• Privacy Policy

Research Method

Home » Variables in Research – Definition, Types and Examples

Variables in Research – Definition, Types and Examples

Table of Contents

Variables in Research

Variables in Research

Definition:

In Research, Variables refer to characteristics or attributes that can be measured, manipulated, or controlled. They are the factors that researchers observe or manipulate to understand the relationship between them and the outcomes of interest.

Types of Variables in Research

Types of Variables in Research are as follows:

Independent Variable

This is the variable that is manipulated by the researcher. It is also known as the predictor variable, as it is used to predict changes in the dependent variable. Examples of independent variables include age, gender, dosage, and treatment type.

Dependent Variable

This is the variable that is measured or observed to determine the effects of the independent variable. It is also known as the outcome variable, as it is the variable that is affected by the independent variable. Examples of dependent variables include blood pressure, test scores, and reaction time.

Confounding Variable

This is a variable that can affect the relationship between the independent variable and the dependent variable. It is a variable that is not being studied but could impact the results of the study. For example, in a study on the effects of a new drug on a disease, a confounding variable could be the patient’s age, as older patients may have more severe symptoms.

Mediating Variable

This is a variable that explains the relationship between the independent variable and the dependent variable. It is a variable that comes in between the independent and dependent variables and is affected by the independent variable, which then affects the dependent variable. For example, in a study on the relationship between exercise and weight loss, the mediating variable could be metabolism, as exercise can increase metabolism, which can then lead to weight loss.

Moderator Variable

This is a variable that affects the strength or direction of the relationship between the independent variable and the dependent variable. It is a variable that influences the effect of the independent variable on the dependent variable. For example, in a study on the effects of caffeine on cognitive performance, the moderator variable could be age, as older adults may be more sensitive to the effects of caffeine than younger adults.

Control Variable

This is a variable that is held constant or controlled by the researcher to ensure that it does not affect the relationship between the independent variable and the dependent variable. Control variables are important to ensure that any observed effects are due to the independent variable and not to other factors. For example, in a study on the effects of a new teaching method on student performance, the control variables could include class size, teacher experience, and student demographics.

Continuous Variable

This is a variable that can take on any value within a certain range. Continuous variables can be measured on a scale and are often used in statistical analyses. Examples of continuous variables include height, weight, and temperature.

Categorical Variable

This is a variable that can take on a limited number of values or categories. Categorical variables can be nominal or ordinal. Nominal variables have no inherent order, while ordinal variables have a natural order. Examples of categorical variables include gender, race, and educational level.

Discrete Variable

This is a variable that can only take on specific values. Discrete variables are often used in counting or frequency analyses. Examples of discrete variables include the number of siblings a person has, the number of times a person exercises in a week, and the number of students in a classroom.

Dummy Variable

This is a variable that takes on only two values, typically 0 and 1, and is used to represent categorical variables in statistical analyses. Dummy variables are often used when a categorical variable cannot be used directly in an analysis. For example, in a study on the effects of gender on income, a dummy variable could be created, with 0 representing female and 1 representing male.

Extraneous Variable

This is a variable that has no relationship with the independent or dependent variable but can affect the outcome of the study. Extraneous variables can lead to erroneous conclusions and can be controlled through random assignment or statistical techniques.

Latent Variable

This is a variable that cannot be directly observed or measured, but is inferred from other variables. Latent variables are often used in psychological or social research to represent constructs such as personality traits, attitudes, or beliefs.

Moderator-mediator Variable

This is a variable that acts both as a moderator and a mediator. It can moderate the relationship between the independent and dependent variables and also mediate the relationship between the independent and dependent variables. Moderator-mediator variables are often used in complex statistical analyses.

Variables Analysis Methods

There are different methods to analyze variables in research, including:

  • Descriptive statistics: This involves analyzing and summarizing data using measures such as mean, median, mode, range, standard deviation, and frequency distribution. Descriptive statistics are useful for understanding the basic characteristics of a data set.
  • Inferential statistics : This involves making inferences about a population based on sample data. Inferential statistics use techniques such as hypothesis testing, confidence intervals, and regression analysis to draw conclusions from data.
  • Correlation analysis: This involves examining the relationship between two or more variables. Correlation analysis can determine the strength and direction of the relationship between variables, and can be used to make predictions about future outcomes.
  • Regression analysis: This involves examining the relationship between an independent variable and a dependent variable. Regression analysis can be used to predict the value of the dependent variable based on the value of the independent variable, and can also determine the significance of the relationship between the two variables.
  • Factor analysis: This involves identifying patterns and relationships among a large number of variables. Factor analysis can be used to reduce the complexity of a data set and identify underlying factors or dimensions.
  • Cluster analysis: This involves grouping data into clusters based on similarities between variables. Cluster analysis can be used to identify patterns or segments within a data set, and can be useful for market segmentation or customer profiling.
  • Multivariate analysis : This involves analyzing multiple variables simultaneously. Multivariate analysis can be used to understand complex relationships between variables, and can be useful in fields such as social science, finance, and marketing.

Examples of Variables

  • Age : This is a continuous variable that represents the age of an individual in years.
  • Gender : This is a categorical variable that represents the biological sex of an individual and can take on values such as male and female.
  • Education level: This is a categorical variable that represents the level of education completed by an individual and can take on values such as high school, college, and graduate school.
  • Income : This is a continuous variable that represents the amount of money earned by an individual in a year.
  • Weight : This is a continuous variable that represents the weight of an individual in kilograms or pounds.
  • Ethnicity : This is a categorical variable that represents the ethnic background of an individual and can take on values such as Hispanic, African American, and Asian.
  • Time spent on social media : This is a continuous variable that represents the amount of time an individual spends on social media in minutes or hours per day.
  • Marital status: This is a categorical variable that represents the marital status of an individual and can take on values such as married, divorced, and single.
  • Blood pressure : This is a continuous variable that represents the force of blood against the walls of arteries in millimeters of mercury.
  • Job satisfaction : This is a continuous variable that represents an individual’s level of satisfaction with their job and can be measured using a Likert scale.

Applications of Variables

Variables are used in many different applications across various fields. Here are some examples:

  • Scientific research: Variables are used in scientific research to understand the relationships between different factors and to make predictions about future outcomes. For example, scientists may study the effects of different variables on plant growth or the impact of environmental factors on animal behavior.
  • Business and marketing: Variables are used in business and marketing to understand customer behavior and to make decisions about product development and marketing strategies. For example, businesses may study variables such as consumer preferences, spending habits, and market trends to identify opportunities for growth.
  • Healthcare : Variables are used in healthcare to monitor patient health and to make treatment decisions. For example, doctors may use variables such as blood pressure, heart rate, and cholesterol levels to diagnose and treat cardiovascular disease.
  • Education : Variables are used in education to measure student performance and to evaluate the effectiveness of teaching strategies. For example, teachers may use variables such as test scores, attendance, and class participation to assess student learning.
  • Social sciences : Variables are used in social sciences to study human behavior and to understand the factors that influence social interactions. For example, sociologists may study variables such as income, education level, and family structure to examine patterns of social inequality.

Purpose of Variables

Variables serve several purposes in research, including:

  • To provide a way of measuring and quantifying concepts: Variables help researchers measure and quantify abstract concepts such as attitudes, behaviors, and perceptions. By assigning numerical values to these concepts, researchers can analyze and compare data to draw meaningful conclusions.
  • To help explain relationships between different factors: Variables help researchers identify and explain relationships between different factors. By analyzing how changes in one variable affect another variable, researchers can gain insight into the complex interplay between different factors.
  • To make predictions about future outcomes : Variables help researchers make predictions about future outcomes based on past observations. By analyzing patterns and relationships between different variables, researchers can make informed predictions about how different factors may affect future outcomes.
  • To test hypotheses: Variables help researchers test hypotheses and theories. By collecting and analyzing data on different variables, researchers can test whether their predictions are accurate and whether their hypotheses are supported by the evidence.

Characteristics of Variables

Characteristics of Variables are as follows:

  • Measurement : Variables can be measured using different scales, such as nominal, ordinal, interval, or ratio scales. The scale used to measure a variable can affect the type of statistical analysis that can be applied.
  • Range : Variables have a range of values that they can take on. The range can be finite, such as the number of students in a class, or infinite, such as the range of possible values for a continuous variable like temperature.
  • Variability : Variables can have different levels of variability, which refers to the degree to which the values of the variable differ from each other. Highly variable variables have a wide range of values, while low variability variables have values that are more similar to each other.
  • Validity and reliability : Variables should be both valid and reliable to ensure accurate and consistent measurement. Validity refers to the extent to which a variable measures what it is intended to measure, while reliability refers to the consistency of the measurement over time.
  • Directionality: Some variables have directionality, meaning that the relationship between the variables is not symmetrical. For example, in a study of the relationship between smoking and lung cancer, smoking is the independent variable and lung cancer is the dependent variable.

Advantages of Variables

Here are some of the advantages of using variables in research:

  • Control : Variables allow researchers to control the effects of external factors that could influence the outcome of the study. By manipulating and controlling variables, researchers can isolate the effects of specific factors and measure their impact on the outcome.
  • Replicability : Variables make it possible for other researchers to replicate the study and test its findings. By defining and measuring variables consistently, other researchers can conduct similar studies to validate the original findings.
  • Accuracy : Variables make it possible to measure phenomena accurately and objectively. By defining and measuring variables precisely, researchers can reduce bias and increase the accuracy of their findings.
  • Generalizability : Variables allow researchers to generalize their findings to larger populations. By selecting variables that are representative of the population, researchers can draw conclusions that are applicable to a broader range of individuals.
  • Clarity : Variables help researchers to communicate their findings more clearly and effectively. By defining and categorizing variables, researchers can organize and present their findings in a way that is easily understandable to others.

Disadvantages of Variables

Here are some of the main disadvantages of using variables in research:

  • Simplification : Variables may oversimplify the complexity of real-world phenomena. By breaking down a phenomenon into variables, researchers may lose important information and context, which can affect the accuracy and generalizability of their findings.
  • Measurement error : Variables rely on accurate and precise measurement, and measurement error can affect the reliability and validity of research findings. The use of subjective or poorly defined variables can also introduce measurement error into the study.
  • Confounding variables : Confounding variables are factors that are not measured but that affect the relationship between the variables of interest. If confounding variables are not accounted for, they can distort or obscure the relationship between the variables of interest.
  • Limited scope: Variables are defined by the researcher, and the scope of the study is therefore limited by the researcher’s choice of variables. This can lead to a narrow focus that overlooks important aspects of the phenomenon being studied.
  • Ethical concerns: The selection and measurement of variables may raise ethical concerns, especially in studies involving human subjects. For example, using variables that are related to sensitive topics, such as race or sexuality, may raise concerns about privacy and discrimination.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Composite Variable

Composite Variable – Definition, Types and...

Intervening Variable

Intervening Variable – Definition, Types and...

Qualitative Variable

Qualitative Variable – Types and Examples

Ratio Variable

Ratio Variable – Definition, Purpose and Examples

Polytomous Variable

Polytomous Variable – Definition, Purpose and...

Attribute

Attribute – Meanings, Definition and Examples

variables in research project

Research Variables 101

Independent variables, dependent variables, control variables and more

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | January 2023

If you’re new to the world of research, especially scientific research, you’re bound to run into the concept of variables , sooner or later. If you’re feeling a little confused, don’t worry – you’re not the only one! Independent variables, dependent variables, confounding variables – it’s a lot of jargon. In this post, we’ll unpack the terminology surrounding research variables using straightforward language and loads of examples .

Overview: Variables In Research

1. ?
2. variables
3. variables
4. variables

5. variables
6. variables
7. variables
8. variables

What (exactly) is a variable?

The simplest way to understand a variable is as any characteristic or attribute that can experience change or vary over time or context – hence the name “variable”. For example, the dosage of a particular medicine could be classified as a variable, as the amount can vary (i.e., a higher dose or a lower dose). Similarly, gender, age or ethnicity could be considered demographic variables, because each person varies in these respects.

Within research, especially scientific research, variables form the foundation of studies, as researchers are often interested in how one variable impacts another, and the relationships between different variables. For example:

  • How someone’s age impacts their sleep quality
  • How different teaching methods impact learning outcomes
  • How diet impacts weight (gain or loss)

As you can see, variables are often used to explain relationships between different elements and phenomena. In scientific studies, especially experimental studies, the objective is often to understand the causal relationships between variables. In other words, the role of cause and effect between variables. This is achieved by manipulating certain variables while controlling others – and then observing the outcome. But, we’ll get into that a little later…

The “Big 3” Variables

Variables can be a little intimidating for new researchers because there are a wide variety of variables, and oftentimes, there are multiple labels for the same thing. To lay a firm foundation, we’ll first look at the three main types of variables, namely:

  • Independent variables (IV)
  • Dependant variables (DV)
  • Control variables

What is an independent variable?

Simply put, the independent variable is the “ cause ” in the relationship between two (or more) variables. In other words, when the independent variable changes, it has an impact on another variable.

For example:

  • Increasing the dosage of a medication (Variable A) could result in better (or worse) health outcomes for a patient (Variable B)
  • Changing a teaching method (Variable A) could impact the test scores that students earn in a standardised test (Variable B)
  • Varying one’s diet (Variable A) could result in weight loss or gain (Variable B).

It’s useful to know that independent variables can go by a few different names, including, explanatory variables (because they explain an event or outcome) and predictor variables (because they predict the value of another variable). Terminology aside though, the most important takeaway is that independent variables are assumed to be the “cause” in any cause-effect relationship. As you can imagine, these types of variables are of major interest to researchers, as many studies seek to understand the causal factors behind a phenomenon.

Need a helping hand?

variables in research project

What is a dependent variable?

While the independent variable is the “ cause ”, the dependent variable is the “ effect ” – or rather, the affected variable . In other words, the dependent variable is the variable that is assumed to change as a result of a change in the independent variable.

Keeping with the previous example, let’s look at some dependent variables in action:

  • Health outcomes (DV) could be impacted by dosage changes of a medication (IV)
  • Students’ scores (DV) could be impacted by teaching methods (IV)
  • Weight gain or loss (DV) could be impacted by diet (IV)

In scientific studies, researchers will typically pay very close attention to the dependent variable (or variables), carefully measuring any changes in response to hypothesised independent variables. This can be tricky in practice, as it’s not always easy to reliably measure specific phenomena or outcomes – or to be certain that the actual cause of the change is in fact the independent variable.

As the adage goes, correlation is not causation . In other words, just because two variables have a relationship doesn’t mean that it’s a causal relationship – they may just happen to vary together. For example, you could find a correlation between the number of people who own a certain brand of car and the number of people who have a certain type of job. Just because the number of people who own that brand of car and the number of people who have that type of job is correlated, it doesn’t mean that owning that brand of car causes someone to have that type of job or vice versa. The correlation could, for example, be caused by another factor such as income level or age group, which would affect both car ownership and job type.

To confidently establish a causal relationship between an independent variable and a dependent variable (i.e., X causes Y), you’ll typically need an experimental design , where you have complete control over the environmen t and the variables of interest. But even so, this doesn’t always translate into the “real world”. Simply put, what happens in the lab sometimes stays in the lab!

As an alternative to pure experimental research, correlational or “ quasi-experimental ” research (where the researcher cannot manipulate or change variables) can be done on a much larger scale more easily, allowing one to understand specific relationships in the real world. These types of studies also assume some causality between independent and dependent variables, but it’s not always clear. So, if you go this route, you need to be cautious in terms of how you describe the impact and causality between variables and be sure to acknowledge any limitations in your own research.

Research methodology webinar

What is a control variable?

In an experimental design, a control variable (or controlled variable) is a variable that is intentionally held constant to ensure it doesn’t have an influence on any other variables. As a result, this variable remains unchanged throughout the course of the study. In other words, it’s a variable that’s not allowed to vary – tough life 🙂

As we mentioned earlier, one of the major challenges in identifying and measuring causal relationships is that it’s difficult to isolate the impact of variables other than the independent variable. Simply put, there’s always a risk that there are factors beyond the ones you’re specifically looking at that might be impacting the results of your study. So, to minimise the risk of this, researchers will attempt (as best possible) to hold other variables constant . These factors are then considered control variables.

Some examples of variables that you may need to control include:

  • Temperature
  • Time of day
  • Noise or distractions

Which specific variables need to be controlled for will vary tremendously depending on the research project at hand, so there’s no generic list of control variables to consult. As a researcher, you’ll need to think carefully about all the factors that could vary within your research context and then consider how you’ll go about controlling them. A good starting point is to look at previous studies similar to yours and pay close attention to which variables they controlled for.

Of course, you won’t always be able to control every possible variable, and so, in many cases, you’ll just have to acknowledge their potential impact and account for them in the conclusions you draw. Every study has its limitations , so don’t get fixated or discouraged by troublesome variables. Nevertheless, always think carefully about the factors beyond what you’re focusing on – don’t make assumptions!

 A control variable is intentionally held constant (it doesn't vary) to ensure it doesn’t have an influence on any other variables.

Other types of variables

As we mentioned, independent, dependent and control variables are the most common variables you’ll come across in your research, but they’re certainly not the only ones you need to be aware of. Next, we’ll look at a few “secondary” variables that you need to keep in mind as you design your research.

  • Moderating variables
  • Mediating variables
  • Confounding variables
  • Latent variables

Let’s jump into it…

What is a moderating variable?

A moderating variable is a variable that influences the strength or direction of the relationship between an independent variable and a dependent variable. In other words, moderating variables affect how much (or how little) the IV affects the DV, or whether the IV has a positive or negative relationship with the DV (i.e., moves in the same or opposite direction).

For example, in a study about the effects of sleep deprivation on academic performance, gender could be used as a moderating variable to see if there are any differences in how men and women respond to a lack of sleep. In such a case, one may find that gender has an influence on how much students’ scores suffer when they’re deprived of sleep.

It’s important to note that while moderators can have an influence on outcomes , they don’t necessarily cause them ; rather they modify or “moderate” existing relationships between other variables. This means that it’s possible for two different groups with similar characteristics, but different levels of moderation, to experience very different results from the same experiment or study design.

What is a mediating variable?

Mediating variables are often used to explain the relationship between the independent and dependent variable (s). For example, if you were researching the effects of age on job satisfaction, then education level could be considered a mediating variable, as it may explain why older people have higher job satisfaction than younger people – they may have more experience or better qualifications, which lead to greater job satisfaction.

Mediating variables also help researchers understand how different factors interact with each other to influence outcomes. For instance, if you wanted to study the effect of stress on academic performance, then coping strategies might act as a mediating factor by influencing both stress levels and academic performance simultaneously. For example, students who use effective coping strategies might be less stressed but also perform better academically due to their improved mental state.

In addition, mediating variables can provide insight into causal relationships between two variables by helping researchers determine whether changes in one factor directly cause changes in another – or whether there is an indirect relationship between them mediated by some third factor(s). For instance, if you wanted to investigate the impact of parental involvement on student achievement, you would need to consider family dynamics as a potential mediator, since it could influence both parental involvement and student achievement simultaneously.

Mediating variables can explain the relationship between the independent and dependent variable, including whether it's causal or not.

What is a confounding variable?

A confounding variable (also known as a third variable or lurking variable ) is an extraneous factor that can influence the relationship between two variables being studied. Specifically, for a variable to be considered a confounding variable, it needs to meet two criteria:

  • It must be correlated with the independent variable (this can be causal or not)
  • It must have a causal impact on the dependent variable (i.e., influence the DV)

Some common examples of confounding variables include demographic factors such as gender, ethnicity, socioeconomic status, age, education level, and health status. In addition to these, there are also environmental factors to consider. For example, air pollution could confound the impact of the variables of interest in a study investigating health outcomes.

Naturally, it’s important to identify as many confounding variables as possible when conducting your research, as they can heavily distort the results and lead you to draw incorrect conclusions . So, always think carefully about what factors may have a confounding effect on your variables of interest and try to manage these as best you can.

What is a latent variable?

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study. They’re also known as hidden or underlying variables , and what makes them rather tricky is that they can’t be directly observed or measured . Instead, latent variables must be inferred from other observable data points such as responses to surveys or experiments.

For example, in a study of mental health, the variable “resilience” could be considered a latent variable. It can’t be directly measured , but it can be inferred from measures of mental health symptoms, stress, and coping mechanisms. The same applies to a lot of concepts we encounter every day – for example:

  • Emotional intelligence
  • Quality of life
  • Business confidence
  • Ease of use

One way in which we overcome the challenge of measuring the immeasurable is latent variable models (LVMs). An LVM is a type of statistical model that describes a relationship between observed variables and one or more unobserved (latent) variables. These models allow researchers to uncover patterns in their data which may not have been visible before, thanks to their complexity and interrelatedness with other variables. Those patterns can then inform hypotheses about cause-and-effect relationships among those same variables which were previously unknown prior to running the LVM. Powerful stuff, we say!

Latent variables are unobservable factors that can influence the behaviour of individuals and explain certain outcomes within a study.

Let’s recap

In the world of scientific research, there’s no shortage of variable types, some of which have multiple names and some of which overlap with each other. In this post, we’ve covered some of the popular ones, but remember that this is not an exhaustive list .

To recap, we’ve explored:

  • Independent variables (the “cause”)
  • Dependent variables (the “effect”)
  • Control variables (the variable that’s not allowed to vary)

If you’re still feeling a bit lost and need a helping hand with your research project, check out our 1-on-1 coaching service , where we guide you through each step of the research journey. Also, be sure to check out our free dissertation writing course and our collection of free, fully-editable chapter templates .

variables in research project

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Fiona

Very informative, concise and helpful. Thank you

Ige Samuel Babatunde

Helping information.Thanks

Ancel George

practical and well-demonstrated

Michael

Very helpful and insightful

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

variables in research project

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Independent vs. Dependent Variables | Definition & Examples

Independent vs. Dependent Variables | Definition & Examples

Published on February 3, 2022 by Pritha Bhandari . Revised on June 22, 2023.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs. dependent variables, independent and dependent variables in research, visualizing independent and dependent variables, other interesting articles, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

variables in research project

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group (to research a possible placebo effect )

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment. Note that any research methods that use non-random assignment are at risk for research biases like selection bias and sampling bias .

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it “depends” on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic research paper .

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design .

Here are some tips for identifying each variable type.

Recognizing independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognizing dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyze your results by generating descriptive statistics and visualizing your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • your variable types
  • level of measurement
  • number of independent variable levels.

You’ll often use t tests or ANOVAs to analyze your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualize the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualization you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatter plot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Normal distribution
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Ecological validity

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Bhandari, P. (2023, June 22). Independent vs. Dependent Variables | Definition & Examples. Scribbr. Retrieved September 28, 2024, from https://www.scribbr.com/methodology/independent-and-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, guide to experimental design | overview, steps, & examples, explanatory and response variables | definitions & examples, confounding variables | definition, examples & controls, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Independent and Dependent Variables
  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Definitions

Dependent Variable The variable that depends on other factors that are measured. These variables are expected to change as a result of an experimental manipulation of the independent variable or variables. It is the presumed effect.

Independent Variable The variable that is stable and unaffected by the other variables you are trying to measure. It refers to the condition of an experiment that is systematically manipulated by the investigator. It is the presumed cause.

Cramer, Duncan and Dennis Howitt. The SAGE Dictionary of Statistics . London: SAGE, 2004; Penslar, Robin Levin and Joan P. Porter. Institutional Review Board Guidebook: Introduction . Washington, DC: United States Department of Health and Human Services, 2010; "What are Dependent and Independent Variables?" Graphic Tutorial.

Identifying Dependent and Independent Variables

Don't feel bad if you are confused about what is the dependent variable and what is the independent variable in social and behavioral sciences research . However, it's important that you learn the difference because framing a study using these variables is a common approach to organizing the elements of a social sciences research study in order to discover relevant and meaningful results. Specifically, it is important for these two reasons:

  • You need to understand and be able to evaluate their application in other people's research.
  • You need to apply them correctly in your own research.

A variable in research simply refers to a person, place, thing, or phenomenon that you are trying to measure in some way. The best way to understand the difference between a dependent and independent variable is that the meaning of each is implied by what the words tell us about the variable you are using. You can do this with a simple exercise from the website, Graphic Tutorial. Take the sentence, "The [independent variable] causes a change in [dependent variable] and it is not possible that [dependent variable] could cause a change in [independent variable]." Insert the names of variables you are using in the sentence in the way that makes the most sense. This will help you identify each type of variable. If you're still not sure, consult with your professor before you begin to write.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349;

Structure and Writing Style

The process of examining a research problem in the social and behavioral sciences is often framed around methods of analysis that compare, contrast, correlate, average, or integrate relationships between or among variables . Techniques include associations, sampling, random selection, and blind selection. Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

The variables should be outlined in the introduction of your paper and explained in more detail in the methods section . There are no rules about the structure and style for writing about independent or dependent variables but, as with any academic writing, clarity and being succinct is most important.

After you have described the research problem and its significance in relation to prior research, explain why you have chosen to examine the problem using a method of analysis that investigates the relationships between or among independent and dependent variables . State what it is about the research problem that lends itself to this type of analysis. For example, if you are investigating the relationship between corporate environmental sustainability efforts [the independent variable] and dependent variables associated with measuring employee satisfaction at work using a survey instrument, you would first identify each variable and then provide background information about the variables. What is meant by "environmental sustainability"? Are you looking at a particular company [e.g., General Motors] or are you investigating an industry [e.g., the meat packing industry]? Why is employee satisfaction in the workplace important? How does a company make their employees aware of sustainability efforts and why would a company even care that its employees know about these efforts?

Identify each variable for the reader and define each . In the introduction, this information can be presented in a paragraph or two when you describe how you are going to study the research problem. In the methods section, you build on the literature review of prior studies about the research problem to describe in detail background about each variable, breaking each down for measurement and analysis. For example, what activities do you examine that reflect a company's commitment to environmental sustainability? Levels of employee satisfaction can be measured by a survey that asks about things like volunteerism or a desire to stay at the company for a long time.

The structure and writing style of describing the variables and their application to analyzing the research problem should be stated and unpacked in such a way that the reader obtains a clear understanding of the relationships between the variables and why they are important. This is also important so that the study can be replicated in the future using the same variables but applied in a different way.

Fan, Shihe. "Independent Variable." In Encyclopedia of Research Design. Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 592-594; "What are Dependent and Independent Variables?" Graphic Tutorial; “Case Example for Independent and Dependent Variables.” ORI Curriculum Examples. U.S. Department of Health and Human Services, Office of Research Integrity; Salkind, Neil J. "Dependent Variable." In Encyclopedia of Research Design , Neil J. Salkind, editor. (Thousand Oaks, CA: SAGE, 2010), pp. 348-349; “Independent Variables and Dependent Variables.” Karl L. Wuensch, Department of Psychology, East Carolina University [posted email exchange]; “Variables.” Elements of Research. Dr. Camille Nebeker, San Diego State University.

  • << Previous: Design Flaws to Avoid
  • Next: Glossary of Research Terms >>
  • Last Updated: Sep 27, 2024 1:09 PM
  • URL: https://libguides.usc.edu/writingguide

variables in research project

Variables in Research | Types, Definiton & Examples

variables in research project

Introduction

What is a variable, what are the 5 types of variables in research, other variables in research.

Variables are fundamental components of research that allow for the measurement and analysis of data. They can be defined as characteristics or properties that can take on different values. In research design , understanding the types of variables and their roles is crucial for developing hypotheses , designing methods , and interpreting results .

This article outlines the the types of variables in research, including their definitions and examples, to provide a clear understanding of their use and significance in research studies. By categorizing variables into distinct groups based on their roles in research, their types of data, and their relationships with other variables, researchers can more effectively structure their studies and achieve more accurate conclusions.

variables in research project

A variable represents any characteristic, number, or quantity that can be measured or quantified. The term encompasses anything that can vary or change, ranging from simple concepts like age and height to more complex ones like satisfaction levels or economic status. Variables are essential in research as they are the foundational elements that researchers manipulate, measure, or control to gain insights into relationships, causes, and effects within their studies. They enable the framing of research questions, the formulation of hypotheses, and the interpretation of results.

Variables can be categorized based on their role in the study (such as independent and dependent variables ), the type of data they represent (quantitative or categorical), and their relationship to other variables (like confounding or control variables). Understanding what constitutes a variable and the various variable types available is a critical step in designing robust and meaningful research.

variables in research project

ATLAS.ti makes complex data easy to understand

Turn to our powerful data analysis tools to make the most of your research. Get started with a free trial.

Variables are crucial components in research, serving as the foundation for data collection , analysis , and interpretation . They are attributes or characteristics that can vary among subjects or over time, and understanding their types is essential for any study. Variables can be broadly classified into five main types, each with its distinct characteristics and roles within research.

This classification helps researchers in designing their studies, choosing appropriate measurement techniques, and analyzing their results accurately. The five types of variables include independent variables, dependent variables, categorical variables, continuous variables, and confounding variables. These categories not only facilitate a clearer understanding of the data but also guide the formulation of hypotheses and research methodologies.

Independent variables

Independent variables are foundational to the structure of research, serving as the factors or conditions that researchers manipulate or vary to observe their effects on dependent variables. These variables are considered "independent" because their variation does not depend on other variables within the study. Instead, they are the cause or stimulus that directly influences the outcomes being measured. For example, in an experiment to assess the effectiveness of a new teaching method on student performance, the teaching method applied (traditional vs. innovative) would be the independent variable.

The selection of an independent variable is a critical step in research design, as it directly correlates with the study's objective to determine causality or association. Researchers must clearly define and control these variables to ensure that observed changes in the dependent variable can be attributed to variations in the independent variable, thereby affirming the reliability of the results. In experimental research, the independent variable is what differentiates the control group from the experimental group, thereby setting the stage for meaningful comparison and analysis.

Dependent variables

Dependent variables are the outcomes or effects that researchers aim to explore and understand in their studies. These variables are called "dependent" because their values depend on the changes or variations of the independent variables.

Essentially, they are the responses or results that are measured to assess the impact of the independent variable's manipulation. For instance, in a study investigating the effect of exercise on weight loss, the amount of weight lost would be considered the dependent variable, as it depends on the exercise regimen (the independent variable).

The identification and measurement of the dependent variable are crucial for testing the hypothesis and drawing conclusions from the research. It allows researchers to quantify the effect of the independent variable , providing evidence for causal relationships or associations. In experimental settings, the dependent variable is what is being tested and measured across different groups or conditions, enabling researchers to assess the efficacy or impact of the independent variable's variation.

To ensure accuracy and reliability, the dependent variable must be defined clearly and measured consistently across all participants or observations. This consistency helps in reducing measurement errors and increases the validity of the research findings. By carefully analyzing the dependent variables, researchers can derive meaningful insights from their studies, contributing to the broader knowledge in their field.

Categorical variables

Categorical variables, also known as qualitative variables, represent types or categories that are used to group observations. These variables divide data into distinct groups or categories that lack a numerical value but hold significant meaning in research. Examples of categorical variables include gender (male, female, other), type of vehicle (car, truck, motorcycle), or marital status (single, married, divorced). These categories help researchers organize data into groups for comparison and analysis.

Categorical variables can be further classified into two subtypes: nominal and ordinal. Nominal variables are categories without any inherent order or ranking among them, such as blood type or ethnicity. Ordinal variables, on the other hand, imply a sort of ranking or order among the categories, like levels of satisfaction (high, medium, low) or education level (high school, bachelor's, master's, doctorate).

Understanding and identifying categorical variables is crucial in research as it influences the choice of statistical analysis methods. Since these variables represent categories without numerical significance, researchers employ specific statistical tests designed for a nominal or ordinal variable to draw meaningful conclusions. Properly classifying and analyzing categorical variables allow for the exploration of relationships between different groups within the study, shedding light on patterns and trends that might not be evident with numerical data alone.

Continuous variables

Continuous variables are quantitative variables that can take an infinite number of values within a given range. These variables are measured along a continuum and can represent very precise measurements. Examples of continuous variables include height, weight, temperature, and time. Because they can assume any value within a range, continuous variables allow for detailed analysis and a high degree of accuracy in research findings.

The ability to measure continuous variables at very fine scales makes them invaluable for many types of research, particularly in the natural and social sciences. For instance, in a study examining the effect of temperature on plant growth, temperature would be considered a continuous variable since it can vary across a wide spectrum and be measured to several decimal places.

When dealing with continuous variables, researchers often use methods incorporating a particular statistical test to accommodate a wide range of data points and the potential for infinite divisibility. This includes various forms of regression analysis, correlation, and other techniques suited for modeling and analyzing nuanced relationships between variables. The precision of continuous variables enhances the researcher's ability to detect patterns, trends, and causal relationships within the data, contributing to more robust and detailed conclusions.

Confounding variables

Confounding variables are those that can cause a false association between the independent and dependent variables, potentially leading to incorrect conclusions about the relationship being studied. These are extraneous variables that were not considered in the study design but can influence both the supposed cause and effect, creating a misleading correlation.

Identifying and controlling for a confounding variable is crucial in research to ensure the validity of the findings. This can be achieved through various methods, including randomization, stratification, and statistical control. Randomization helps to evenly distribute confounding variables across study groups, reducing their potential impact. Stratification involves analyzing the data within strata or layers that share common characteristics of the confounder. Statistical control allows researchers to adjust for the effects of confounders in the analysis phase.

Properly addressing confounding variables strengthens the credibility of research outcomes by clarifying the direct relationship between the dependent and independent variables, thus providing more accurate and reliable results.

variables in research project

Beyond the primary categories of variables commonly discussed in research methodology , there exists a diverse range of other variables that play significant roles in the design and analysis of studies. Below is an overview of some of these variables, highlighting their definitions and roles within research studies:

  • Discrete variables : A discrete variable is a quantitative variable that represents quantitative data , such as the number of children in a family or the number of cars in a parking lot. Discrete variables can only take on specific values.
  • Categorical variables : A categorical variable categorizes subjects or items into groups that do not have a natural numerical order. Categorical data includes nominal variables, like country of origin, and ordinal variables, such as education level.
  • Predictor variables : Often used in statistical models, a predictor variable is used to forecast or predict the outcomes of other variables, not necessarily with a causal implication.
  • Outcome variables : These variables represent the results or outcomes that researchers aim to explain or predict through their studies. An outcome variable is central to understanding the effects of predictor variables.
  • Latent variables : Not directly observable, latent variables are inferred from other, directly measured variables. Examples include psychological constructs like intelligence or socioeconomic status.
  • Composite variables : Created by combining multiple variables, composite variables can measure a concept more reliably or simplify the analysis. An example would be a composite happiness index derived from several survey questions .
  • Preceding variables : These variables come before other variables in time or sequence, potentially influencing subsequent outcomes. A preceding variable is crucial in longitudinal studies to determine causality or sequences of events.

variables in research project

Master qualitative research with ATLAS.ti

Turn data into critical insights with our data analysis platform. Try out a free trial today.

variables in research project

Educational resources and simple solutions for your research journey

independent vs dependent variables

Independent vs Dependent Variables: Definitions & Examples

A variable is an important element of research. It is a characteristic, number, or quantity of any category that can be measured or counted and whose value may change with time or other parameters.  

Variables are defined in different ways in different fields. For instance, in mathematics, a variable is an alphabetic character that expresses a numerical value. In algebra, a variable represents an unknown entity, mostly denoted by a, b, c, x, y, z, etc. In statistics, variables represent real-world conditions or factors. Despite the differences in definitions, in all fields, variables represent the entity that changes and help us understand how one factor may or may not influence another factor.  

Variables in research and statistics are of different types—independent, dependent, quantitative (discrete or continuous), qualitative (nominal/categorical, ordinal), intervening, moderating, extraneous, confounding, control, and composite. In this article we compare the first two types— independent vs dependent variables .  

Table of Contents

What is a variable?  

Researchers conduct experiments to understand the cause-and-effect relationships between various entities. In such experiments, the entities whose values change are called variables. These variables describe the relationships among various factors and help in drawing conclusions in experiments. They help in understanding how some factors influence others. Some examples of variables include age, gender, race, income, weight, etc.   

As mentioned earlier, different types of variables are used in research. Of these, we will compare the most common types— independent vs dependent variables . The independent variable is the cause and the dependent variable is the effect, that is, independent variables influence dependent variables. In research, a dependent variable is the outcome of interest of the study and the independent variable is the factor that may influence the outcome. Let’s explain this with an independent and dependent variable example : In a study to analyze the effect of antibiotic use on microbial resistance, antibiotic use is the independent variable and microbial resistance is the dependent variable because antibiotic use affects microbial resistance.( 1)  

What is an independent variable?  

Here is a list of the important characteristics of independent variables .( 2,3)  

  • An independent variable is the factor that is being manipulated in an experiment.  
  • In a research study, independent variables affect or influence dependent variables and cause them to change.  
  • Independent variables help gather evidence and draw conclusions about the research subject.  
  • They’re also called predictors, factors, treatment variables, explanatory variables, and input variables.  
  • On graphs, independent variables are usually placed on the X-axis.  
  • Example: In a study on the relationship between screen time and sleep problems, screen time is the independent variable because it influences sleep (the dependent variable).  
  • In addition, some factors like age are independent variables because other variables such as a person’s income will not change their age.  

variables in research project

Types of independent variables  

Independent variables in research are of the following two types:( 4)  

Quantitative  

Quantitative independent variables differ in amounts or scales. They are numeric and answer questions like “how many” or “how often.”  

Here are a few quantitative independent variables examples :  

  • Differences in treatment dosages and frequencies: Useful in determining the appropriate dosage to get the desired outcome.  
  • Varying salinities: Useful in determining the range of salinity that organisms can tolerate.  

Qualitative  

Qualitative independent variables are non-numerical variables.  

A few qualitative independent variables examples are listed below:  

  • Different strains of a species: Useful in identifying the strain of a crop that is most resistant to a specific disease.  
  • Varying methods of how a treatment is administered—oral or intravenous.  

A quantitative variable is represented by actual amounts and a qualitative variable by categories or groups.  

What is a dependent variable ?  

Here are a few characteristics of dependent variables: ( 3)  

  • A dependent variable represents a quantity whose value depends on the independent variable and how it is changed.  
  • The dependent variable is influenced by the independent variable under various circumstances.  
  • It is also known as the response variable and outcome variable.  
  • On graphs, dependent variables are placed on the Y-axis.  

Here are a few dependent variable examples :  

  • In a study on the effect of exercise on mood, the dependent variable is mood because it may change with exercise.  
  • In a study on the effect of pH on enzyme activity, the enzyme activity is the dependent variable because it changes with changing pH.   

Types of dependent variables  

Dependent variables are of two types:( 5)  

Continuous dependent variables

These variables can take on any value within a given range and are measured on a continuous scale, for example, weight, height, temperature, time, distance, etc.  

Categorical or discrete dependent variables

These variables are divided into distinct categories. They are not measured on a continuous scale so only a limited number of values are possible, for example, gender, race, etc.  

variables in research project

Differences between independent and dependent variables  

The following table compares independent vs dependent variables .  

     
How to identify  Manipulated or controlled  Observed or measured 
Purpose  Cause or predictor variable  Outcome or response variable 
Relationship  Independent of other variables  Influenced by the independent variable 
Control  Manipulated or assigned by researcher  Measured or observed during experiments 

Independent and dependent variable examples  

Listed below are a few examples of research questions from various disciplines and their corresponding independent and dependent variables.( 6)

       
Genetics  What is the relationship between genetics and susceptibility to diseases?  genetic factors  susceptibility to diseases 
History  How do historical events influence national identity?  historical events  national identity 
Political science  What is the effect of political campaign advertisements on voter behavior?  political campaign advertisements  voter behavior 
Sociology  How does social media influence cultural awareness?  social media exposure  cultural awareness 
Economics  What is the impact of economic policies on unemployment rates?  economic policies  unemployment rates 
Literature  How does literary criticism affect book sales?  literary criticism  book sales 
Geology  How do a region’s geological features influence the magnitude of earthquakes?  geological features  earthquake magnitudes 
Environment  How do changes in climate affect wildlife migration patterns?  climate changes  wildlife migration patterns 
Gender studies  What is the effect of gender bias in the workplace on job satisfaction?  gender bias  job satisfaction 
Film studies  What is the relationship between cinematographic techniques and viewer engagement?  cinematographic techniques  viewer engagement 
Archaeology  How does archaeological tourism affect local communities?  archaeological techniques  local community development 

  Independent vs dependent variables in research  

Experiments usually have at least two variables—independent and dependent. The independent variable is the entity that is being tested and the dependent variable is the result. Classifying independent and dependent variables as discrete and continuous can help in determining the type of analysis that is appropriate in any given research experiment, as shown in the table below. ( 7)  

   
   
    Chi-Square  t-test 
Logistic regression  ANOVA 
Phi  Regression 
Cramer’s V  Point-biserial correlation 
  Logistic regression  Regression 
Point-biserial correlation  Correlation 

  Here are some more research questions and their corresponding independent and dependent variables. ( 6)  

     
What is the impact of online learning platforms on academic performance?  type of learning  academic performance 
What is the association between exercise frequency and mental health?  exercise frequency  mental health 
How does smartphone use affect productivity?  smartphone use  productivity levels 
Does family structure influence adolescent behavior?  family structure  adolescent behavior 
What is the impact of nonverbal communication on job interviews?  nonverbal communication  job interviews 

  How to identify independent vs dependent variables  

In addition to all the characteristics of independent and dependent variables listed previously, here are few simple steps to identify the variable types in a research question.( 8)  

  • Keep in mind that there are no specific words that will always describe dependent and independent variables.  
  • If you’re given a paragraph, convert that into a question and identify specific words describing cause and effect.  
  • The word representing the cause is the independent variable and that describing the effect is the dependent variable.  

Let’s try out these steps with an example.  

A researcher wants to conduct a study to see if his new weight loss medication performs better than two bestseller alternatives. He wants to randomly select 20 subjects from Richmond, Virginia, aged 20 to 30 years and weighing above 60 pounds. Each subject will be randomly assigned to three treatment groups.  

To identify the independent and dependent variables, we convert this paragraph into a question, as follows: Does the new medication perform better than the alternatives? Here, the medications are the independent variable and their performances or effect on the individuals are the dependent variable.  

variables in research project

Visualizing independent vs dependent variables  

Data visualization is the graphical representation of information by using charts, graphs, and maps. Visualizations help in making data more understandable by making it easier to compare elements, identify trends and relationships (among variables), among other functions.  

Bar graphs, pie charts, and scatter plots are the best methods to graphically represent variables. While pie charts and bar graphs are suitable for depicting categorical data, scatter plots are appropriate for quantitative data. The independent variable is usually placed on the X-axis and the dependent variable on the Y-axis.  

Figure 1 is a scatter plot that depicts the relationship between the number of household members and their monthly grocery expenses. 9 The number of household members is the independent variable and the expenses the dependent variable. The graph shows that as the number of members increases the expenditure also increases.  

scatter plot

Key takeaways   

Let’s summarize the key takeaways about independent vs dependent variables from this article:  

  • A variable is any entity being measured in a study.  
  • A dependent variable is often the focus of a research study and is the response or outcome. It depends on or varies with changes in other variables.  
  • Independent variables cause changes in dependent variables and don’t depend on other variables.  
  • An independent variable can influence a dependent variable, but a dependent variable cannot influence an independent variable.  
  • An independent variable is the cause and dependent variable is the effect.  

Frequently asked questions  

  • What are the different types of variables used in research?  

The following table lists the different types of variables used in research.( 10)  

     
Categorical  Measures a construct that has different categories  gender, race, religious affiliation, political affiliation 
Quantitative  Measures constructs that vary by degree of the amount  weight, height, age, intelligence scores 
Independent (IV)  Measures constructs considered to be the cause  Higher education (IV) leads to higher income (DV) 
Dependent (DV)  Measures constructs that are considered the effect  Exercise (IV) will reduce anxiety levels (DV) 
Intervening or mediating (MV)  Measures constructs that intervene or stand in between the cause and effect  Incarcerated individuals are more likely to have psychiatric disorder (MV), which leads to disability in social roles 
Confounding (CV)  “Rival explanations” that explain the cause-and-effect relationship  Age (CV) explains the relationship between increased shoe size and increase in intelligence in children 
Control variable   Extraneous variables whose influence can be controlled or eliminated  Demographic data such as gender, socioeconomic status, age 

 2. Why is it important to differentiate between independent vs dependent variables ?  

  Differentiating between independent vs dependent variables is important to ensure the correct application in your own research and also the correct understanding of other studies. An incorrectly framed research question can lead to confusion and inaccurate results. An easy way to differentiate is to identify the cause and effect.  

 3. How are independent and dependent variables used in non-experimental research?  

  So far in this article we talked about variables in relation to experimental research, wherein variables are manipulated or measured to test a hypothesis, that is, to observe the effect on dependent variables. Let’s examine non-experimental research and how variable are used. 11 In non-experimental research, variables are not manipulated but are observed in their natural state. Researchers do not have control over the variables and cannot manipulate them based on their research requirements. For example, a study examining the relationship between income and education level would not manipulate either variable. Instead, the researcher would observe and measure the levels of each variable in the sample population. The level of control researchers have is the major difference between experimental and non-experimental research. Another difference is the causal relationship between the variables. In non-experimental research, it is not possible to establish a causal relationship because other variables may be influencing the outcome.  

  4. Are there any advantages and disadvantages of using independent vs dependent variables ?

  Here are a few advantages and disadvantages of both independent and dependent variables.( 12)

Advantages: 

  • Dependent variables are not liable to any form of bias because they cannot be manipulated by researchers or other external factors.  
  • Independent variables are easily obtainable and don’t require complex mathematical procedures to be observed, like dependent variables. This is because researchers can easily manipulate these variables or collect the data from respondents.  
  • Some independent variables are natural factors and cannot be manipulated. They are also easily obtainable because less time is required for data collection.

Disadvantages: 

  • Obtaining dependent variables is a very expensive and effort- and time-intensive process because these variables are obtained from longitudinal research by solving complex equations.  
  • Independent variables are prone to researcher and respondent bias because they can be manipulated, and this may affect the study results.  

We hope this article has provided you with an insight into the use and importance of independent vs dependent variables , which can help you effectively use variables in your next research study.    

  • Kaliyadan F, Kulkarni V. Types of variables, descriptive statistics, and sample size. Indian Dermatol Online J. 2019 Jan-Feb; 10(1): 82–86. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6362742/  
  • What Is an independent variable? (with uses and examples). Indeed website. Accessed March 11, 2024. https://www.indeed.com/career-advice/career-development/what-is-independent-variable  
  • Independent and dependent variables: Differences & examples. Statistics by Jim website. Accessed March 10, 2024. https://statisticsbyjim.com/regression/independent-dependent-variables/  
  • Independent variable. Biology online website. Accessed March 9, 2024. https://www.biologyonline.com/dictionary/independent-variable#:~:text=The%20independent%20variable%20in%20research,how%20many%20or%20how%20often .  
  • Dependent variables: Definition and examples. Clubz Tutoring Services website. Accessed March 10, 2024. https://clubztutoring.com/ed-resources/math/dependent-variable-definitions-examples-6-7-2/  
  • Research topics with independent and dependent variables. Good research topics website. Accessed March 12, 2024. https://goodresearchtopics.com/research-topics-with-independent-and-dependent-variables/  
  • Levels of measurement and using the correct statistical test. Univariate quantitative methods. Accessed March 14, 2024. https://web.pdx.edu/~newsomj/uvclass/ho_levels.pdf  
  • Easiest way to identify dependent and independent variables. Afidated website. Accessed March 15, 2024. https://www.afidated.com/2014/07/how-to-identify-dependent-and.html  
  • Choosing data visualizations. Math for the people website. Accessed March 14, 2024. https://web.stevenson.edu/mbranson/m4tp/version1/environmental-racism-choosing-data-visualization.html  
  • Trivedi C. Types of variables in scientific research. Concepts Hacked website. Accessed March 15, 2024. https://conceptshacked.com/variables-in-scientific-research/  
  • Variables in experimental and non-experimental research. Statistics solutions website. Accessed March 14, 2024. https://www.statisticssolutions.com/variables-in-experimental-and-non-experimental-research/#:~:text=The%20independent%20variable%20would%20be,state%20instead%20of%20manipulating%20them .  
  • Dependent vs independent variables: 11 key differences. Formplus website. Accessed March 15, 2024. https://www.formpl.us/blog/dependent-independent-variables

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

difference between journal and conference papers

Conference Paper vs. Journal Paper: What’s the Difference 

ibid citation styles

What does Ibid. mean? Citation Examples 

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • Independent vs Dependent Variables | Definition & Examples

Independent vs Dependent Variables | Definition & Examples

Published on 4 May 2022 by Pritha Bhandari . Revised on 17 October 2022.

In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores.

Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships.

  • The independent variable is the cause. Its value is independent of other variables in your study.
  • The dependent variable is the effect. Its value depends on changes in the independent variable.

Your independent variable is the temperature of the room. You vary the room temperature by making it cooler for half the participants, and warmer for the other half.

Table of contents

What is an independent variable, types of independent variables, what is a dependent variable, identifying independent vs dependent variables, independent and dependent variables in research, visualising independent and dependent variables, frequently asked questions about independent and dependent variables.

An independent variable is the variable you manipulate or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

These terms are especially used in statistics , where you estimate the extent to which an independent variable change can explain or predict changes in the dependent variable.

Prevent plagiarism, run a free check.

There are two main types of independent variables.

  • Experimental independent variables can be directly manipulated by researchers.
  • Subject variables cannot be manipulated by researchers, but they can be used to group research subjects categorically.

Experimental variables

In experiments, you manipulate independent variables directly to see how they affect your dependent variable. The independent variable is usually applied at different levels to see how the outcomes differ.

You can apply just two levels in order to find out if an independent variable has an effect at all.

You can also apply multiple levels to find out how the independent variable affects the dependent variable.

You have three independent variable levels, and each group gets a different level of treatment.

You randomly assign your patients to one of the three groups:

  • A low-dose experimental group
  • A high-dose experimental group
  • A placebo group

Independent and dependent variables

A true experiment requires you to randomly assign different levels of an independent variable to your participants.

Random assignment helps you control participant characteristics, so that they don’t affect your experimental results. This helps you to have confidence that your dependent variable results come solely from the independent variable manipulation.

Subject variables

Subject variables are characteristics that vary across participants, and they can’t be manipulated by researchers. For example, gender identity, ethnicity, race, income, and education are all important subject variables that social researchers treat as independent variables.

It’s not possible to randomly assign these to participants, since these are characteristics of already existing groups. Instead, you can create a research design where you compare the outcomes of groups of participants with characteristics. This is a quasi-experimental design because there’s no random assignment.

Your independent variable is a subject variable, namely the gender identity of the participants. You have three groups: men, women, and other.

Your dependent variable is the brain activity response to hearing infant cries. You record brain activity with fMRI scans when participants hear infant cries without their awareness.

A dependent variable is the variable that changes as a result of the independent variable manipulation. It’s the outcome you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics , dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

The dependent variable is what you record after you’ve manipulated the independent variable. You use this measurement data to check whether and to what extent your independent variable influences the dependent variable by conducting statistical analyses.

Based on your findings, you can estimate the degree to which your independent variable variation drives changes in your dependent variable. You can also predict how much your dependent variable will change as a result of variation in the independent variable.

Distinguishing between independent and dependent variables can be tricky when designing a complex study or reading an academic paper.

A dependent variable from one study can be the independent variable in another study, so it’s important to pay attention to research design.

Here are some tips for identifying each variable type.

Recognising independent variables

Use this list of questions to check whether you’re dealing with an independent variable:

  • Is the variable manipulated, controlled, or used as a subject grouping method by the researcher?
  • Does this variable come before the other variable in time?
  • Is the researcher trying to understand whether or how this variable affects another variable?

Recognising dependent variables

Check whether you’re dealing with a dependent variable:

  • Is this variable measured as an outcome of the study?
  • Is this variable dependent on another variable in the study?
  • Does this variable get measured only after other variables are altered?

Independent and dependent variables are generally used in experimental and quasi-experimental research.

Here are some examples of research questions and corresponding independent and dependent variables.

Research question Independent variable Dependent variable(s)
Do tomatoes grow fastest under fluorescent, incandescent, or natural light?
What is the effect of intermittent fasting on blood sugar levels?
Is medical marijuana effective for pain reduction in people with chronic pain?
To what extent does remote working increase job satisfaction?

For experimental data, you analyse your results by generating descriptive statistics and visualising your findings. Then, you select an appropriate statistical test to test your hypothesis .

The type of test is determined by:

  • Your variable types
  • Level of measurement
  • Number of independent variable levels

You’ll often use t tests or ANOVAs to analyse your data and answer your research questions.

In quantitative research , it’s good practice to use charts or graphs to visualise the results of studies. Generally, the independent variable goes on the x -axis (horizontal) and the dependent variable on the y -axis (vertical).

The type of visualisation you use depends on the variable types in your research questions:

  • A bar chart is ideal when you have a categorical independent variable.
  • A scatterplot or line graph is best when your independent and dependent variables are both quantitative.

To inspect your data, you place your independent variable of treatment level on the x -axis and the dependent variable of blood pressure on the y -axis.

You plot bars for each treatment group before and after the treatment to show the difference in blood pressure.

independent and dependent variables

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called ‘independent’ because it’s not influenced by any other variables in the study.

  • Right-hand-side variables (they appear on the right-hand side of a regression equation)

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it ‘depends’ on your independent variable.

In statistics, dependent variables are also called:

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

You want to find out how blood sugar levels are affected by drinking diet cola and regular cola, so you conduct an experiment .

  • The type of cola – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of cola.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 17). Independent vs Dependent Variables | Definition & Examples. Scribbr. Retrieved 27 September 2024, from https://www.scribbr.co.uk/research-methods/independent-vs-dependent-variables/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Other students also liked, a quick guide to experimental design | 5 steps & examples, quasi-experimental design | definition, types & examples, types of variables in research | definitions & examples.

IMAGES

  1. 27 Types of Variables in Research and Statistics (2024)

    variables in research project

  2. Types Of Variables In Research Methodology With Examples

    variables in research project

  3. Understanding Variables in Quantitative Research: A Complete Guide

    variables in research project

  4. Types of variables in scientific research

    variables in research project

  5. Types Of Variables In Research Ppt

    variables in research project

  6. Types of variables in scientific research

    variables in research project

VIDEO

  1. Practical Research 2 Quarter 1 Module 3: Kinds of Variables and Their Uses

  2. Research Variables

  3. research#####variables#types of variables#research format 😊💐

  4. Identifying Variables

  5. Variables in Psychological Research

  6. Research Variables

COMMENTS

  1. Types of Variables in Research & Statistics | Examples - Scribbr

    Types of Variables in Research & Statistics | Examples. Published on September 19, 2022 by Rebecca Bevans. Revised on June 21, 2023. In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design.

  2. Variables in Research - Definition, Types and Examples

    Definition: In Research, Variables refer to characteristics or attributes that can be measured, manipulated, or controlled. They are the factors that researchers observe or manipulate to understand the relationship between them and the outcomes of interest. Types of Variables in Research are as follows: Independent Variable.

  3. Independent & Dependent Variables (With Examples) - Grad Coach

    Learn about the most popular variables in scientific research, including independent, dependent, control, moderating and mediating variables.

  4. Independent vs. Dependent Variables | Definition & Examples

    In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores. Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships. The independent variable is the cause.

  5. Variables in Research: Breaking Down the Essentials of ...

    Understanding the role of variables in research is essential for designing and conducting experiments that produce accurate and reliable results. Learn about the different types of variables and how they are used in experimental design, with examples of independent and dependent variables.

  6. Independent and Dependent Variables - Research Guides at ...

    Designation of the dependent and independent variable involves unpacking the research problem in a way that identifies a general cause and effect and classifying these variables as either independent or dependent.

  7. Variables in Research | Types, Definiton & Examples - ATLAS.ti

    The five types of variables include independent variables, dependent variables, categorical variables, continuous variables, and confounding variables. These categories not only facilitate a clearer understanding of the data but also guide the formulation of hypotheses and research methodologies.

  8. Independent vs Dependent Variables: Definitions & Examples

    Variables in research and statistics are of different types—independent, dependent, quantitative (discrete or continuous), qualitative (nominal/categorical, ordinal), intervening, moderating, extraneous, confounding, control, and composite. In this article we compare the first two types—independent vs dependent variables. What is a variable?

  9. Types of Variables in Research | Definitions & Examples - Scribbr

    Types of Variables in Research | Definitions & Examples. Published on 19 September 2022 by Rebecca Bevans. Revised on 28 November 2022. In statistical research, a variable is defined as an attribute of an object of study. Choosing which variables to measure is central to good experimental design.

  10. Independent vs Dependent Variables | Definition & Examples

    In research, variables are any characteristics that can take on different values, such as height, age, temperature, or test scores. Researchers often manipulate or measure independent and dependent variables in studies to test cause-and-effect relationships. The independent variable is the cause.