a limited view. Math, in essence, is a language that describes patterns, relationships, and structures. It’s a medium through which we can communicate complex ideas, describe our universe, and solve intricate problems. Understanding this deeper beauty of math can further emphasize how to develop critical thinking skills in math.

Why Mathematics is the Ideal Playground for Problem-Solving

Math provides endless opportunities for problem-solving. From basic arithmetic puzzles to advanced calculus challenges, every math problem offers a chance to hone our problem-solving skills. But why is mathematics so effective in this regard?

  • Structured Challenges: Mathematics presents problems in a structured manner, allowing learners to systematically break them down. This format mimics real-world scenarios where understanding the structure of a challenge can be half the battle.
  • Multiple Approaches: Most math problems can be approached in various ways . This teaches learners flexibility in thinking and the ability to view a single issue from multiple angles.
  • Immediate Feedback: Unlike many real-world problems where solutions might take time to show results, in math, students often get immediate feedback. They can quickly gauge if their approach works or if they need to rethink their strategy.

Enhancing the Learning Environment

To genuinely harness the power of mathematics in developing problem-solving skills, the learning environment plays a crucial role. A student who is afraid of making mistakes will hesitate to try out different approaches, stunting their critical thinking growth.

However, in a nurturing, supportive environment where mistakes are seen as learning opportunities, students thrive. They become more willing to take risks, try unconventional solutions, and learn from missteps. This mindset, where failure is not feared but embraced as a part of the learning journey, is pivotal for developing robust problem-solving skills.

Incorporating Technology

In our digital age, technology offers innovative ways to explore math. Interactive apps and online platforms can provide dynamic problem-solving scenarios, making the process even more engaging. These tools can simulate real-world challenges, allowing students to apply their math skills in diverse contexts, further answering the question of how to improve problem-solving skills.

More than Numbers 

In summary, mathematics is more than just numbers and formulas—it’s a world filled with challenges, patterns, and beauty. By understanding its depth and leveraging its structured nature, we can provide learners with the perfect platform to develop critical thinking and problem-solving skills. The key lies in blending traditional techniques with modern tools, creating a holistic learning environment that fosters growth, curiosity, and a lifelong love for learning.

Join us on this transformative journey at Wonder Math. Let’s make math an adventure, teaching our children not just numbers and equations, but also how to improve problem-solving skills and navigate the world with confidence. Enroll your child today and witness the magic of mathematics unfold before your eyes!

FAQ: Mathematics and Critical Thinking

1. what is problem-solving in the context of mathematics.

Problem-solving in mathematics refers to the process of identifying a mathematical challenge and systematically working through methods and strategies to find a solution.

2. Why is math considered a good avenue for developing problem-solving skills?

Mathematics provides structured challenges and allows for multiple approaches to find solutions. This promotes flexibility in thinking and encourages learners to view problems from various angles.

3. How does contextual learning enhance problem-solving abilities?

By teaching math within a story or real-life scenario, it becomes more relevant for the learner. This helps them see math as a tool to navigate real-world challenges , thereby promoting critical thinking.

4. What are the six basic steps of the problem-solving process in math?

The six steps are: Identification, Analysis, Generation of Alternatives, Decision Making, Implementation, and Evaluation.

5. How can parents support their children in developing mathematical problem-solving skills?

Parents can provide real-life contexts for math problems , encourage open discussions about different methods, and ensure a supportive environment where mistakes are seen as learning opportunities.

6. Are there any tools or apps that can help in enhancing problem-solving skills in math?

Yes, there are various interactive apps and online platforms designed specifically for math learning. These tools provide dynamic problem-solving scenarios and simulate real-world challenges, making the learning process engaging.

7. How does group discussion foster critical thinking in math?

Group discussions allow students to hear different perspectives and approaches to a problem. This can challenge their own understanding and push them to think about alternative methods.

8. Is it necessary to always follow the six steps of the problem-solving process sequentially?

While the six steps provide a structured approach, real-life problem-solving can sometimes be more fluid. It’s beneficial to know the steps, but adaptability and responsiveness to the situation are also crucial.

9. How does Wonder Math incorporate active learning in teaching mathematics?

Wonder Math integrates mathematics within engaging stories and real-world scenarios, making it fun and relevant. This active learning approach ensures that students are not just passive recipients but active participants in the learning process.

10. What if my child finds a math problem too challenging and becomes demotivated?

It’s essential to create a supportive environment where challenges are seen as growth opportunities. Remind them that every problem is a chance to learn, and it’s okay to seek help or approach it differently.

Related posts

Summer Math Programs: How They Can Prevent Learning Loss in Young Students

Summer Math Programs: How They Can Prevent Learning Loss in Young Students

As summer approaches, parents and educators alike turn their attention to how they can support young learners during the break. Summer is a time for relaxation, fun, and travel, yet it’s also a critical period when learning loss can occur. This phenomenon, often referred to as the “summer slide,” impacts students’ progress, especially in foundational subjects like mathematics. It’s reported…

I

Math Programs 101: What Every Parent Should Know When Looking For A Math Program

  As a parent, you know that a solid foundation in mathematics is crucial for your child’s success, both in school and in life. But with so many math programs and math help services out there, how do you choose the right one? Whether you’re considering Outschool classes, searching for “math tutoring near me,” or exploring tutoring services online, understanding…

📬 Sign Up for Our Amazing Newsletter!

Writing result-oriented ad copy is difficult, as it must appeal to, entice, and convince consumers to take action.

Why It's So Important to Learn a Problem-Solving Approach to Mathematics

was invited to the Math Olympiad Summer Program (MOP) in the 10th grade. I went to MOP certain that I must really be good at math. But in my five weeks at MOP, I encountered over sixty problems on various tests and I didn’t solve a single one. That’s right—I was 0-for-60+. I came away no longer confident that I was good at math. I assumed that most of the other kids did better at MOP because they knew more tricks than I did. My formula sheets were pretty thorough, but perhaps they were missing something. By the end of MOP, I had learned a somewhat unsettling truth. The others knew fewer tricks than I did, not more. They didn’t even have formula sheets!

At another contest later that summer, a younger student, Alex, from another school asked me for my formula sheets. In my local and state circles, students’ formula sheets were the source of knowledge, the source of power that fueled the top students and the top schools. They were studied, memorized, revered. But most of all, they were not shared. But when Alex asked for my formula sheets I remembered my experience at MOP and I realized that formula sheets are not really math . Memorizing formulas is no more mathematics than memorizing dates is history or memorizing spelling words is literature. I gave him the formula sheets. (Alex must later have learned also that the formula sheets were fool’s gold—he became a Rhodes scholar.)

The difference between MOP and many of these state and local contests I participated in was the difference between problem solving and what many people call mathematics. For these people, math is a series of tricks to use on a series of specific problems. Trick A is for Problem A, Trick B for Problem B, and so on. In this vein, school can become a routine of learn tricks for a week, use tricks on a test, forget most tricks quickly. The tricks get forgotten quickly primarily because there are so many of them, and also because the students don’t see how these ‘tricks’ are just extensions of a few basic principles.

I had painfully learned at MOP that true mathematics is not a process of memorizing formulas and applying them to problems tailor-made for those formulas. Instead, the successful mathematician possesses fewer tools, but knows how to apply them to a much broader range of problems. We use the term problem solving to distinguish this approach to mathematics from the memorize, use, forget approach.

After MOP I relearned math throughout high school. I was unaware that I was learning much more. When I got to Princeton I enrolled in organic chemistry. There were over 200 students in the course, and we quickly separated into two groups. One group understood that all we would be taught could largely be derived from a very small number of basic principles. We loved the class—it was a year-long exploration of where these fundamental concepts could take us. The other, much larger, group saw each new destination not as the result of a path from the building blocks, but as yet another place whose coordinates had to be memorized if ever they were to visit again. Almost to a student, the difference between those in the happy group and those in the struggling group was how they learned mathematics. The class seemingly involved no math at all, but those who took a memorization approach to math were doomed to do it again in chemistry. The skills the problem solvers developed in math transferred, and these students flourished.

We use math to teach problem solving because it is the most fundamental logical discipline. Not only is it the foundation upon which sciences are built, it is the clearest way to learn and understand how to develop a rigorous logical argument. There are no loopholes, there are no half-truths. The language of mathematics is as precise as it is ‘right’ and ‘wrong’ (or ‘proven’ and ‘unproven’). Success and failure are immediate and indisputable; there isn’t room for subjectivity. This is not to say that those who cannot do math cannot solve problems. There are many paths to strong problem-solving skills. Mathematics is the shortest .

Problem solving is crucial in mathematics education because it transcends mathematics. By developing problem-solving skills, we learn not only how to tackle math problems, but also how to logically work our way through any problems we may face. The memorizer can only solve problems he has encountered already, but the problem solver can solve problems she’s never seen before. The problem solver is flexible; she can diversify. Above all, she can create .

Subscribe for news, tips and advice from AoPS

Richard rusczyk, related articles, don’t fall into the calculus trap, the math of winning wordle: from letter distribution to first-word strategies, how to work through hard math problems, more articles, how to help your advanced learners be successful this year: advice from aops founder richard rusczyk, managing academic expectations, with charlene wang, revolutionizing forestry through math, with max nova, navigating “back to school” after a pandemic, with richard rusczyk, why everyone should study mathematics, more episodes, sapienship, with dr. jim clarke, wonder, with dr. frank keil, learning stem through fiction, with dr. pamela cosman, edtech at-home, with monica burns, learned helplessness, with vida john, receive weekly podcast summaries right to your inbox, get weekly podcast summaries/takeaways.

By clicking this button, I consent to receiving AoPS communications, and confirm that I am over 13, or under 13 and already a member of the Art of Problem Solving community. View our Privacy Policy .

what is problem solving in math

Aops programs

Problem Solving Skills: Meaning, Examples & Techniques

Table of Contents

1.
2.
3.
4.
5.
6.

26 January 2021

Reading Time: 2 minutes

Do your children have trouble solving their Maths homework?

Or, do they struggle to maintain friendships at school?

If your answer is ‘Yes,’ the issue might be related to your child’s problem-solving abilities. Whether your child often forgets his/her lunch at school or is lagging in his/her class, good problem-solving skills can be a major tool to help them manage their lives better.

Children need to learn to solve problems on their own. Whether it is about dealing with academic difficulties or peer issues when children are equipped with necessary problem-solving skills they gain confidence and learn to make healthy decisions for themselves. So let us look at what is problem-solving, its benefits, and how to encourage your child to inculcate problem-solving abilities

Problem-solving skills can be defined as the ability to identify a problem, determine its cause, and figure out all possible solutions to solve the problem.

  • Trigonometric Problems

What is problem-solving, then? Problem-solving is the ability to use appropriate methods to tackle unexpected challenges in an organized manner. The ability to solve problems is considered a soft skill, meaning that it’s more of a personality trait than a skill you’ve learned at school, on-the-job, or through technical training. While your natural ability to tackle problems and solve them is something you were born with or began to hone early on, it doesn’t mean that you can’t work on it. This is a skill that can be cultivated and nurtured so you can become better at dealing with problems over time.

Problem Solving Skills: Meaning, Examples & Techniques are mentioned below in the Downloadable PDF. 

📥

Benefits of learning problem-solving skills  

Promotes creative thinking and thinking outside the box.

Improves decision-making abilities.

Builds solid communication skills.

Develop the ability to learn from mistakes and avoid the repetition of mistakes.

Problem Solving as an ability is a life skill desired by everyone, as it is essential to manage our day-to-day lives. Whether you are at home, school, or work, life throws us curve balls at every single step of the way. And how do we resolve those? You guessed it right – Problem Solving.

Strengthening and nurturing problem-solving skills helps children cope with challenges and obstacles as they come. They can face and resolve a wide variety of problems efficiently and effectively without having a breakdown. Nurturing good problem-solving skills develop your child’s independence, allowing them to grow into confident, responsible adults. 

Children enjoy experimenting with a wide variety of situations as they develop their problem-solving skills through trial and error. A child’s action of sprinkling and pouring sand on their hands while playing in the ground, then finally mixing it all to eliminate the stickiness shows how fast their little minds work.

Sometimes children become frustrated when an idea doesn't work according to their expectations, they may even walk away from their project. They often become focused on one particular solution, which may or may not work.

However, they can be encouraged to try other methods of problem-solving when given support by an adult. The adult may give hints or ask questions in ways that help the kids to formulate their solutions. 

Encouraging Problem-Solving Skills in Kids

Practice problem solving through games.

Exposing kids to various riddles, mysteries, and treasure hunts, puzzles, and games not only enhances their critical thinking but is also an excellent bonding experience to create a lifetime of memories.

Create a safe environment for brainstorming

Welcome, all the ideas your child brings up to you. Children learn how to work together to solve a problem collectively when given the freedom and flexibility to come up with their solutions. This bout of encouragement instills in them the confidence to face obstacles bravely.

Invite children to expand their Learning capabilities

 Whenever children experiment with an idea or problem, they test out their solutions in different settings. They apply their teachings to new situations and effectively receive and communicate ideas. They learn the ability to think abstractly and can learn to tackle any obstacle whether it is finding solutions to a math problem or navigating social interactions.

Problem-solving is the act of finding answers and solutions to complicated problems. 

Developing problem-solving skills from an early age helps kids to navigate their life problems, whether academic or social more effectively and avoid mental and emotional turmoil.

Children learn to develop a future-oriented approach and view problems as challenges that can be easily overcome by exploring solutions. 

About Cuemath

Cuemath, a student-friendly mathematics and coding platform, conducts regular  Online Classes  for academics and skill-development, and their Mental Math App, on both  iOS  and  Android , is a one-stop solution for kids to develop multiple skills. Understand the Cuemath Fee structure and sign up for a free trial.

Frequently Asked Questions (FAQs)

How do you teach problem-solving skills.

Model a useful problem-solving method. Problem solving can be difficult and sometimes tedious. ... 1. Teach within a specific context. ... 2. Help students understand the problem. ... 3. Take enough time. ... 4. Ask questions and make suggestions. ... 5. Link errors to misconceptions.

What makes a good problem solver?

Excellent problem solvers build networks and know how to collaborate with other people and teams. They are skilled in bringing people together and sharing knowledge and information. A key skill for great problem solvers is that they are trusted by others.

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

Free ready-to-use math resources

Hundreds of free math resources created by experienced math teachers to save time, build engagement and accelerate growth

Free ready-to-use math resources

Fluency, Reasoning and Problem Solving: What This Looks Like In Every Math Lesson

Neil Almond

Fluency, reasoning and problem solving are central strands of mathematical competency, as recognized by the National Council of Teachers of Mathematics (NCTM) and the National Research Council’s report ‘Adding It Up’.

They are key components to the Standards of Mathematical Practice, standards that are interwoven into every mathematics lesson. Here we look at how these three approaches or elements of math can be interwoven in a child’s math education through elementary and middle school.

We look at what fluency, reasoning and problem solving are, how to teach them, and how to know how a child is progressing in each – as well as what to do when they’re not, and what to avoid.

The hope is that this blog will help elementary and middle school teachers think carefully about their practice and the pedagogical choices they make around the teaching of what the common core refers to as ‘mathematical practices’, and reasoning and problem solving in particular.

Before we can think about what this would look like in Common Core math examples and other state-specific math frameworks, we need to understand the background to these terms.

What is fluency in math?

What is reasoning in math, what is problem solving in math, mathematical problem solving is a learned skill, performance vs learning: what to avoid when teaching fluency, reasoning, and problem solving.

  • What IS ‘performance vs learning’?
  • Teaching to “cover the curriculum” hinders development of strong problem solving skills.
  • Fluency and reasoning – Best practice in a lesson, a unit, and a semester

Best practice for problem solving in a lesson, a unit, and a semester 

Fluency, reasoning and problem solving should not be taught by rote .

The Ultimate Guide to Problem Solving Techniques

The Ultimate Guide to Problem Solving Techniques

Develop problem solving skills in the classroom with this free, downloadable worksheet

Fluency in math is a fairly broad concept. The basics of mathematical fluency – as defined by the Common Core State Standards for math – involve knowing key mathematical skills and being able to carry them out flexibly, accurately and efficiently.

But true fluency in math (at least up to middle school) means being able to apply the same skill to multiple contexts, and being able to choose the most appropriate method for a particular task.

Fluency in math lessons means we teach the content using a range of representations, to ensure that all students understand and have sufficient time to practice what is taught.

Read more: How the best schools develop math fluency

Reasoning in math is the process of applying logical thinking to a situation to derive the correct math strategy for problem solving  for a question, and using this method to develop and describe a solution.

Put more simply, mathematical reasoning is the bridge between fluency and problem solving. It allows students to use the former to accurately carry out the latter.

Read more: Developing math reasoning: the mathematical skills required and how to teach them .

It’s sometimes easier to start off with what problem solving is not. Problem solving is not necessarily just about answering word problems in math. If a child already has a readily available method to solve this sort of problem, problem solving has not occurred. Problem solving in math is finding a way to apply knowledge and skills you have to answer unfamiliar types of problems.

Read more: Math problem solving: strategies and resources for primary school teachers .

We are all problem solvers

First off, problem solving should not be seen as something that some students can do and some cannot. Every single person is born with an innate level of problem-solving ability.

Early on as a species on this planet, we solved problems like recognizing faces we know, protecting ourselves against other species, and as babies the problem of getting food (by crying relentlessly until we were fed).

All these scenarios are a form of what the evolutionary psychologist David Geary (1995) calls biologically primary knowledge. We have been solving these problems for millennia and they are so ingrained in our DNA that we learn them without any specific instruction.

image of baby crying used to illustrate ingrained problem solving skills.

Why then, if we have this innate ability, does actually teaching problem solving seem so hard?

As you might have guessed, the domain of mathematics is far from innate. Math doesn’t just happen to us; we need to learn it. It needs to be passed down from experts that have the knowledge to novices who do not.

This is what Geary calls biologically secondary knowledge. Solving problems (within the domain of math) is a mixture of both primary and secondary knowledge.

The issue is that problem solving in domains that are classified as biologically secondary knowledge (like math) can only be improved by practicing elements of that domain.

So there is no generic problem-solving skill that can be taught in isolation and transferred to other areas.

This will have important ramifications for pedagogical choices, which I will go into more detail about later on in this blog.

The educationalist Dylan Wiliam had this to say on the matter: ‘for…problem solving, the idea that students can learn these skills in one context and apply them in another is essentially wrong.’ (Wiliam, 2018) So what is the best method of teaching problem solving to elementary and middle school math students?

The answer is that we teach them plenty of domain specific biological secondary knowledge – in this case, math. Our ability to successfully problem solve requires us to have a deep understanding of content and fluency of facts and mathematical procedures.

Here is what cognitive psychologist Daniel Willingham (2010) has to say:

‘Data from the last thirty years leads to a conclusion that is not scientifically challengeable: thinking well requires knowing facts, and that’s true not simply because you need something to think about.

The very processes that teachers care about most—critical thinking processes such as reasoning and problem solving—are intimately intertwined with factual knowledge that is stored in long-term memory (not just found in the environment).’

Colin Foster (2019), a reader in Mathematics Education in the Mathematics Education Center at Loughborough University, UK, says, ‘I think of fluency and mathematical reasoning, not as ends in themselves, but as means to support students in the most important goal of all: solving problems.’

In that paper he produces this pyramid:

pyramid diagram showing the link between fluency, reasoning and problem solving

This is important for two reasons:

1)    It splits up reasoning skills and problem solving into two different entities

2)    It demonstrates that fluency is not something to be rushed through to get to the ‘problem solving’ stage but is rather the foundation of problem solving.

In my own work I adapt this model and turn it into a cone shape, as education seems to have a problem with pyramids and gross misinterpretation of them (think Bloom’s taxonomy).

conical diagram showing the link between fluency, reasoning skills and problem solving

Notice how we need plenty of fluency of facts, concepts, procedures and mathematical language.

Having this fluency will help with improving logical reasoning skills, which will then lend themselves to solving mathematical problems – but only if it is truly learnt and there is systematic retrieval of this information carefully planned across the curriculum.

I mean to make no sweeping generalization here; this was my experience both at university when training and from working in schools.

At some point, schools become obsessed with the ridiculous notion of moving students through content at an accelerated rate. I have heard it used in all manner of educational contexts while training and being a teacher. ‘You will need to show ‘accelerated progress in math’ in this lesson,’ ‘School officials will be looking for ‘accelerated progress’ etc.

I have no doubt that all of this came from a good place and from those wanting the best possible outcomes – but it is misguided.

I remember being told that we needed to get students onto the problem solving questions as soon as possible to demonstrate this mystical ‘accelerated progress’.

This makes sense; you have a group of students and you have taken them from not knowing something to working out pretty sophisticated 2-step or multi-step word problems within an hour. How is that not ‘accelerated progress?’

This was a frequent feature of my lessons up until last academic year: teach a mathematical procedure; get the students to do about 10 of them in their books; mark these and if the majority were correct, model some reasoning/problem solving questions from the same content as the fluency content; give the students some reasoning and word problem questions and that was it.

I wondered if I was the only one who had been taught this while at university so I did a quick poll on Twitter and found that was not the case.

twitter poll regarding teaching of problem solving techniques in primary school

I know these numbers won’t be big enough for a representative sample but it still shows that others are familiar with this approach.

The issue with the lesson framework I mentioned above is that it does not take into account ‘performance vs learning.’

What IS ‘performance vs learning’?

The premise is that performance in a lesson is not a good proxy for learning.

Yes, those students were performing well after I had modeled a mathematical procedure for them, and managed to get questions correct.

But if problem solving depends on a deep knowledge of mathematics, this approach to lesson structure is going to be very ineffective.

As mentioned earlier, the reasoning and problem solving questions were based on the same math content as the fluency exercises, making it more likely that students would solve problems correctly whether they fully understood them or not.

Chances are that all they’d need to do is find the numbers in the questions and use the same method they used in the fluency section to get their answers (a process referred to as “number plucking”) – not exactly high level problem solving skills.

Teaching to “cover the curriculum” hinders development of strong problem solving skills.

This is one of my worries with ‘math mastery schemes’ that block content so that, in some circumstances, it is not looked at again until the following year (and with new objectives).

The pressure for teachers to ‘get through the curriculum’ results in many opportunities to revisit content being missed in the classroom.

Students are unintentionally forced to skip ahead in the fluency, reasoning, problem solving chain without proper consolidation of the earlier processes.

As David Didau (2019) puts it, ‘When novices face a problem for which they do not have a conveniently stored solution, they have to rely on the costlier means-end analysis.

This is likely to lead to cognitive overload because it involves trying to work through and hold in mind multiple possible solutions.

It’s a bit like trying to juggle five objects at once without previous practice. Solving problems is an inefficient way to get better at problem solving.’

Fluency and reasoning – Best practice in a lesson, a unit, and a semester

By now I hope you have realized that when it comes to problem solving, fluency is king. As such we should look to mastery math based teaching to ensure that the fluency that students need is there.

The answer to what fluency looks like will obviously depend on many factors, including the content being taught and the grade you find yourself teaching.

But we should not consider rushing them on to problem solving or logical reasoning in the early stages of this new content as it has not been learnt, only performed.

I would say that in the early stages of learning, content that requires the end goal of being fluent should take up the majority of lesson time – approximately 60%. The rest of the time should be spent rehearsing and retrieving other knowledge that is at risk of being forgotten about.

This blog on mental math strategies students should learn at each grade level is a good place to start when thinking about the core aspects of fluency that students should achieve.

Little and often is a good mantra when we think about fluency, particularly when revisiting the key mathematical skills of number bond fluency or multiplication fluency. So when it comes to what fluency could look like throughout the day, consider all the opportunities to get students practicing.

They could chant multiplication facts when transitioning. If a lesson in another subject has finished earlier than expected, use that time to quiz students on number bonds. Have fluency exercises as part of the morning work.

Read more: How to teach multiplication for instant recall

What about best practice over a longer period?

Thinking about what fluency could look like across a unit of work would again depend on the unit itself.

Look at this unit below from a popular scheme of work.

example scheme of work

They recommend 20 days to cover 9 objectives. One of these specifically mentions problem solving so I will forget about that one at the moment – so that gives 8 objectives.

I would recommend that the fluency of this unit look something like this:

example first lesson of a unit of work targeted towards fluency

This type of structure is heavily borrowed from Mark McCourt’s phased learning idea from his book ‘Teaching for Mastery.’

This should not be seen as something set in stone; it would greatly depend on the needs of the class in front of you. But it gives an idea of what fluency could look like across a unit of lessons – though not necessarily all math lessons.

When we think about a semester, we can draw on similar ideas to the one above except that your lessons could also pull on content from previous units from that semester.

So lesson one may focus 60% on the new unit and 40% on what was learnt in the previous unit.

The structure could then follow a similar pattern to the one above.

When an adult first learns something new, we cannot solve a problem with it straight away. We need to become familiar with the idea and practice before we can make connections, reason and problem solve with it.

The same is true for students. Indeed, it could take up to two years ‘between the mathematics a student can use in imitative exercises and that they have sufficiently absorbed and connected to use autonomously in non-routine problem solving.’ (Burkhardt, 2017).

Practice with facts that are secure

So when we plan for reasoning and problem solving, we need to be looking at content from 2 years ago to base these questions on.

You could get students in 3rd grade to solve complicated place value problems with the numbers they should know from 1st or 2nd grade. This would lessen the cognitive load , freeing up valuable working memory so they can actually focus on solving the problems using content they are familiar with.

Increase complexity gradually

Once they practice solving these types of problems, they can draw on this knowledge later when solving problems with more difficult numbers.

This is what Mark McCourt calls the ‘Behave’ phase. In his book he writes:

‘Many teachers find it an uncomfortable – perhaps even illogical – process to plan the ‘Behave’ phase as one that relates to much earlier learning rather than the new idea, but it is crucial to do so if we want to bring about optimal gains in learning, understanding and long term recall.’  (Mark McCourt, 2019)

This just shows the fallacy of ‘accelerated progress’; in the space of 20 minutes some teachers are taught to move students from fluency through to non-routine problem solving, or we are somehow not catering to the needs of the child.

When considering what problem solving lessons could look like, here’s an example structure based on the objectives above.

example lesson of a unit using fluency and reasoning to embed problem solving

It is important to reiterate that this is not something that should be set in stone. Key to getting the most out of this teaching for mastery approach is ensuring your students (across abilities) are interested and engaged in their work.

Depending on the previous attainment and abilities of the children in your class, you may find that a few have come across some of the mathematical ideas you have been teaching, and so they are able to problem solve effectively with these ideas.

Equally likely is encountering students on the opposite side of the spectrum, who may not have fully grasped the concept of place value and will need to go further back than 2 years and solve even simpler problems.

In order to have the greatest impact on class performance, you will have to account for these varying experiences in your lessons.

Read more: 

  • Math Mastery Toolkit : A Practical Guide To Mastery Teaching And Learning
  • Problem Solving and Reasoning Questions and Answers
  • Get to Grips with Math Problem Solving For Elementary Students
  • Mixed Ability Teaching for Mastery: Classroom How To
  • 21 Math Challenges To Really Stretch Your More Able Students
  • Why You Should Be Incorporating Stem Sentences Into Your Elementary Math Teaching

Do you have students who need extra support in math? Give your students more opportunities to consolidate learning and practice skills through personalized math tutoring with their own dedicated online math tutor. Each student receives differentiated instruction designed to close their individual learning gaps, and scaffolded learning ensures every student learns at the right pace. Lessons are aligned with your state’s standards and assessments, plus you’ll receive regular reports every step of the way. Personalized one-on-one math tutoring programs are available for: – 2nd grade tutoring – 3rd grade tutoring – 4th grade tutoring – 5th grade tutoring – 6th grade tutoring – 7th grade tutoring – 8th grade tutoring Why not learn more about how it works ?

The content in this article was originally written by primary school lead teacher Neil Almond and has since been revised and adapted for US schools by elementary math teacher Jaclyn Wassell.

Related articles

20 Effective Math Strategies To Approach Problem-Solving 

20 Effective Math Strategies To Approach Problem-Solving 

Why Student Centered Learning Is Important: A Guide For Educators

Why Student Centered Learning Is Important: A Guide For Educators

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

13 Effective Learning Strategies: A Guide to Using them in your Math Classroom

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Differentiated Instruction: 9 Differentiated Curriculum And Instruction Strategies For Teachers 

Ultimate Guide to Metacognition [FREE]

Looking for a summary on metacognition in relation to math teaching and learning?

Check out this guide featuring practical examples, tips and strategies to successfully embed metacognition across your school to accelerate math growth.

Privacy Overview

  • Math tutors
  • Math classes
  • 1st Grade Math Worksheets
  • 2nd Grade Math Worksheets
  • 3rd Grade Math Worksheets
  • 4th Grade Math Worksheets
  • 5th Grade Math Worksheets
  • 6th Grade Math Worksheets
  • 7th Grade Math Worksheets
  • 8th Grade Math Worksheets
  • Knowledge Base

10 Strategies for Problem-Solving in Math

reviewed by Jo-ann Caballes

Updated on August 21, 2024

what is problem solving in math

It’s not surprising that kids who lack problem-solving skills feel stuck in math class. Students who are behind in problem-solving may have difficulties identifying and carrying out a plan of action to solve a problem. Math strategies for problem-solving allow children to use a range of approaches to work out math problems productively and with ease. This article explores math problem-solving strategies and how kids can use them both in traditional classes and in a virtual classroom. 

What are problem-solving strategies in math?

Problem-solving strategies for math make it easier to tackle math and work up an effective solution. When we face any kind of problem, it’s usually impossible to solve it without carrying out a good plan.In other words, these strategies were designed to make math for kids easier and more manageable. Another great benefit of these strategies is that kids can spend less time cracking math problems. 

Here are some problem-solving methods:

  • Drawing a picture or diagram (helps visualize the problem)
  • Breaking the problem into smaller parts (to keep track of what has been done)
  • Making a table or a list (helps students to organize information)

When children have a toolkit of math problem-solving strategies at hand, it makes it easier for them to excel in math and progress faster. 

How to solve math problems?

To solve math problems, it’s worth having strategies for math problem-solving that include several steps, but it doesn’t necessarily mean they are failproof. They serve as a guide to the solution when it’s difficult to decide where and how to start. Research suggests that breaking down complex problems into smaller stages can reduce cognitive load and make it easier for students to solve problems. Essentially, a suitable strategy can help kids to find the right answers fast. 

Here are 5 math problem-solving strategies for kids:

  • Recognize the Problem  
  • Work up a Plan  
  • Carry Out the Plan  
  • Review the Work  
  • Reflect and Analyze  

Understanding the Problem 

Understanding the problem is the first step in the journey of solving it. Without doing this, kids won’t be able to address it in any way. In the beginning, it’s important to read the problem carefully and make sure to understand every part of it. Next, when kids know what they are asked to do, they have to write down the information they have and determine what essentially they need to solve. 

Work Out a Plan 

Working out a plan is one of the most important steps to solving math problems. Here, the kid has to choose a good strategy that will help them with a specific math problem. Outline these steps either in mind or on paper.

Carry Out the Plan 

Being methodical at that stage is key. It involves following the plan and performing calculations with the correct operations and rules. Finally, when the work is done, the child can review and show their work to a teacher or tutor.

Review the Work

This is where checking if the answer is correct takes place. If time allows, children and the teacher can choose other methods and try to solve the same problem again with a different approach. 

Reflect and Analyze

This stage is a great opportunity to think about how the problem was solved: did any part cause confusion? Was there a more efficient method? It’s important to let the child know that they can use the insights gained for future reference. 

Ways to solve math problems

The ways to solve math problems for kids are numerous, but it doesn’t mean they all work the same for everybody. For example, some children may find visual strategies work best for them; some prefer acting out the problem using movements. Finding what kind of method or strategy works best for your kid will be extremely beneficial both for school performance and in real-life scenarios where they can apply problem-solving. 

Online tutoring platforms like Brighterly offer personalized assistance, interactive tools, and access to resources that help to determine which strategies are best for your child. Expertise-driven tutors know how to guide your kid so they won’t be stuck with the same fallacies that interfere with effective problem-solving. For example, tutors can assist kids with drawing a diagram, acting a problem out with movement, or working backward. All of these ways are highly effective, especially with a trusted supporter by your side. 

banner-img

Your child will fall in love with math 
after just one lesson!

Choose 1:1 online math tutoring.

banner-img

What are 10 strategies for solving math problems?

There are plenty of different problem-solving strategies for mathematical problems to help kids discover answers. Let’s explore 10 popular problem-solving strategies:

Understand the Problem

Figuring out the nature of math problems is the key to solving them. Kids need to identify what kind of issue this is (fraction problem, word problem, quadratic equation, etc.) and work up a plan to solve it. 

Guess and Check

With this approach, kids simply need to keep guessing until they get the answer right. While this approach may seem irrelevant, it illustrates what the kid’s thinking process is. 

Work It Out

This method encourages students to write down or say their problem-solving process instead of going straight to solving it without preparation. This minimizes the probability of mistakes. 

Work Backwords 

Working backward is a great problem-solving strategy to acquire a fresh perspective. It requires one to come up with a probable solution and decide which step to take to come to that solution. 

A visual representation of a math problem may help kids to understand it in full. One way to visualize a problem is to use a blank piece of paper and draw a picture, including all of the aspects of the issue. 

Find a Pattern 

By helping students see patterns in math problems, we help them to extract and list relevant details. This method is very effective in learning shapes and other topics that need repetition. 

It may be self-explanatory, but it’s quite helpful to ask, “What are some possible solutions to this issue?”. By giving kids time to think and reflect, we help them to develop creative and critical thinking.

Draw a Picture or Diagram

Instead of drawing the math problem yourself, ask the kid to draw it themselves. They can draw pictures of the ideas they have been taught to help them remember the concepts better.

Trial and Error Method

Not knowing clear formulas or instructions, kids won’t be able to solve anything. Ask them to make a list of possible answers based on rules they already know. Let them learn by making mistakes and trying to find a better solution. 

Review Answers with Peers

It’s so fun to solve problems alongside your peers. Kids can review their answers together and share ideas on how each problem can be solved. 

Help your kid achieve their full math potential

The best Brighterly tutors are ready to help with that.

Math problem-solving strategies for elementary students

5 problem-solving strategies for elementary students include:

Using Simple Language 

Ask students to explain the problem in their own words to make sure they understand the problem correctly.

Using Visuals and Manipulatives 

Using drawing and manipulatives like counters, blocks, or beads can help students grasp the issue faster. 

Simplifying the Problem

Breaking the problem into a step-by-step process and smaller, manageable steps will allow students to find the solution faster. 

Looking for Patterns 

Identifying patterns in numbers and operations is a great strategy to help students gain more confidence along the way. 

Using Stories

what is problem solving in math

Turning math problems into stories will surely engage youngsters and make them participate more actively. 

To recap, students need to have effective math problem-solving strategies up their sleeves. Not only does it help them in the classroom, but it’s also an essential skill for real-life situations. Productive problem-solving strategies for math vary depending on the grade. But what they have in common is that kids have to know how to break the issue into smaller parts and apply critical and creative thinking to solve it. 

If you want your kid to learn how to thrive in STEM and apply problem-solving strategies to both math and real life, book a free demo lesson with Brighterly today! Make your child excited about math!

Author Jessica Kaminski

Jessica is a a seasoned math tutor with over a decade of experience in the field. With a BSc and Master’s degree in Mathematics, she enjoys nurturing math geniuses, regardless of their age, grade, and skills. Apart from tutoring, Jessica blogs at Brighterly. She also has experience in child psychology, homeschooling and curriculum consultation for schools and EdTech websites.

Previous Article Image

As adults, we take numbers for granted, but preschoolers and kindergartners have no idea what these symbols mean. Yet, we often demand instant understanding and flawless performance when we start teaching numbers to our children. If you don’t have a clue about how to teach numbers for kids, browse no more. You will get four […]

May 19, 2022

Previous Article Image

Teaching strategies aren’t something that is set in stone and continue to evolve every year. Even though traditional educational strategies like teachers teaching in front of the classroom seemed to work for decades with little to no adjustments, the digital age has brought along numerous challenges. Teaching methods for kids require new strategies, so educators […]

Math programs from 1st to 8th grade

Meet the best tutors for interactive learning.

Image -Meet the best tutors for interactive learning

Choose kid's grade

Math Program Boost Your Child's Math Abilities! Ideal for 1st-8th Graders, Perfectly Synced with School Curriculum!

Meet the best tutors for interactive learning

What do we offer?

Related posts.

what is problem solving in math

Math Projects Ideas for Students

Math projects are a universal activity that can be conveniently utilized in many scenarios. For example, they are a superb way to help kids learn new concepts or revive their past knowledge. Besides, they are commonly used to upgrade lessons by making them more fun, engaging, and enjoyable. Even though math is a relatively complicated […]

Mar 14, 2022

what is problem solving in math

Scaffolding in Education: How Scaffolding Helps

Have you ever tried teaching your child a new math concept? If you did, you know (or guess) how many challenges the whole learning process encapsulates. It’s not enough to teach a thing or reveal the topic — it’s vital to bind the new knowledge into what your child already knows, creating a system. It’s […]

Author Camille Ira B. Mendoza

May 31, 2022

what is problem solving in math

How to Get Better at Math: Study Tips and Tricks for Kids & Teens

How to become better at math? The first thing that should be mentioned is practice. Your elementary, middle, or high school student needs regular support and help with homework. Difficulties in math can be encountered by both children who are just starting to learn the basics and teens who are already studying much more complex […]

Aug 18, 2023

Want your kid to excel in math?

Kid’s grade

Image full form

We use cookies to help give you the best service possible. If you continue to use the website we will understand that you consent to the Terms and Conditions. These cookies are safe and secure. We will not share your history logs with third parties. Learn More

Please ensure that your password is at least 8 characters and contains each of the following:

  • a special character: @$#!%*?&

Microsoft

Get step-by-step explanations

Graph your math problems

Graph your math problems

Practice, practice, practice

Practice, practice, practice

Get math help in your language

Get math help in your language

Math Solver

Geogebra math solver.

Get accurate solutions and step-by-step explanations for algebra and other math problems, while enhancing your problem-solving skills!

person with long dark hair sit at a table working at a laptop. 3x+2 and x² equations float in the air signifying that she is working on math problems

Download on App Store

  • Solve equations and inequalities
  • Simplify expressions
  • Factor polynomials
  • Graph equations and inequalities
  • Advanced solvers
  • All solvers
  • Arithmetics
  • Determinant
  • Percentages
  • Scientific Notation
  • Inequalities

Download on App Store

What can QuickMath do?

QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students.

  • The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and cancelling common factors within a fraction.
  • The equations section lets you solve an equation or system of equations. You can usually find the exact answer or, if necessary, a numerical answer to almost any accuracy you require.
  • The inequalities section lets you solve an inequality or a system of inequalities for a single variable. You can also plot inequalities in two variables.
  • The calculus section will carry out differentiation as well as definite and indefinite integration.
  • The matrices section contains commands for the arithmetic manipulation of matrices.
  • The graphs section contains commands for plotting equations and inequalities.
  • The numbers section has a percentages command for explaining the most common types of percentage problems and a section for dealing with scientific notation.

Math Topics

More solvers.

  • Add Fractions
  • Simplify Fractions
  • Our Mission

Using Video Projects to Reinforce Learning in Math

A collaborative project can help students deeply explore math concepts, explain problem-solving strategies, and demonstrate their learning.

High school students making videos

Problem-solving, and the creativity that generates and fuels it, lies at the heart of mathematics. Mathematics is essentially about reasoning and much less about memorization or even procedural skills, although both processes are meaningful and useful to simplify and support problem-solving. The National Council of Teachers of Mathematics (NCTM) has consistently advocated to keep problem-solving as the centerpiece of mathematics teaching, and global trends in mathematics education have increasingly emphasized problem-solving and mathematical modeling.

Problem-solving allows students to deepen their conceptual comprehension and appreciate the usefulness and relevance of mathematics. Thus, it generates and fosters interest, engagement, and a deeper understanding of the world around them. Because problem-solving is often used in the mathematics classroom, it’s particularly important to find fresh and interesting ways to attract and maintain students’ engagement.

Video Projects Support Interest in Problem-Solving 

To this end, I assign video projects to my students. In groups of two or three, they solve a set of problems on a topic and then choose one to illustrate, solve, and explain their favorite problem-solving strategy in detail, along with the reasons they chose it. The student-created videos are collected and stored on a Padlet even after I have evaluated them—kept as a reference, keepsake, and support. I have a library of student-created videos that benefit current and future students when they have some difficulties with a topic and associated problems.

Some topics in mathematics are well-suited for applications and problem-solving. These are usually multistep problems that require a combination of strategies and procedural fluency. Typical examples are the motion, work, and mixture problems in algebra, the optimization problems in precalculus or calculus, and related rates problems in calculus.

This collection of student-created videos is about related rates problems (note that some links may not work, as this collection is old). Video activities based on problem-solving can be done at any level of mathematics, as problem-solving is a task in which children are engaged in math class from an early age.

Useful Recording Tools

Some examples of useful recording apps include Screencastify , ScreenPal , iMovie , and QuickTime . Each of them has pros and cons, so I suggest looking at the particular specifications of each tool in terms of the number and length of videos allowed by the free version of those apps. I let my students choose what app they want to use to create their videos—they are generally very familiar with this sort of technology and may be more at ease with one tool over another. All they have to produce is a usable link to their video that will be posted on the common Padlet.

Loom is an intuitive, user-friendly screen recording tool that can record audio, video, browser windows, or entire screens in a Chrome extension, desktop app, or mobile app. You can sign up for a free Loom for Education account; students don’t need an account to watch a teacher’s videos, but they will in order to create their own videos.

Loom’s training module is thorough and includes tutorials, special feature descriptions, and examples. Once you click the Loom icon, there’s a short countdown that precedes the recording. When you stop the recording, a link automatically saves to your clipboard and can be easily shared via email, social media, or an embed code.

The videos will also save to your personal library and can be shared to a team library to make them easily accessible to colleagues. Editing features are quite limited (trimming and changing playback speed), which means you may have to do multiple takes, but teachers can control the settings for comment and download options. 

4 Problem-Solving Strategies

Mathematician George Polya outlined a four-step model in his famous book, How to Solve It . It involves understanding the problem, devising a plan, carrying it out, and finally looking back and reflecting. These are the strategies that my students must demonstrate while creating their videos. 

  • Understand the problem: Students reread the problem carefully, summarize and rewrite the information in mathematical notation, use keyword analysis, draw a picture or a diagram, or even act out the scenario.
  • Devise a plan: Looking for patterns and solving a simpler problem are my favorite approaches, but other ideas—guess-and-check, working backward, eliminating possibilities, using a formula and solving an equation—can work well too, depending on the circumstances. Most often, for good problems, several of these strategies have to be employed at the same time and help support confidence in the solution.
  • Carry out the plan: This is where “show your work” comes in with full force. Communicating their thoughts and ideas is paramount: Students should be systematic, show their thinking in a logical progression, check their work, and be flexible and persistent.
  • Look back and reflect: It’s important to consider which part of the problem was the most challenging and why, which process was most effective, and other strategies that could have worked. This makes for more efficient and deeper learning.

Related rates problems can be intimidating at first, and it is useful for students to write out explicitly the steps and strategies they take to solve the first few problems.

My students come up with a model that follows the previously mentioned steps. It includes labeling the rates with their units and sign, an understanding of the rate they must find, finding at least one equation that binds the variables together, differentiating this equation with respect to time, plugging in the given information, and, finally, writing a short sentence that summarizes their conclusion (including sign and units). 

Benefits of the Video Activity

My students and I have experienced several benefits of this task.

Students are encouraged to communicate mathematically. The importance of communication among learners is also heavily emphasized in the NCTM publication Principles and Standards for School Mathematics .

Student collaboration. Viewing learning as a collective endeavor , rather than an individual competition, helps students develop their social and collaborative skills. When students take joint responsibility for their learning—sharing ideas and resources—it fosters a safe environment where they perceive each other as allies rather than competitors, which increases engagement and academic achievement. 

Problem-solving skills are strengthened. As reported in the Executive Summary of the NCTM Principles and Standards for School Mathematics , when solving mathematical problems, students acquire ways of thinking, habits of persistence and curiosity, and confidence in unfamiliar situations that serve them well beyond the classroom. 

Teachers can clearly see students’ understanding. This includes conceptual understanding, procedural precision, logical and analytical thinking, problem-solving strategies, and clarity of communication.

A sense of belonging in math class is cemented. The experience generates positive, affirmative memories—the goal of social and emotional learning—and “ encourages student focus and motivation, improves relationships between students and teachers, and increases student confidence and success .” It should be promoted, particularly in the STEM disciplines.

 In other words, it’s a keeper.

Pp

problem, problem solving

• in mathematics a problem is a question which needs a mathematical solution.
• problems may be written in words or using numbers and variables.
• problem solving includes examining the question to find the key ideas,
choosing an appropriate strategy, doing the maths,
finding the answer and then re-checking.

EXAMPLES:

  © Jenny Eather 2014. All rights reserved.  

share this!

August 30, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

trusted source

Different mathematical solving methods can affect how information is memorized

by University of Geneva

False memories revealing mathematical reasoning

The way we memorize information—a mathematical problem statement, for example—reveals the way we process it. A team from the University of Geneva (UNIGE), in collaboration with CY Cergy Paris University (CYU) and Bourgogne University (uB), has shown how different solving methods can alter the way information is memorized and even create false memories.

By identifying learners' unconscious deductions, this study opens up new perspectives for mathematics teaching. These results are published in the Journal of Experimental Psychology: Learning, Memory, and Cognition .

Remembering information goes through several stages: perception, encoding—the way it is processed to become an easily accessible memory trace—and retrieval (or reactivation). At each stage, errors can occur, sometimes leading to the formation of false memories .

Scientists from the UNIGE, CYU and Bourgogne University set out to determine whether solving arithmetic problems could generate such memories and whether they could be influenced by the nature of the problems.

Unconscious deductions create false memories

When solving a mathematical problem , it is possible to call upon either the ordinal property of numbers, i.e., the fact that they are ordered, or their cardinal property, i.e., the fact that they designate specific quantities. This can lead to different solving strategies and, when memorized, to different encoding.

In concrete terms, the representation of a problem involving the calculation of durations or differences in heights (ordinal problem) can sometimes allow unconscious deductions to be made, leading to a more direct solution. This is in contrast to the representation of a problem involving the calculation of weights or prices (cardinal problem), which can lead to additional steps in the reasoning, such as the intermediate calculation of subsets.

The scientists therefore hypothesized that, as a result of spontaneous deductions, participants would unconsciously modify their memories of ordinal problem statements, but not those of cardinal problems.

To test this, a total of 67 adults were asked to solve arithmetic problems of both types, and then to recall the wording in order to test their memories. The scientists found that in the majority of cases (83%), the statements were correctly recalled for cardinal problems.

In contrast, the results were different when the participants had to remember the wording of ordinal problems, such as: "Sophie's journey takes 8 hours. Her journey takes place during the day. When she arrives, the clock reads 11. Fred leaves at the same time as Sophie. Fred's journey is 2 hours shorter than Sophie's. What time does the clock show when Fred arrives?"

In more than half the cases, information deduced by the participants when solving these problems was added unintentionally to the statement. In the case of the problem mentioned above, for example, they could be convinced—wrongly—that they had read: "Fred arrived 2 hours before Sophie" (an inference made because Fred and Sophie left at the same time, but Fred's journey took 2 hours less, which is factually true but constitutes an alteration to what the statement indicated).

"We have shown that when solving specific problems, participants have the illusion of having read sentences that were never actually presented in the statements, but were linked to unconscious deductions made when reading the statements. They become confused in their minds with the sentences they actually read," explains Hippolyte Gros, former post-doctoral fellow at UNIGE's Faculty of Psychology and Educational Sciences, lecturer at CYU, and first author of the study.

Invoking memories to understand reasoning

In addition, the experiments showed that the participants with the false memories were only those who had discovered the shortest strategy, thus revealing their unconscious reasoning that had enabled them to find this resolution shortcut. On the other hand, the others, who had operated in more stages, were unable to "enrich" their memory because they had not carried out the corresponding reasoning.

"This work can have applications for learning mathematics. By asking students to recall statements, we can identify their mental representations and therefore the reasoning they used when solving the problem, based on the presence or absence of false memories in their restitution," explains Emmanuel Sander, full professor at the UNIGE's Faculty of Psychology and Educational Sciences, who directed this research.

It is difficult to access mental constructs directly. Doing so indirectly, by analyzing memorization processes, could lead to a better understanding of the difficulties encountered by students in solving problems, and provide avenues for intervention in the classroom.

Provided by University of Geneva

Explore further

Feedback to editors

what is problem solving in math

Small, harmless asteroid burns up in Earth's atmosphere over the Philippines

4 hours ago

what is problem solving in math

Novel metasurface enables temperature-adaptive radiative cooling

what is problem solving in math

Miniature treadmills accelerate studies of insects walking

14 hours ago

what is problem solving in math

City light pollution is shrinking spiders' brains, new study finds

15 hours ago

what is problem solving in math

Nanostructures enable on-chip lightwave-electronic frequency mixer

16 hours ago

what is problem solving in math

Researcher helps develop new technique to explore oceanic microbes

what is problem solving in math

Soil treated with organic fertilizers stores more carbon, study finds

what is problem solving in math

Soil pollution surpasses climate change as top threat to underground biodiversity, study finds

17 hours ago

what is problem solving in math

Optoelectronic diamond device reveals an unexpected phenomenon reminiscent of lightning in slow motion

what is problem solving in math

Fetching in cats is more common than previously thought, researchers find

Relevant physicsforums posts, can higher degree nested radicals be simplified.

13 hours ago

Raising to the power of 0 or 1

21 hours ago

Calculate new height of truncated cone

Sep 3, 2024

Scalars, Vectors, Matrices,Tensors, Holors....

Calculate distance between ends of a circle segment, cartesian space vs. euclidean space.

More from General Math

Related Stories

what is problem solving in math

Drawings of mathematical problems predict their resolution

Mar 7, 2024

what is problem solving in math

Have a vexing problem? Sleep on it.

Oct 17, 2019

what is problem solving in math

Expert mathematicians stumped by simple subtractions

Jul 10, 2019

what is problem solving in math

Study: Cognitive flexibility enhances mathematical reasoning

Nov 29, 2022

what is problem solving in math

Research reveals cuttlefish can form false memories, too

Jul 17, 2024

what is problem solving in math

A new method for boosting the learning of mathematics

Dec 23, 2019

Recommended for you

what is problem solving in math

Mathematicians model a puzzling breakdown in cooperative behavior

what is problem solving in math

Mathematicians debunk GPS assumptions to offer improvements

Aug 28, 2024

what is problem solving in math

Framework for solving parabolic partial differential equations could guide computer graphics and geometry processing

what is problem solving in math

AI tools like ChatGPT popular among students who struggle with concentration and attention

what is problem solving in math

Researchers find academic equivalent of a Great Gatsby Curve in science mentorships

Aug 27, 2024

what is problem solving in math

Cold math, hot topic: Applied theory offers new insights into sea ice thermal conductivity

Let us know if there is a problem with our content.

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

AI generator

1 Student Confidently Solving Math Problems On Whiteboard royalty-free images

2 1 student confidently solving math problems on whiteboard stock photos, vectors, and illustrations are available royalty-free for download..

Portrait of happy girl with felt tip pen solving math problem on whiteboard in classroom Stock Photo

IMAGES

  1. What IS Problem-Solving?

    what is problem solving in math

  2. Math Problem Solving Examples With Solutions For Grade 4

    what is problem solving in math

  3. Math Problem Solving 101

    what is problem solving in math

  4. Problem Solving

    what is problem solving in math

  5. 4 Best Steps To Problem Solving in Math That Lead to Results

    what is problem solving in math

  6. Steps In Solving Math Problems

    what is problem solving in math

VIDEO

  1. Math Olympiad Problem Solving| You should know this

  2. Math Olympiad

  3. How To Differentiate A Maths Mastery Lesson Through Questioning

  4. Types of Problem solving And purpose

  5. Problem Solving and Reasoning: Polya's Steps and Problem Solving Strategies

  6. Solve a Simpler Problem Strategy

COMMENTS

  1. 1.1: Introduction to Problem Solving

    The very first Mathematical Practice is: Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of ...

  2. Problem Solving in Mathematics

    Problem-solving requires practice. When deciding on methods or procedures to use to solve problems, the first thing you will do is look for clues, which is one of the most important skills in solving problems in mathematics. If you begin to solve problems by looking for clue words, you will find that these words often indicate an operation.

  3. 20 Effective Math Strategies For Problem Solving

    Here are five strategies to help students check their solutions. 1. Use the Inverse Operation. For simpler problems, a quick and easy problem solving strategy is to use the inverse operation. For example, if the operation to solve a word problem is 56 ÷ 8 = 7 students can check the answer is correct by multiplying 8 × 7.

  4. Problem Solving

    Brief. Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education of K-12 students. However, knowing how to incorporate problem solving meaningfully into the mathematics curriculum is not necessarily obvious to mathematics teachers. (The term "problem solving" refers to mathematical ...

  5. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  6. Module 1: Problem Solving Strategies

    Problem Solving Strategy 2 (Draw a Picture). Some problems are obviously about a geometric situation, and it is clear you want to draw a picture and mark down all of the given information before you try to solve it. But even for a problem that is not geometric thinking visually can help! Videos to watch demonstrating how to use "Draw a Picture". 1.

  7. What IS Problem-Solving?

    Problem-solving is often described as figuring out what to do when you don't know what to do. My power went out unexpectedly this morning, and I have work to do. That's a problem that I had to solve. I had to think about what the problem was, what my options were, and formulate a plan to solve the problem. No keywords.

  8. 1.3: Problem Solving Strategies

    Problem Solving Strategy 9 (Find the Math, Remove the Context). Sometimes the problem has a lot of details in it that are unimportant, or at least unimportant for getting started. The goal is to find the underlying math problem, then come back to the original question and see if you can solve it using the math.

  9. Art of Problem Solving

    Identify the Problem: The very first step in problem solving is to identify the problem. Problem solving is harder if one doesn't know what "problem" to solve! This is often seen in engineering and math by reading the problem statement. Make a Game Plan: The next step is to have a plan on what to do.

  10. PDF What Is Problem Solving?

    Problem solving is a means of learning mathematics. Problem solving is a challenging and complex process, requiring the use of higher order thinking skills that lead to deeper understanding of meaningful mathematical concepts. Problem solving is not practicing a skill. Problem solving is not a set of prescribed steps.

  11. Problem Solving

    Developing excellence in problem solving with young learners Becoming confident and competent as a problem solver is a complex process that requires a range of skills and experience. In this article, Jennie suggests that we can support this process in three principal ways.

  12. How to Improve Problem-Solving Skills: Mathematics and Critical

    Problem-solving in mathematics refers to the process of identifying a mathematical challenge and systematically working through methods and strategies to find a solution. 2. Why is math considered a good avenue for developing problem-solving skills? Mathematics provides structured challenges and allows for multiple approaches to find solutions.

  13. Why It's So Important to Learn a Problem-Solving Approach to Mathematics

    The class seemingly involved no math at all, but those who took a memorization approach to math were doomed to do it again in chemistry. The skills the problem solvers developed in math transferred, and these students flourished. We use math to teach problem solving because it is the most fundamental logical discipline.

  14. Problem Solving Skills: Meaning, Examples & Techniques

    Problem-solving is the ability to use appropriate methods to tackle unexpected challenges in an organized manner. The ability to solve problems is considered a soft skill, meaning that it's more of a personality trait than a skill you've learned at school, on-the-job, or through technical training. While your natural ability to tackle ...

  15. Fluency, Reasoning & Problem Solving: What They REALLY Are

    Solving problems (within the domain of math) is a mixture of both primary and secondary knowledge. The issue is that problem solving in domains that are classified as biologically secondary knowledge (like math) can only be improved by practicing elements of that domain.

  16. PDF Problem solving in mathematics

    Therefore, the way in which the problem solving question is presented in assessment is important. The value in terms of problem solving will be diminished if, for example: (1) the task within the question is very familiar to the student; (2) the mathematical methods are identified explicitly in the question; (3) the question is highly scaffolded.

  17. 10 Strategies for Problem-Solving in Math

    Here are some problem-solving methods: Drawing a picture or diagram (helps visualize the problem) Breaking the problem into smaller parts (to keep track of what has been done) Making a table or a list (helps students to organize information) When children have a toolkit of math problem-solving strategies at hand, it makes it easier for them to ...

  18. 6 Tips for Teaching Math Problem-Solving Skills

    1. Link problem-solving to reading. When we can remind students that they already have many comprehension skills and strategies they can easily use in math problem-solving, it can ease the anxiety surrounding the math problem. For example, providing them with strategies to practice, such as visualizing, acting out the problem with math tools ...

  19. Mathway

    They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising. Free math problem solver answers your algebra homework questions with step-by-step explanations.

  20. Microsoft Math Solver

    Get math help in your language. Works in Spanish, Hindi, German, and more. Online math solver with free step by step solutions to algebra, calculus, and other math problems. Get help on the web or with our math app.

  21. GeoGebra Math Solver

    Get accurate solutions and step-by-step explanations for algebra and other math problems with the free GeoGebra Math Solver. Enhance your problem-solving skills while learning how to solve equations on your own. Try it now!

  22. 5: Problem Solving

    5.1: Problem Solving An introduction to problem-solving is the process of identifying a challenge or obstacle and finding an effective solution through a systematic approach. It involves critical thinking, analyzing the problem, devising a plan, implementing it, and reflecting on the outcome to ensure the problem is resolved.

  23. Step-by-Step Math Problem Solver

    QuickMath will automatically answer the most common problems in algebra, equations and calculus faced by high-school and college students. The algebra section allows you to expand, factor or simplify virtually any expression you choose. It also has commands for splitting fractions into partial fractions, combining several fractions into one and ...

  24. Student-Created Math Videos Reinforce Learning

    Understand the problem: Students reread the problem carefully, summarize and rewrite the information in mathematical notation, use keyword analysis, draw a picture or a diagram, or even act out the scenario. Devise a plan: Looking for patterns and solving a simpler problem are my favorite approaches, but other ideas—guess-and-check, working backward, eliminating possibilities, using a ...

  25. problem, problem solving

    problem, problem solving • in mathematics a problem is a question which needs a mathematical solution. • problems may be written in words or using numbers and variables. • problem solving includes examining the question to find the key ideas, choosing an appropriate strategy, doing the maths,

  26. Different mathematical solving methods can affect how information is

    When solving a mathematical problem, it is possible to appeal to the ordinal property of numbers, i.e. the fact that they are ordered, or to their cardinal property, i.e. the fact that they ...

  27. 2 1 Student Confidently Solving Math Problems On ...

    Find 1 Student Confidently Solving Math Problems On Whiteboard stock images in HD and millions of other royalty-free stock photos, illustrations and vectors in the Shutterstock collection. Thousands of new, high-quality pictures added every day.

  28. 7.5: Solving Rational Equations

    Solving Rational Equations. A rational equation is an equation containing at least one rational expression. Rational expressions typically contain a variable in the denominator. For this reason, we will take care to ensure that the denominator is not 0 by making note of restrictions and checking our solutions.