Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default .

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The implicitly-declared copy assignment operator for class T is trivial if all of the following is true:

  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std:: memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std:: memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std:: move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

cppreference.com

Search

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . For a type to be CopyAssignable , it must have a public copy assignment operator.

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used (non-swappable type or degraded performance)
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

A implicitly-declared copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

Otherwise, it is defined as defaulted.

A defaulted copy assignment operator for class T is defined as deleted if any of the following is true:

  • T has a non-static data member of non-class type (or array thereof) that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member or a direct or virtual base class that cannot be copy-assigned (overload resolution for the copy assignment fails, or selects a deleted or inaccessible function)
  • T is a union-like class , and has a variant member whose corresponding assignment operator is non-trivial.

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • It is not user-provided (meaning, it is implicitly-defined or defaulted), and if it is defaulted, its signature is the same as implicitly-defined
  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is neither deleted nor trivial, it is defined (that is, a function body is generated and compiled) by the compiler if odr-used . For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std::move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

It is unspecified whether virtual base class subobjects that are accessible through more than one path in the inheritance lattice, are assigned more than once by the implicitly-defined copy assignment operator (same applies to move assignment ).

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move). However, this approach is not always advisable due to potentially significant overhead: see assignment operator overloading for details.

[ edit ] Example

  • Recent changes
  • Offline version
  • What links here
  • Related changes
  • Upload file
  • Special pages
  • Printable version
  • Permanent link
  • Page information
  • In other languages
  • This page was last modified on 30 November 2015, at 07:24.
  • This page has been accessed 110,155 times.
  • Privacy policy
  • About cppreference.com
  • Disclaimers

Powered by MediaWiki

Learn C++

21.12 — Overloading the assignment operator

The copy assignment operator (operator=) is used to copy values from one object to another already existing object .

Related content

As of C++11, C++ also supports “Move assignment”. We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

Copy assignment vs Copy constructor

The purpose of the copy constructor and the copy assignment operator are almost equivalent -- both copy one object to another. However, the copy constructor initializes new objects, whereas the assignment operator replaces the contents of existing objects.

The difference between the copy constructor and the copy assignment operator causes a lot of confusion for new programmers, but it’s really not all that difficult. Summarizing:

  • If a new object has to be created before the copying can occur, the copy constructor is used (note: this includes passing or returning objects by value).
  • If a new object does not have to be created before the copying can occur, the assignment operator is used.

Overloading the assignment operator

Overloading the copy assignment operator (operator=) is fairly straightforward, with one specific caveat that we’ll get to. The copy assignment operator must be overloaded as a member function.

This prints:

This should all be pretty straightforward by now. Our overloaded operator= returns *this, so that we can chain multiple assignments together:

Issues due to self-assignment

Here’s where things start to get a little more interesting. C++ allows self-assignment:

This will call f1.operator=(f1), and under the simplistic implementation above, all of the members will be assigned to themselves. In this particular example, the self-assignment causes each member to be assigned to itself, which has no overall impact, other than wasting time. In most cases, a self-assignment doesn’t need to do anything at all!

However, in cases where an assignment operator needs to dynamically assign memory, self-assignment can actually be dangerous:

First, run the program as it is. You’ll see that the program prints “Alex” as it should.

Now run the following program:

You’ll probably get garbage output. What happened?

Consider what happens in the overloaded operator= when the implicit object AND the passed in parameter (str) are both variable alex. In this case, m_data is the same as str.m_data. The first thing that happens is that the function checks to see if the implicit object already has a string. If so, it needs to delete it, so we don’t end up with a memory leak. In this case, m_data is allocated, so the function deletes m_data. But because str is the same as *this, the string that we wanted to copy has been deleted and m_data (and str.m_data) are dangling.

Later on, we allocate new memory to m_data (and str.m_data). So when we subsequently copy the data from str.m_data into m_data, we’re copying garbage, because str.m_data was never initialized.

Detecting and handling self-assignment

Fortunately, we can detect when self-assignment occurs. Here’s an updated implementation of our overloaded operator= for the MyString class:

By checking if the address of our implicit object is the same as the address of the object being passed in as a parameter, we can have our assignment operator just return immediately without doing any other work.

Because this is just a pointer comparison, it should be fast, and does not require operator== to be overloaded.

When not to handle self-assignment

Typically the self-assignment check is skipped for copy constructors. Because the object being copy constructed is newly created, the only case where the newly created object can be equal to the object being copied is when you try to initialize a newly defined object with itself:

In such cases, your compiler should warn you that c is an uninitialized variable.

Second, the self-assignment check may be omitted in classes that can naturally handle self-assignment. Consider this Fraction class assignment operator that has a self-assignment guard:

If the self-assignment guard did not exist, this function would still operate correctly during a self-assignment (because all of the operations done by the function can handle self-assignment properly).

Because self-assignment is a rare event, some prominent C++ gurus recommend omitting the self-assignment guard even in classes that would benefit from it. We do not recommend this, as we believe it’s a better practice to code defensively and then selectively optimize later.

The copy and swap idiom

A better way to handle self-assignment issues is via what’s called the copy and swap idiom. There’s a great writeup of how this idiom works on Stack Overflow .

The implicit copy assignment operator

Unlike other operators, the compiler will provide an implicit public copy assignment operator for your class if you do not provide a user-defined one. This assignment operator does memberwise assignment (which is essentially the same as the memberwise initialization that default copy constructors do).

Just like other constructors and operators, you can prevent assignments from being made by making your copy assignment operator private or using the delete keyword:

Note that if your class has const members, the compiler will instead define the implicit operator= as deleted. This is because const members can’t be assigned, so the compiler will assume your class should not be assignable.

If you want a class with const members to be assignable (for all members that aren’t const), you will need to explicitly overload operator= and manually assign each non-const member.

guest

  • Graphics and multimedia
  • Language Features
  • Unix/Linux programming
  • Source Code
  • Standard Library
  • Tips and Tricks
  • Tools and Libraries
  • Windows API
  • Copy constructors, assignment operators,

Copy constructors, assignment operators, and exception safe assignment

*

Copy assignment operator

A copy assignment operator of class T is a non-template non-static member function with the name operator = that takes exactly one parameter of type T , T & , const T & , volatile T & , or const volatile T & . A type with a public copy assignment operator is CopyAssignable .

[ edit ] Syntax

[ edit ] explanation.

  • Typical declaration of a copy assignment operator when copy-and-swap idiom can be used
  • Typical declaration of a copy assignment operator when copy-and-swap idiom cannot be used
  • Forcing a copy assignment operator to be generated by the compiler
  • Avoiding implicit copy assignment

The copy assignment operator is called whenever selected by overload resolution , e.g. when an object appears on the left side of an assignment expression.

[ edit ] Implicitly-declared copy assignment operator

If no user-defined copy assignment operators are provided for a class type ( struct , class , or union ), the compiler will always declare one as an inline public member of the class. This implicitly-declared copy assignment operator has the form T & T :: operator = ( const T & ) if all of the following is true:

  • each direct base B of T has a copy assignment operator whose parameters are B or const B& or const volatile B &
  • each non-static data member M of T of class type or array of class type has a copy assignment operator whose parameters are M or const M& or const volatile M &

Otherwise the implicitly-declared copy assignment operator is declared as T & T :: operator = ( T & ) . (Note that due to these rules, the implicitly-declared copy assignment operator cannot bind to a volatile lvalue argument)

A class can have multiple copy assignment operators, e.g. both T & T :: operator = ( const T & ) and T & T :: operator = ( T ) . If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default . (since C++11)

Because the copy assignment operator is always declared for any class, the base class assignment operator is always hidden. If a using-declaration is used to bring in the assignment operator from the base class, and its argument type could be the same as the argument type of the implicit assignment operator of the derived class, the using-declaration is also hidden by the implicit declaration.

[ edit ] Deleted implicitly-declared copy assignment operator

The implicitly-declared or defaulted copy assignment operator for class T is defined as deleted in any of the following is true:

  • T has a non-static data member that is const
  • T has a non-static data member of a reference type.
  • T has a non-static data member that cannot be copy-assigned (has deleted, inaccessible, or ambiguous copy assignment operator)
  • T has direct or virtual base class that cannot be copy-assigned (has deleted, inaccessible, or ambiguous move assignment operator)
  • T has a user-declared move constructor
  • T has a user-declared move assignment operator

[ edit ] Trivial copy assignment operator

The copy assignment operator for class T is trivial if all of the following is true:

  • The operator is not user-provided (meaning, it is implicitly-defined or defaulted), and if it is defaulted, its signature is the same as implicitly-defined
  • T has no virtual member functions
  • T has no virtual base classes
  • The copy assignment operator selected for every direct base of T is trivial
  • The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial

A trivial copy assignment operator makes a copy of the object representation as if by std::memmove . All data types compatible with the C language (POD types) are trivially copy-assignable.

[ edit ] Implicitly-defined copy assignment operator

If the implicitly-declared copy assignment operator is not deleted or trivial, it is defined (that is, a function body is generated and compiled) by the compiler. For union types, the implicitly-defined copy assignment copies the object representation (as by std::memmove ). For non-union class types ( class and struct ), the operator performs member-wise copy assignment of the object's bases and non-static members, in their initialization order, using, using built-in assignment for the scalars and copy assignment operator for class types.

The generation of the implicitly-defined copy assignment operator is deprecated (since C++11) if T has a user-declared destructor or user-declared copy constructor.

[ edit ] Notes

If both copy and move assignment operators are provided, overload resolution selects the move assignment if the argument is an rvalue (either prvalue such as a nameless temporary or xvalue such as the result of std::move ), and selects the copy assignment if the argument is lvalue (named object or a function/operator returning lvalue reference). If only the copy assignment is provided, all argument categories select it (as long as it takes its argument by value or as reference to const, since rvalues can bind to const references), which makes copy assignment the fallback for move assignment, when move is unavailable.

[ edit ] Copy and swap

Copy assignment operator can be expressed in terms of copy constructor, destructor, and the swap() member function, if one is provided:

T & T :: operator = ( T arg ) { // copy/move constructor is called to construct arg     swap ( arg ) ;     // resources exchanged between *this and arg     return * this ; }   // destructor is called to release the resources formerly held by *this

For non-throwing swap(), this form provides strong exception guarantee . For rvalue arguments, this form automatically invokes the move constructor, and is sometimes referred to as "unifying assignment operator" (as in, both copy and move).

[ edit ] Example

  • C++ Data Types
  • C++ Input/Output
  • C++ Pointers
  • C++ Interview Questions
  • C++ Programs
  • C++ Cheatsheet
  • C++ Projects
  • C++ Exception Handling
  • C++ Memory Management

Copy Constructor vs Assignment Operator in C++

  • How to Create Custom Assignment Operator in C++?
  • Assignment Operators In C++
  • Why copy constructor argument should be const in C++?
  • Advanced C++ | Virtual Copy Constructor
  • Move Assignment Operator in C++ 11
  • Self assignment check in assignment operator
  • Is assignment operator inherited?
  • Copy Constructor in C++
  • How to Implement Move Assignment Operator in C++?
  • Default Assignment Operator and References in C++
  • Can a constructor be private in C++ ?
  • When is a Copy Constructor Called in C++?
  • C++ Assignment Operator Overloading
  • std::move in Utility in C++ | Move Semantics, Move Constructors and Move Assignment Operators
  • C++ Interview questions based on constructors/ Destructors.
  • Assignment Operators in C
  • Copy Constructor in Python
  • Copy Constructor in Java
  • Constructors in Objective-C

Copy constructor and Assignment operator are similar as they are both used to initialize one object using another object. But, there are some basic differences between them:

Consider the following C++ program. 

Explanation: Here, t2 = t1;  calls the assignment operator , same as t2.operator=(t1); and   Test t3 = t1;  calls the copy constructor , same as Test t3(t1);

Must Read: When is a Copy Constructor Called in C++?

Please Login to comment...

Similar reads, improve your coding skills with practice.

 alt=

What kind of Experience do you want to share?

Assignment operators

Assignment operators modify the value of the object.

Explanation

copy assignment operator replaces the contents of the object a with a copy of the contents of b ( b is not modified). For class types, this is a special member function, described in copy assignment operator .

move assignment operator replaces the contents of the object a with the contents of b , avoiding copying if possible ( b may be modified). For class types, this is a special member function, described in move assignment operator . (since C++11)

For non-class types, copy and move assignment are indistinguishable and are referred to as direct assignment .

compound assignment operators replace the contents of the object a with the result of a binary operation between the previous value of a and the value of b .

Builtin direct assignment

The direct assignment expressions have the form

For the built-in operator, lhs may have any non-const scalar type and rhs must be implicitly convertible to the type of lhs .

The direct assignment operator expects a modifiable lvalue as its left operand and an rvalue expression or a braced-init-list (since C++11) as its right operand, and returns an lvalue identifying the left operand after modification.

For non-class types, the right operand is first implicitly converted to the cv-unqualified type of the left operand, and then its value is copied into the object identified by left operand.

When the left operand has reference type, the assignment operator modifies the referred-to object.

If the left and the right operands identify overlapping objects, the behavior is undefined (unless the overlap is exact and the type is the same)

In overload resolution against user-defined operators , for every type T , the following function signatures participate in overload resolution:

For every enumeration or pointer to member type T , optionally volatile-qualified, the following function signature participates in overload resolution:

For every pair A1 and A2, where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signature participates in overload resolution:

Builtin compound assignment

The compound assignment expressions have the form

The behavior of every builtin compound-assignment expression E1 op = E2 (where E1 is a modifiable lvalue expression and E2 is an rvalue expression or a braced-init-list (since C++11) ) is exactly the same as the behavior of the expression E1 = E1 op E2 , except that the expression E1 is evaluated only once and that it behaves as a single operation with respect to indeterminately-sequenced function calls (e.g. in f ( a + = b, g ( ) ) , the += is either not started at all or is completed as seen from inside g ( ) ).

In overload resolution against user-defined operators , for every pair A1 and A2, where A1 is an arithmetic type (optionally volatile-qualified) and A2 is a promoted arithmetic type, the following function signatures participate in overload resolution:

For every pair I1 and I2, where I1 is an integral type (optionally volatile-qualified) and I2 is a promoted integral type, the following function signatures participate in overload resolution:

For every optionally cv-qualified object type T , the following function signatures participate in overload resolution:

Operator precedence

Operator overloading

This browser is no longer supported.

Upgrade to Microsoft Edge to take advantage of the latest features, security updates, and technical support.

C++ At Work

Copy Constructors, Assignment Operators, and More

Paul DiLascia

Code download available at: CAtWork0509.exe (276 KB) Browse the Code Online

Q I have a simple C++ problem. I want my copy constructor and assignment operator to do the same thing. Can you tell me the best way to accomplish this?

A At first glance this seems like a simple question with a simple answer: just write a copy constructor that calls operator=.

Or, alternatively, write a common copy method and call it from both your copy constructor and operator=, like so:

This code works fine for many classes, but there's more here than meets the eye. In particular, what happens if your class contains instances of other classes as members? To find out, I wrote the test program in Figure 1 . It has a main class, CMainClass, which contains an instance of another class, CMember. Both classes have a copy constructor and assignment operator, with the copy constructor for CMainClass calling operator= as in the first snippet. The code is sprinkled with printf statements to show which methods are called when. To exercise the constructors, cctest first creates an instance of CMainClass using the default ctor, then creates another instance using the copy constructor:

Figure 1 Copy Constructors and Assignment Operators

If you compile and run cctest, you'll see the following printf messages when cctest constructs obj2:

The member object m_obj got initialized twice! First by the default constructor, and again via assignment. Hey, what's going on?

In C++, assignment and copy construction are different because the copy constructor initializes uninitialized memory, whereas assignment starts with an existing initialized object. If your class contains instances of other classes as data members, the copy constructor must first construct these data members before it calls operator=. The result is that these members get initialized twice, as cctest shows. Got it? It's the same thing that happens with the default constructor when you initialize members using assignment instead of initializers. For example:

As opposed to:

Using assignment, m_obj is initialized twice; with the initializer syntax, only once. So, what's the solution to avoid extra initializations during copy construction? While it goes against your instinct to reuse code, this is one situation where it's best to implement your copy constructor and assignment operator separately, even if they do the same thing. Calling operator= from your copy constructor will certainly work, but it's not the most efficient implementation. My observation about initializers suggests a better way:

Now the main copy ctor calls the member object's copy ctor using an initializer, and m_obj is initialized just once by its copy ctor. In general, copy ctors should invoke the copy ctors of their members. Likewise for assignment. And, I may as well add, the same goes for base classes: your derived copy ctor and assignment operators should invoke the corresponding base class methods. Of course, there are always times when you may want to do something different because you know how your code works—but what I've described are the general rules, which are to be broken only when you have a compelling reason. If you have common tasks to perform after the basic objects have been initialized, you can put them in a common initialization method and call it from your constructors and operator=.

Q Can you tell me how to call a Visual C++® class from C#, and what syntax I need to use for this?

Sunil Peddi

Q I have an application that is written in both C# (the GUI) and in classic C++ (some business logic). Now I need to call from a DLL written in C++ a function (or a method) in a DLL written in Visual C++ .NET. This one calls another DLL written in C#. The Visual C++ .NET DLL acts like a proxy. Is this possible? I was able to use LoadLibrary to call a function present in the Visual C++ .NET DLL, and I can receive a return value, but when I try to pass some parameters to the function in the Visual C++ .NET DLL, I get the following error:

How can I resolve this problem?

Giuseppe Dattilo

A I get a lot of questions about interoperability between the Microsoft® .NET Framework and native C++, so I don't mind revisiting this well-covered topic yet again. There are two directions you can go: calling the Framework from C++ or calling C++ from the Framework. I won't go into COM interop here as that's a separate issue best saved for another day.

Let's start with the easiest one first: calling the Framework from C++. The simplest and easiest way to call the Framework from your C++ program is to use the Managed Extensions. These Microsoft-specific C++ language extensions are designed to make calling the Framework as easy as including a couple of files and then using the classes as if they were written in C++. Here's a very simple C++ program that calls the Framework's Console class:

To use the Managed Extensions, all you need to do is import <mscorlib.dll> and whatever .NET assemblies contain the classes you plan to use. Don't forget to compile with /clr:

Your C++ code can use managed classes more or less as if they were ordinary C++ classes. For example, you can create Framework objects with operator new, and access them using C++ pointer syntax, as shown in the following:

Here, the String s is declared as pointer-to-String because String::Format returns a new String object.

The "Hello, world" and date/time programs seem childishly simple—and they are—but just remember that however complex your program is, however many .NET assemblies and classes you use, the basic idea is the same: use <mscorlib.dll> and whatever other assemblies you need, then create managed objects with new, and use pointer syntax to access them.

So much for calling the Framework from C++. What about going the other way, calling C++ from the Framework? Here the road forks into two options, depending on whether you want to call extern C functions or C++ class member functions. Again, I'll take the simpler case first: calling C functions from .NET. The easiest thing to do here is use P/Invoke. With P/Invoke, you declare the external functions as static methods of a class, using the DllImport attribute to specify that the function lives in an external DLL. In C# it looks like this:

This tells the compiler that MessageBox is a function in user32.dll that takes an IntPtr (HWND), two Strings, and an int. You can then call it from your C# program like so:

Of course, you don't need P/Invoke for MessageBox since the .NET Framework already has a MessageBox class, but there are plenty of API functions that aren't supported directly by the Framework, and then you need P/Invoke. And, of course, you can use P/Invoke to call C functions in your own DLLs. I've used C# in the example, but P/Invoke works with any .NET-based language like Visual Basic® .NET or JScript®.NET. The names are the same, only the syntax is different.

Note that I used IntPtr to declare the HWND. I could have got away with int, but you should always use IntPtr for any kind of handle such as HWND, HANDLE, or HDC. IntPtr will default to 32 or 64 bits depending on the platform, so you never have to worry about the size of the handle.

DllImport has various modifiers you can use to specify details about the imported function. In this example, CharSet=CharSet.Auto tells the Framework to pass Strings as Unicode or Ansi, depending on the target operating system. Another little-known modifier you can use is CallingConvention. Recall that in C, there are different calling conventions, which are the rules that specify how the compiler should pass arguments and return values from one function to another across the stack. The default CallingConvention for DllImport is CallingConvention.Winapi. This is actually a pseudo-convention that uses the default convention for the target platform; for example, StdCall (in which the callee cleans the stack) on Windows® platforms and CDecl (in which the caller cleans the stack) on Windows CE .NET. CDecl is also used with varargs functions like printf.

The calling convention is where Giuseppe ran into trouble. C++ uses yet a third calling convention: thiscall. With this convention, the compiler uses the hardware register ECX to pass the "this" pointer to class member functions that don't have variable arguments. Without knowing the exact details of Giuseppe's program, it sounds from the error message that he's trying to call a C++ member function that expects thiscall from a C# program that's using StdCall—oops!

Aside from calling conventions, another interoperability issue when calling C++ methods from the Framework is linkage: C and C++ use different forms of linkage because C++ requires name-mangling to support function overloading. That's why you have to use extern "C" when you declare C functions in C++ programs: so the compiler won't mangle the name. In Windows, the entire windows.h file (now winuser.h) is enclosed in extern "C" brackets.

While there may be a way to call C++ member functions in a DLL directly using P/Invoke and DllImport with the exact mangled names and CallingConvention=ThisCall, it's not something to attempt if you're in your right mind. The proper way to call C++ classes from managed code—option number two—is to wrap your C++ classes in managed wrappers. Wrapping can be tedious if you have lots of classes, but it's really the only way to go. Say you have a C++ class CWidget and you want to wrap it so .NET clients can use it. The basic formula looks something like this:

The pattern is the same for any class. You write a managed (__gc) class that holds a pointer to the native class, you write a constructor and destructor that allocate and destroy the instance, and you write wrapper methods that call the corresponding native C++ member functions. You don't have to wrap all the member functions, only the ones you want to expose to the managed world.

Figure 2 shows a simple but concrete example in full detail. CPerson is a class that holds the name of a person, with member functions GetName and SetName to change the name. Figure 3 shows the managed wrapper for CPerson. In the example, I converted Get/SetName to a property, so .NET-based programmers can use the property syntax. In C#, using it looks like this:

Figure 3 Managed Person Class

Figure 2 Native CPerson Class

Using properties is purely a matter of style; I could equally well have exposed two methods, GetName and SetName, as in the native class. But properties feel more like .NET. The wrapper class is an assembly like any other, but one that links with the native DLL. This is one of the cool benefits of the Managed Extensions: You can link directly with native C/C++ code. If you download and compile the source for my CPerson example, you'll see that the makefile generates two separate DLLs: person.dll implements a normal native DLL and mperson.dll is the managed assembly that wraps it. There are also two test programs: testcpp.exe, a native C++ program that calls the native person.dll and testcs.exe, which is written in C# and calls the managed wrapper mperson.dll (which in turn calls the native person.dll).

Figure 4** Interop Highway **

I've used a very simple example to highlight the fact that there are fundamentally only a few main highways across the border between the managed and native worlds (see Figure 4 ). If your C++ classes are at all complex, the biggest interop problem you'll encounter is converting parameters between native and managed types, a process called marshaling. The Managed Extensions do an admirable job of making this as painless as possible (for example, automatically converting primitive types and Strings), but there are times where you have to know something about what you're doing.

For example, you can't pass the address of a managed object or subobject to a native function without pinning it first. That's because managed objects live in the managed heap, which the garbage collector is free to rearrange. If the garbage collector moves an object, it can update all the managed references to that object—but it knows nothing of raw native pointers that live outside the managed world. That's what __pin is for; it tells the garbage collector: don't move this object. For strings, the Framework has a special function PtrToStringChars that returns a pinned pointer to the native characters. (Incidentally, for those curious-minded souls, PtrToStringChars is the only function as of this date defined in <vcclr.h>. Figure 5 shows the code.) I used PtrToStringChars in MPerson to set the Name (see Figure 3 ).

Figure 5 PtrToStringChars

Pinning isn't the only interop problem you'll encounter. Other problems arise if you have to deal with arrays, references, structs, and callbacks, or access a subobject within an object. This is where some of the more advanced techniques come in, such as StructLayout, boxing, __value types, and so on. You also need special code to handle exceptions (native or managed) and callbacks/delegates. But don't let these interop details obscure the big picture. First decide which way you're calling (from managed to native or the other way around), and if you're calling from managed to native, whether to use P/Invoke or a wrapper.

In Visual Studio® 2005 (which some of you may already have as beta bits), the Managed Extensions have been renamed and upgraded to something called C++/CLI. Think of the C++/CLI as Managed Extensions Version 2, or What the Managed Extensions Should Have Been. The changes are mostly a matter of syntax, though there are some important semantic changes, too. In general C++/CLI is designed to highlight rather than blur the distinction between managed and native objects. Using pointer syntax for managed objects was a clever and elegant idea, but in the end perhaps a little too clever because it obscures important differences between managed and native objects. C++/CLI introduces the key notion of handles for managed objects, so instead of using C pointer syntax for managed objects, the CLI uses ^ (hat):

As you no doubt noticed, there's also a gcnew operator to clarify when you're allocating objects on the managed heap as opposed to the native one. This has the added benefit that gcnew doesn't collide with C++ new, which can be overloaded or even redefined as a macro. C++/CLI has many other cool features designed to make interoperability as straightforward and intuitive as possible.

Send your questions and comments for Paul to   [email protected] .

Paul DiLascia is a freelance software consultant and Web/UI designer-at-large. He is the author of Windows ++: Writing Reusable Windows Code in C ++ (Addison-Wesley, 1992). In his spare time, Paul develops PixieLib, an MFC class library available from his Web site, www.dilascia.com .

Additional resources

IMAGES

  1. Assignment Operators in C » PREP INSTA

    c copy assignment operator return value

  2. Assignment Operators in C

    c copy assignment operator return value

  3. Assignment Operators in C

    c copy assignment operator return value

  4. C programming +=

    c copy assignment operator return value

  5. C# Assignment Operator

    c copy assignment operator return value

  6. C++ : Why must the copy assignment operator return a reference/const

    c copy assignment operator return value

VIDEO

  1. 如何用讀寫鎖實作 thread safe copy constructor and copy assignment?

  2. C++ Dersleri 23

  3. C language

  4. C++ Classes Copy Constructor, Assignment operator and Destructor Part 1

  5. COPY CONSTRUCTOR IN C++ (HINDI)

  6. 30 gündə JavaScript. DƏRS 7 (Functions)

COMMENTS

  1. Copy assignment operator

    the copy assignment operator selected for every non-static class type (or array of class type) member of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  2. c++

    C++98 §23.1/4: " In Table 64, T is the type used to instantiate the container, t is a value of T, and u is a value of (possibly const) T. Returning a copy by value would still support assignment chaining like a = b = c = 42;, because the assignment operator is right-associative, i.e. this is parsed as a = (b = (c = 42));.

  3. Copy assignment operator

    The copy assignment operator selected for every non-static class type (or array of class type) memeber of T is trivial. A trivial copy assignment operator makes a copy of the object representation as if by std::memmove. All data types compatible with the C language (POD types) are trivially copy-assignable.

  4. Copy assignment operator

    A class can have multiple copy assignment operators, e.g. both T & T:: operator = (const T &) and T & T:: operator = (T). If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default. (since C++11)

  5. Copy constructors and copy assignment operators (C++)

    Assignment: When one object's value is assigned to another object, the first object is copied to the second object.So, this code copies the value of b into a:. Point a, b; ... a = b; Initialization: Initialization occurs when you declare a new object, when you pass function arguments by value, or when you return by value from a function.. You can define the semantics of "copy" for objects of ...

  6. 21.12

    21.12 — Overloading the assignment operator. The copy assignment operator (operator=) is used to copy values from one object to another already existing object. As of C++11, C++ also supports "Move assignment". We discuss move assignment in lesson 22.3 -- Move constructors and move assignment .

  7. PDF Copy Constructors and Assignment Operators

    assignment operator to assign two the value of the variable one. It can be tricky to differentiate between code using the assignment operator and code using the copy constructor. For example, if we rewrite the above code as MyClass one; MyClass two = one; We are now invoking the copy constructor rather than the assignment operator. Always ...

  8. Copy constructors, assignment operators,

    MyClass& MyClass::operator=( const MyClass& other ) { x = other.x; c = other.c; s = other.s; return *this; } In general, any time you need to write your own custom copy constructor, you also need to write a custom assignment operator.

  9. Copy assignment operator

    A class can have multiple copy assignment operators, e.g. both T & T:: operator = (const T &) and T & T:: operator = (T). If some user-defined copy assignment operators are present, the user may still force the generation of the implicitly declared copy assignment operator with the keyword default. (since C++11)

  10. c++

    10. Prior to C++11, it has always been the case that copy assignment operator should always pass by const reference, like so: However, with the introduction of move assignment operators and constructors, it seems that some people are advocating using pass by value for copy assignment instead. A move assignment operator also needs to be added:

  11. Assignment operator (C++)

    The copy assignment operator differs from the copy constructor in that it must clean up the data members of the assignment's target ... Return value of overloaded assignment operator. The language permits an overloaded assignment operator to have an arbitrary return type (including void). However, the operator is usually defined to return a ...

  12. Everything You Need To Know About The Copy Assignment Operator In C++

    The Copy Assignment Operator in a class is a non-template non-static member function that is declared with the operator=. When you create a class or a type that is copy assignable (that you can copy with the = operator symbol), it must have a public copy assignment operator. Here is a simple syntax for the typical declaration of a copy ...

  13. Copy Constructor vs Assignment Operator in C++

    But, there are some basic differences between them: Copy constructor. Assignment operator. It is called when a new object is created from an existing object, as a copy of the existing object. This operator is called when an already initialized object is assigned a new value from another existing object. It creates a separate memory block for ...

  14. C++ Move Assignment Operator Return Type

    1. Normally the return type of an assignment operator is Vector&, but const Vector& is acceptable if you don't want people making funky assignment chains (((v1 = v2) = v3) = v4). Move assignment and copy assignment are both "assignment". It would be unexpected for one assignment operator to have a different return type than the other, so ...

  15. Assignment operators

    Assignment operators. Assignment operators modify the value of the object. All built-in assignment operators return *this, and most user-defined overloads also return *this so that the user-defined operators can be used in the same manner as the built-ins. However, in a user-defined operator overload, any type can be used as return type ...

  16. c++

    Consider the following construction: a = b = c;. This should be equal to a = (b = c), i.e. c should be assigned into b and b into a. Rewrite this as a.operator=(b.operator=(c)). In order for the assignment into a to work correctly the return type of b.operator=(c) must be reference to the inner assignment result (it will work with copy too but ...

  17. C++ at Work: Copy Constructors, Assignment Operators, and More

    Or, alternatively, write a common copy method and call it from both your copy constructor and operator=, like so: CopyObj(obj); CopyObj(rhs); return *this; A At first glance this seems like a simple question with a simple answer: just write a copy constructor that calls operator=. *this = obj;

  18. Return value of assignment operator overloading c++

    2. It returns a reference so you can perform further actions on the object after assigning to it: void doSomething(); A& operator=(const A&); If the assignment operator returned by value then you would call doSomething() on the unnamed temporary object, instead of on a.