• Privacy Policy

Research Method

Home » Quantitative Research – Methods, Types and Analysis

Quantitative Research – Methods, Types and Analysis

Table of Contents

What is Quantitative Research

Quantitative Research

Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions . This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather quantitative data.

Quantitative Research Methods

Quantitative Research Methods

Quantitative Research Methods are as follows:

Descriptive Research Design

Descriptive research design is used to describe the characteristics of a population or phenomenon being studied. This research method is used to answer the questions of what, where, when, and how. Descriptive research designs use a variety of methods such as observation, case studies, and surveys to collect data. The data is then analyzed using statistical tools to identify patterns and relationships.

Correlational Research Design

Correlational research design is used to investigate the relationship between two or more variables. Researchers use correlational research to determine whether a relationship exists between variables and to what extent they are related. This research method involves collecting data from a sample and analyzing it using statistical tools such as correlation coefficients.

Quasi-experimental Research Design

Quasi-experimental research design is used to investigate cause-and-effect relationships between variables. This research method is similar to experimental research design, but it lacks full control over the independent variable. Researchers use quasi-experimental research designs when it is not feasible or ethical to manipulate the independent variable.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This research method involves manipulating the independent variable and observing the effects on the dependent variable. Researchers use experimental research designs to test hypotheses and establish cause-and-effect relationships.

Survey Research

Survey research involves collecting data from a sample of individuals using a standardized questionnaire. This research method is used to gather information on attitudes, beliefs, and behaviors of individuals. Researchers use survey research to collect data quickly and efficiently from a large sample size. Survey research can be conducted through various methods such as online, phone, mail, or in-person interviews.

Quantitative Research Analysis Methods

Here are some commonly used quantitative research analysis methods:

Statistical Analysis

Statistical analysis is the most common quantitative research analysis method. It involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis can be used to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.

Regression Analysis

Regression analysis is a statistical technique used to analyze the relationship between one dependent variable and one or more independent variables. Researchers use regression analysis to identify and quantify the impact of independent variables on the dependent variable.

Factor Analysis

Factor analysis is a statistical technique used to identify underlying factors that explain the correlations among a set of variables. Researchers use factor analysis to reduce a large number of variables to a smaller set of factors that capture the most important information.

Structural Equation Modeling

Structural equation modeling is a statistical technique used to test complex relationships between variables. It involves specifying a model that includes both observed and unobserved variables, and then using statistical methods to test the fit of the model to the data.

Time Series Analysis

Time series analysis is a statistical technique used to analyze data that is collected over time. It involves identifying patterns and trends in the data, as well as any seasonal or cyclical variations.

Multilevel Modeling

Multilevel modeling is a statistical technique used to analyze data that is nested within multiple levels. For example, researchers might use multilevel modeling to analyze data that is collected from individuals who are nested within groups, such as students nested within schools.

Applications of Quantitative Research

Quantitative research has many applications across a wide range of fields. Here are some common examples:

  • Market Research : Quantitative research is used extensively in market research to understand consumer behavior, preferences, and trends. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform marketing strategies, product development, and pricing decisions.
  • Health Research: Quantitative research is used in health research to study the effectiveness of medical treatments, identify risk factors for diseases, and track health outcomes over time. Researchers use statistical methods to analyze data from clinical trials, surveys, and other sources to inform medical practice and policy.
  • Social Science Research: Quantitative research is used in social science research to study human behavior, attitudes, and social structures. Researchers use surveys, experiments, and other quantitative methods to collect data that can inform social policies, educational programs, and community interventions.
  • Education Research: Quantitative research is used in education research to study the effectiveness of teaching methods, assess student learning outcomes, and identify factors that influence student success. Researchers use experimental and quasi-experimental designs, as well as surveys and other quantitative methods, to collect and analyze data.
  • Environmental Research: Quantitative research is used in environmental research to study the impact of human activities on the environment, assess the effectiveness of conservation strategies, and identify ways to reduce environmental risks. Researchers use statistical methods to analyze data from field studies, experiments, and other sources.

Characteristics of Quantitative Research

Here are some key characteristics of quantitative research:

  • Numerical data : Quantitative research involves collecting numerical data through standardized methods such as surveys, experiments, and observational studies. This data is analyzed using statistical methods to identify patterns and relationships.
  • Large sample size: Quantitative research often involves collecting data from a large sample of individuals or groups in order to increase the reliability and generalizability of the findings.
  • Objective approach: Quantitative research aims to be objective and impartial in its approach, focusing on the collection and analysis of data rather than personal beliefs, opinions, or experiences.
  • Control over variables: Quantitative research often involves manipulating variables to test hypotheses and establish cause-and-effect relationships. Researchers aim to control for extraneous variables that may impact the results.
  • Replicable : Quantitative research aims to be replicable, meaning that other researchers should be able to conduct similar studies and obtain similar results using the same methods.
  • Statistical analysis: Quantitative research involves using statistical tools and techniques to analyze the numerical data collected during the research process. Statistical analysis allows researchers to identify patterns, trends, and relationships between variables, and to test hypotheses and theories.
  • Generalizability: Quantitative research aims to produce findings that can be generalized to larger populations beyond the specific sample studied. This is achieved through the use of random sampling methods and statistical inference.

Examples of Quantitative Research

Here are some examples of quantitative research in different fields:

  • Market Research: A company conducts a survey of 1000 consumers to determine their brand awareness and preferences. The data is analyzed using statistical methods to identify trends and patterns that can inform marketing strategies.
  • Health Research : A researcher conducts a randomized controlled trial to test the effectiveness of a new drug for treating a particular medical condition. The study involves collecting data from a large sample of patients and analyzing the results using statistical methods.
  • Social Science Research : A sociologist conducts a survey of 500 people to study attitudes toward immigration in a particular country. The data is analyzed using statistical methods to identify factors that influence these attitudes.
  • Education Research: A researcher conducts an experiment to compare the effectiveness of two different teaching methods for improving student learning outcomes. The study involves randomly assigning students to different groups and collecting data on their performance on standardized tests.
  • Environmental Research : A team of researchers conduct a study to investigate the impact of climate change on the distribution and abundance of a particular species of plant or animal. The study involves collecting data on environmental factors and population sizes over time and analyzing the results using statistical methods.
  • Psychology : A researcher conducts a survey of 500 college students to investigate the relationship between social media use and mental health. The data is analyzed using statistical methods to identify correlations and potential causal relationships.
  • Political Science: A team of researchers conducts a study to investigate voter behavior during an election. They use survey methods to collect data on voting patterns, demographics, and political attitudes, and analyze the results using statistical methods.

How to Conduct Quantitative Research

Here is a general overview of how to conduct quantitative research:

  • Develop a research question: The first step in conducting quantitative research is to develop a clear and specific research question. This question should be based on a gap in existing knowledge, and should be answerable using quantitative methods.
  • Develop a research design: Once you have a research question, you will need to develop a research design. This involves deciding on the appropriate methods to collect data, such as surveys, experiments, or observational studies. You will also need to determine the appropriate sample size, data collection instruments, and data analysis techniques.
  • Collect data: The next step is to collect data. This may involve administering surveys or questionnaires, conducting experiments, or gathering data from existing sources. It is important to use standardized methods to ensure that the data is reliable and valid.
  • Analyze data : Once the data has been collected, it is time to analyze it. This involves using statistical methods to identify patterns, trends, and relationships between variables. Common statistical techniques include correlation analysis, regression analysis, and hypothesis testing.
  • Interpret results: After analyzing the data, you will need to interpret the results. This involves identifying the key findings, determining their significance, and drawing conclusions based on the data.
  • Communicate findings: Finally, you will need to communicate your findings. This may involve writing a research report, presenting at a conference, or publishing in a peer-reviewed journal. It is important to clearly communicate the research question, methods, results, and conclusions to ensure that others can understand and replicate your research.

When to use Quantitative Research

Here are some situations when quantitative research can be appropriate:

  • To test a hypothesis: Quantitative research is often used to test a hypothesis or a theory. It involves collecting numerical data and using statistical analysis to determine if the data supports or refutes the hypothesis.
  • To generalize findings: If you want to generalize the findings of your study to a larger population, quantitative research can be useful. This is because it allows you to collect numerical data from a representative sample of the population and use statistical analysis to make inferences about the population as a whole.
  • To measure relationships between variables: If you want to measure the relationship between two or more variables, such as the relationship between age and income, or between education level and job satisfaction, quantitative research can be useful. It allows you to collect numerical data on both variables and use statistical analysis to determine the strength and direction of the relationship.
  • To identify patterns or trends: Quantitative research can be useful for identifying patterns or trends in data. For example, you can use quantitative research to identify trends in consumer behavior or to identify patterns in stock market data.
  • To quantify attitudes or opinions : If you want to measure attitudes or opinions on a particular topic, quantitative research can be useful. It allows you to collect numerical data using surveys or questionnaires and analyze the data using statistical methods to determine the prevalence of certain attitudes or opinions.

Purpose of Quantitative Research

The purpose of quantitative research is to systematically investigate and measure the relationships between variables or phenomena using numerical data and statistical analysis. The main objectives of quantitative research include:

  • Description : To provide a detailed and accurate description of a particular phenomenon or population.
  • Explanation : To explain the reasons for the occurrence of a particular phenomenon, such as identifying the factors that influence a behavior or attitude.
  • Prediction : To predict future trends or behaviors based on past patterns and relationships between variables.
  • Control : To identify the best strategies for controlling or influencing a particular outcome or behavior.

Quantitative research is used in many different fields, including social sciences, business, engineering, and health sciences. It can be used to investigate a wide range of phenomena, from human behavior and attitudes to physical and biological processes. The purpose of quantitative research is to provide reliable and valid data that can be used to inform decision-making and improve understanding of the world around us.

Advantages of Quantitative Research

There are several advantages of quantitative research, including:

  • Objectivity : Quantitative research is based on objective data and statistical analysis, which reduces the potential for bias or subjectivity in the research process.
  • Reproducibility : Because quantitative research involves standardized methods and measurements, it is more likely to be reproducible and reliable.
  • Generalizability : Quantitative research allows for generalizations to be made about a population based on a representative sample, which can inform decision-making and policy development.
  • Precision : Quantitative research allows for precise measurement and analysis of data, which can provide a more accurate understanding of phenomena and relationships between variables.
  • Efficiency : Quantitative research can be conducted relatively quickly and efficiently, especially when compared to qualitative research, which may involve lengthy data collection and analysis.
  • Large sample sizes : Quantitative research can accommodate large sample sizes, which can increase the representativeness and generalizability of the results.

Limitations of Quantitative Research

There are several limitations of quantitative research, including:

  • Limited understanding of context: Quantitative research typically focuses on numerical data and statistical analysis, which may not provide a comprehensive understanding of the context or underlying factors that influence a phenomenon.
  • Simplification of complex phenomena: Quantitative research often involves simplifying complex phenomena into measurable variables, which may not capture the full complexity of the phenomenon being studied.
  • Potential for researcher bias: Although quantitative research aims to be objective, there is still the potential for researcher bias in areas such as sampling, data collection, and data analysis.
  • Limited ability to explore new ideas: Quantitative research is often based on pre-determined research questions and hypotheses, which may limit the ability to explore new ideas or unexpected findings.
  • Limited ability to capture subjective experiences : Quantitative research is typically focused on objective data and may not capture the subjective experiences of individuals or groups being studied.
  • Ethical concerns : Quantitative research may raise ethical concerns, such as invasion of privacy or the potential for harm to participants.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Observational Research

Observational Research – Methods and Guide

Applied Research

Applied Research – Types, Methods and Examples

Transformative Design

Transformative Design – Methods, Types, Guide

Focus Groups in Qualitative Research

Focus Groups – Steps, Examples and Guide

Triangulation

Triangulation in Research – Types, Methods and...

Phenomenology

Phenomenology – Methods, Examples and Guide

Quantitative Data Analysis: A Comprehensive Guide

By: Ofem Eteng | Published: May 18, 2022

Related Articles

analysis quantitative research

A healthcare giant successfully introduces the most effective drug dosage through rigorous statistical modeling, saving countless lives. A marketing team predicts consumer trends with uncanny accuracy, tailoring campaigns for maximum impact.

Table of Contents

These trends and dosages are not just any numbers but are a result of meticulous quantitative data analysis. Quantitative data analysis offers a robust framework for understanding complex phenomena, evaluating hypotheses, and predicting future outcomes.

In this blog, we’ll walk through the concept of quantitative data analysis, the steps required, its advantages, and the methods and techniques that are used in this analysis. Read on!

What is Quantitative Data Analysis?

Quantitative data analysis is a systematic process of examining, interpreting, and drawing meaningful conclusions from numerical data. It involves the application of statistical methods, mathematical models, and computational techniques to understand patterns, relationships, and trends within datasets.

Quantitative data analysis methods typically work with algorithms, mathematical analysis tools, and software to gain insights from the data, answering questions such as how many, how often, and how much. Data for quantitative data analysis is usually collected from close-ended surveys, questionnaires, polls, etc. The data can also be obtained from sales figures, email click-through rates, number of website visitors, and percentage revenue increase. 

Quantitative Data Analysis vs Qualitative Data Analysis

When we talk about data, we directly think about the pattern, the relationship, and the connection between the datasets – analyzing the data in short. Therefore when it comes to data analysis, there are broadly two types – Quantitative Data Analysis and Qualitative Data Analysis.

Quantitative data analysis revolves around numerical data and statistics, which are suitable for functions that can be counted or measured. In contrast, qualitative data analysis includes description and subjective information – for things that can be observed but not measured.

Let us differentiate between Quantitative Data Analysis and Quantitative Data Analysis for a better understanding.

Numerical data – statistics, counts, metrics measurementsText data – customer feedback, opinions, documents, notes, audio/video recordings
Close-ended surveys, polls and experiments.Open-ended questions, descriptive interviews
What? How much? Why (to a certain extent)?How? Why? What are individual experiences and motivations?
Statistical programming software like R, Python, SAS and Data visualization like Tableau, Power BINVivo, Atlas.ti for qualitative coding.
Word processors and highlighters – Mindmaps and visual canvases
Best used for large sample sizes for quick answers.Best used for small to middle sample sizes for descriptive insights

Data Preparation Steps for Quantitative Data Analysis

Quantitative data has to be gathered and cleaned before proceeding to the stage of analyzing it. Below are the steps to prepare a data before quantitative research analysis:

  • Step 1: Data Collection

Before beginning the analysis process, you need data. Data can be collected through rigorous quantitative research, which includes methods such as interviews, focus groups, surveys, and questionnaires.

  • Step 2: Data Cleaning

Once the data is collected, begin the data cleaning process by scanning through the entire data for duplicates, errors, and omissions. Keep a close eye for outliers (data points that are significantly different from the majority of the dataset) because they can skew your analysis results if they are not removed.

This data-cleaning process ensures data accuracy, consistency and relevancy before analysis.

  • Step 3: Data Analysis and Interpretation

Now that you have collected and cleaned your data, it is now time to carry out the quantitative analysis. There are two methods of quantitative data analysis, which we will discuss in the next section.

However, if you have data from multiple sources, collecting and cleaning it can be a cumbersome task. This is where Hevo Data steps in. With Hevo, extracting, transforming, and loading data from source to destination becomes a seamless task, eliminating the need for manual coding. This not only saves valuable time but also enhances the overall efficiency of data analysis and visualization, empowering users to derive insights quickly and with precision

Hevo is the only real-time ELT No-code Data Pipeline platform that cost-effectively automates data pipelines that are flexible to your needs. With integration with 150+ Data Sources (40+ free sources), we help you not only export data from sources & load data to the destinations but also transform & enrich your data, & make it analysis-ready.

Start for free now!

Now that you are familiar with what quantitative data analysis is and how to prepare your data for analysis, the focus will shift to the purpose of this article, which is to describe the methods and techniques of quantitative data analysis.

Methods and Techniques of Quantitative Data Analysis

Quantitative data analysis employs two techniques to extract meaningful insights from datasets, broadly. The first method is descriptive statistics, which summarizes and portrays essential features of a dataset, such as mean, median, and standard deviation.

Inferential statistics, the second method, extrapolates insights and predictions from a sample dataset to make broader inferences about an entire population, such as hypothesis testing and regression analysis.

An in-depth explanation of both the methods is provided below:

  • Descriptive Statistics
  • Inferential Statistics

1) Descriptive Statistics

Descriptive statistics as the name implies is used to describe a dataset. It helps understand the details of your data by summarizing it and finding patterns from the specific data sample. They provide absolute numbers obtained from a sample but do not necessarily explain the rationale behind the numbers and are mostly used for analyzing single variables. The methods used in descriptive statistics include: 

  • Mean:   This calculates the numerical average of a set of values.
  • Median: This is used to get the midpoint of a set of values when the numbers are arranged in numerical order.
  • Mode: This is used to find the most commonly occurring value in a dataset.
  • Percentage: This is used to express how a value or group of respondents within the data relates to a larger group of respondents.
  • Frequency: This indicates the number of times a value is found.
  • Range: This shows the highest and lowest values in a dataset.
  • Standard Deviation: This is used to indicate how dispersed a range of numbers is, meaning, it shows how close all the numbers are to the mean.
  • Skewness: It indicates how symmetrical a range of numbers is, showing if they cluster into a smooth bell curve shape in the middle of the graph or if they skew towards the left or right.

2) Inferential Statistics

In quantitative analysis, the expectation is to turn raw numbers into meaningful insight using numerical values, and descriptive statistics is all about explaining details of a specific dataset using numbers, but it does not explain the motives behind the numbers; hence, a need for further analysis using inferential statistics.

Inferential statistics aim to make predictions or highlight possible outcomes from the analyzed data obtained from descriptive statistics. They are used to generalize results and make predictions between groups, show relationships that exist between multiple variables, and are used for hypothesis testing that predicts changes or differences.

There are various statistical analysis methods used within inferential statistics; a few are discussed below.

  • Cross Tabulations: Cross tabulation or crosstab is used to show the relationship that exists between two variables and is often used to compare results by demographic groups. It uses a basic tabular form to draw inferences between different data sets and contains data that is mutually exclusive or has some connection with each other. Crosstabs help understand the nuances of a dataset and factors that may influence a data point.
  • Regression Analysis: Regression analysis estimates the relationship between a set of variables. It shows the correlation between a dependent variable (the variable or outcome you want to measure or predict) and any number of independent variables (factors that may impact the dependent variable). Therefore, the purpose of the regression analysis is to estimate how one or more variables might affect a dependent variable to identify trends and patterns to make predictions and forecast possible future trends. There are many types of regression analysis, and the model you choose will be determined by the type of data you have for the dependent variable. The types of regression analysis include linear regression, non-linear regression, binary logistic regression, etc.
  • Monte Carlo Simulation: Monte Carlo simulation, also known as the Monte Carlo method, is a computerized technique of generating models of possible outcomes and showing their probability distributions. It considers a range of possible outcomes and then tries to calculate how likely each outcome will occur. Data analysts use it to perform advanced risk analyses to help forecast future events and make decisions accordingly.
  • Analysis of Variance (ANOVA): This is used to test the extent to which two or more groups differ from each other. It compares the mean of various groups and allows the analysis of multiple groups.
  • Factor Analysis:   A large number of variables can be reduced into a smaller number of factors using the factor analysis technique. It works on the principle that multiple separate observable variables correlate with each other because they are all associated with an underlying construct. It helps in reducing large datasets into smaller, more manageable samples.
  • Cohort Analysis: Cohort analysis can be defined as a subset of behavioral analytics that operates from data taken from a given dataset. Rather than looking at all users as one unit, cohort analysis breaks down data into related groups for analysis, where these groups or cohorts usually have common characteristics or similarities within a defined period.
  • MaxDiff Analysis: This is a quantitative data analysis method that is used to gauge customers’ preferences for purchase and what parameters rank higher than the others in the process. 
  • Cluster Analysis: Cluster analysis is a technique used to identify structures within a dataset. Cluster analysis aims to be able to sort different data points into groups that are internally similar and externally different; that is, data points within a cluster will look like each other and different from data points in other clusters.
  • Time Series Analysis: This is a statistical analytic technique used to identify trends and cycles over time. It is simply the measurement of the same variables at different times, like weekly and monthly email sign-ups, to uncover trends, seasonality, and cyclic patterns. By doing this, the data analyst can forecast how variables of interest may fluctuate in the future. 
  • SWOT analysis: This is a quantitative data analysis method that assigns numerical values to indicate strengths, weaknesses, opportunities, and threats of an organization, product, or service to show a clearer picture of competition to foster better business strategies

How to Choose the Right Method for your Analysis?

Choosing between Descriptive Statistics or Inferential Statistics can be often confusing. You should consider the following factors before choosing the right method for your quantitative data analysis:

1. Type of Data

The first consideration in data analysis is understanding the type of data you have. Different statistical methods have specific requirements based on these data types, and using the wrong method can render results meaningless. The choice of statistical method should align with the nature and distribution of your data to ensure meaningful and accurate analysis.

2. Your Research Questions

When deciding on statistical methods, it’s crucial to align them with your specific research questions and hypotheses. The nature of your questions will influence whether descriptive statistics alone, which reveal sample attributes, are sufficient or if you need both descriptive and inferential statistics to understand group differences or relationships between variables and make population inferences.

Pros and Cons of Quantitative Data Analysis

1. Objectivity and Generalizability:

  • Quantitative data analysis offers objective, numerical measurements, minimizing bias and personal interpretation.
  • Results can often be generalized to larger populations, making them applicable to broader contexts.

Example: A study using quantitative data analysis to measure student test scores can objectively compare performance across different schools and demographics, leading to generalizable insights about educational strategies.

2. Precision and Efficiency:

  • Statistical methods provide precise numerical results, allowing for accurate comparisons and prediction.
  • Large datasets can be analyzed efficiently with the help of computer software, saving time and resources.

Example: A marketing team can use quantitative data analysis to precisely track click-through rates and conversion rates on different ad campaigns, quickly identifying the most effective strategies for maximizing customer engagement.

3. Identification of Patterns and Relationships:

  • Statistical techniques reveal hidden patterns and relationships between variables that might not be apparent through observation alone.
  • This can lead to new insights and understanding of complex phenomena.

Example: A medical researcher can use quantitative analysis to pinpoint correlations between lifestyle factors and disease risk, aiding in the development of prevention strategies.

1. Limited Scope:

  • Quantitative analysis focuses on quantifiable aspects of a phenomenon ,  potentially overlooking important qualitative nuances, such as emotions, motivations, or cultural contexts.

Example: A survey measuring customer satisfaction with numerical ratings might miss key insights about the underlying reasons for their satisfaction or dissatisfaction, which could be better captured through open-ended feedback.

2. Oversimplification:

  • Reducing complex phenomena to numerical data can lead to oversimplification and a loss of richness in understanding.

Example: Analyzing employee productivity solely through quantitative metrics like hours worked or tasks completed might not account for factors like creativity, collaboration, or problem-solving skills, which are crucial for overall performance.

3. Potential for Misinterpretation:

  • Statistical results can be misinterpreted if not analyzed carefully and with appropriate expertise.
  • The choice of statistical methods and assumptions can significantly influence results.

This blog discusses the steps, methods, and techniques of quantitative data analysis. It also gives insights into the methods of data collection, the type of data one should work with, and the pros and cons of such analysis.

Gain a better understanding of data analysis with these essential reads:

  • Data Analysis and Modeling: 4 Critical Differences
  • Exploratory Data Analysis Simplified 101
  • 25 Best Data Analysis Tools in 2024

Carrying out successful data analysis requires prepping the data and making it analysis-ready. That is where Hevo steps in.

Want to give Hevo a try? Sign Up for a 14-day free trial and experience the feature-rich Hevo suite first hand. You may also have a look at the amazing Hevo price , which will assist you in selecting the best plan for your requirements.

Share your experience of understanding Quantitative Data Analysis in the comment section below! We would love to hear your thoughts.

Ofem Eteng is a seasoned technical content writer with over 12 years of experience. He has held pivotal roles such as System Analyst (DevOps) at Dagbs Nigeria Limited and Full-Stack Developer at Pedoquasphere International Limited. He specializes in data science, data analytics and cutting-edge technologies, making him an expert in the data industry.

No-code Data Pipeline for your Data Warehouse

  • Data Analysis
  • Data Warehouse
  • Quantitative Data Analysis

Continue Reading

analysis quantitative research

Roopa Madhuri G

Fivetran vs Airbyte: A Comprehensive Comparison for 2024

analysis quantitative research

Srujana Maddula

Apache Iceberg vs Parquet – Comparing Table and File Formats

analysis quantitative research

Raju Mandal

A Deep Dive into Data Lakes

I want to read this e-book.

analysis quantitative research

Educational resources and simple solutions for your research journey

What is quantitative research? Definition, methods, types, and examples

What is Quantitative Research? Definition, Methods, Types, and Examples

analysis quantitative research

If you’re wondering what is quantitative research and whether this methodology works for your research study, you’re not alone. If you want a simple quantitative research definition , then it’s enough to say that this is a method undertaken by researchers based on their study requirements. However, to select the most appropriate research for their study type, researchers should know all the methods available. 

Selecting the right research method depends on a few important criteria, such as the research question, study type, time, costs, data availability, and availability of respondents. There are two main types of research methods— quantitative research  and qualitative research. The purpose of quantitative research is to validate or test a theory or hypothesis and that of qualitative research is to understand a subject or event or identify reasons for observed patterns.   

Quantitative research methods  are used to observe events that affect a particular group of individuals, which is the sample population. In this type of research, diverse numerical data are collected through various methods and then statistically analyzed to aggregate the data, compare them, or show relationships among the data. Quantitative research methods broadly include questionnaires, structured observations, and experiments.  

Here are two quantitative research examples:  

  • Satisfaction surveys sent out by a company regarding their revamped customer service initiatives. Customers are asked to rate their experience on a rating scale of 1 (poor) to 5 (excellent).  
  • A school has introduced a new after-school program for children, and a few months after commencement, the school sends out feedback questionnaires to the parents of the enrolled children. Such questionnaires usually include close-ended questions that require either definite answers or a Yes/No option. This helps in a quick, overall assessment of the program’s outreach and success.  

analysis quantitative research

Table of Contents

What is quantitative research ? 1,2

analysis quantitative research

The steps shown in the figure can be grouped into the following broad steps:  

  • Theory : Define the problem area or area of interest and create a research question.  
  • Hypothesis : Develop a hypothesis based on the research question. This hypothesis will be tested in the remaining steps.  
  • Research design : In this step, the most appropriate quantitative research design will be selected, including deciding on the sample size, selecting respondents, identifying research sites, if any, etc.
  • Data collection : This process could be extensive based on your research objective and sample size.  
  • Data analysis : Statistical analysis is used to analyze the data collected. The results from the analysis help in either supporting or rejecting your hypothesis.  
  • Present results : Based on the data analysis, conclusions are drawn, and results are presented as accurately as possible.  

Quantitative research characteristics 4

  • Large sample size : This ensures reliability because this sample represents the target population or market. Due to the large sample size, the outcomes can be generalized to the entire population as well, making this one of the important characteristics of quantitative research .  
  • Structured data and measurable variables: The data are numeric and can be analyzed easily. Quantitative research involves the use of measurable variables such as age, salary range, highest education, etc.  
  • Easy-to-use data collection methods : The methods include experiments, controlled observations, and questionnaires and surveys with a rating scale or close-ended questions, which require simple and to-the-point answers; are not bound by geographical regions; and are easy to administer.  
  • Data analysis : Structured and accurate statistical analysis methods using software applications such as Excel, SPSS, R. The analysis is fast, accurate, and less effort intensive.  
  • Reliable : The respondents answer close-ended questions, their responses are direct without ambiguity and yield numeric outcomes, which are therefore highly reliable.  
  • Reusable outcomes : This is one of the key characteristics – outcomes of one research can be used and replicated in other research as well and is not exclusive to only one study.  

Quantitative research methods 5

Quantitative research methods are classified into two types—primary and secondary.  

Primary quantitative research method:

In this type of quantitative research , data are directly collected by the researchers using the following methods.

– Survey research : Surveys are the easiest and most commonly used quantitative research method . They are of two types— cross-sectional and longitudinal.   

->Cross-sectional surveys are specifically conducted on a target population for a specified period, that is, these surveys have a specific starting and ending time and researchers study the events during this period to arrive at conclusions. The main purpose of these surveys is to describe and assess the characteristics of a population. There is one independent variable in this study, which is a common factor applicable to all participants in the population, for example, living in a specific city, diagnosed with a specific disease, of a certain age group, etc. An example of a cross-sectional survey is a study to understand why individuals residing in houses built before 1979 in the US are more susceptible to lead contamination.  

->Longitudinal surveys are conducted at different time durations. These surveys involve observing the interactions among different variables in the target population, exposing them to various causal factors, and understanding their effects across a longer period. These studies are helpful to analyze a problem in the long term. An example of a longitudinal study is the study of the relationship between smoking and lung cancer over a long period.  

– Descriptive research : Explains the current status of an identified and measurable variable. Unlike other types of quantitative research , a hypothesis is not needed at the beginning of the study and can be developed even after data collection. This type of quantitative research describes the characteristics of a problem and answers the what, when, where of a problem. However, it doesn’t answer the why of the problem and doesn’t explore cause-and-effect relationships between variables. Data from this research could be used as preliminary data for another study. Example: A researcher undertakes a study to examine the growth strategy of a company. This sample data can be used by other companies to determine their own growth strategy.  

analysis quantitative research

– Correlational research : This quantitative research method is used to establish a relationship between two variables using statistical analysis and analyze how one affects the other. The research is non-experimental because the researcher doesn’t control or manipulate any of the variables. At least two separate sample groups are needed for this research. Example: Researchers studying a correlation between regular exercise and diabetes.  

– Causal-comparative research : This type of quantitative research examines the cause-effect relationships in retrospect between a dependent and independent variable and determines the causes of the already existing differences between groups of people. This is not a true experiment because it doesn’t assign participants to groups randomly. Example: To study the wage differences between men and women in the same role. For this, already existing wage information is analyzed to understand the relationship.  

– Experimental research : This quantitative research method uses true experiments or scientific methods for determining a cause-effect relation between variables. It involves testing a hypothesis through experiments, in which one or more independent variables are manipulated and then their effect on dependent variables are studied. Example: A researcher studies the importance of a drug in treating a disease by administering the drug in few patients and not administering in a few.  

The following data collection methods are commonly used in primary quantitative research :  

  • Sampling : The most common type is probability sampling, in which a sample is chosen from a larger population using some form of random selection, that is, every member of the population has an equal chance of being selected. The different types of probability sampling are—simple random, systematic, stratified, and cluster sampling.  
  • Interviews : These are commonly telephonic or face-to-face.  
  • Observations : Structured observations are most commonly used in quantitative research . In this method, researchers make observations about specific behaviors of individuals in a structured setting.  
  • Document review : Reviewing existing research or documents to collect evidence for supporting the quantitative research .  
  • Surveys and questionnaires : Surveys can be administered both online and offline depending on the requirement and sample size.

The data collected can be analyzed in several ways in quantitative research , as listed below:  

  • Cross-tabulation —Uses a tabular format to draw inferences among collected data  
  • MaxDiff analysis —Gauges the preferences of the respondents  
  • TURF analysis —Total Unduplicated Reach and Frequency Analysis; helps in determining the market strategy for a business  
  • Gap analysis —Identify gaps in attaining the desired results  
  • SWOT analysis —Helps identify strengths, weaknesses, opportunities, and threats of a product, service, or organization  
  • Text analysis —Used for interpreting unstructured data  

Secondary quantitative research methods :

This method involves conducting research using already existing or secondary data. This method is less effort intensive and requires lesser time. However, researchers should verify the authenticity and recency of the sources being used and ensure their accuracy.  

The main sources of secondary data are: 

  • The Internet  
  • Government and non-government sources  
  • Public libraries  
  • Educational institutions  
  • Commercial information sources such as newspapers, journals, radio, TV  

What is quantitative research? Definition, methods, types, and examples

When to use quantitative research 6  

Here are some simple ways to decide when to use quantitative research . Use quantitative research to:  

  • recommend a final course of action  
  • find whether a consensus exists regarding a particular subject  
  • generalize results to a larger population  
  • determine a cause-and-effect relationship between variables  
  • describe characteristics of specific groups of people  
  • test hypotheses and examine specific relationships  
  • identify and establish size of market segments  

A research case study to understand when to use quantitative research 7  

Context: A study was undertaken to evaluate a major innovation in a hospital’s design, in terms of workforce implications and impact on patient and staff experiences of all single-room hospital accommodations. The researchers undertook a mixed methods approach to answer their research questions. Here, we focus on the quantitative research aspect.  

Research questions : What are the advantages and disadvantages for the staff as a result of the hospital’s move to the new design with all single-room accommodations? Did the move affect staff experience and well-being and improve their ability to deliver high-quality care?  

Method: The researchers obtained quantitative data from three sources:  

  • Staff activity (task time distribution): Each staff member was shadowed by a researcher who observed each task undertaken by the staff, and logged the time spent on each activity.  
  • Staff travel distances : The staff were requested to wear pedometers, which recorded the distances covered.  
  • Staff experience surveys : Staff were surveyed before and after the move to the new hospital design.  

Results of quantitative research : The following observations were made based on quantitative data analysis:  

  • The move to the new design did not result in a significant change in the proportion of time spent on different activities.  
  • Staff activity events observed per session were higher after the move, and direct care and professional communication events per hour decreased significantly, suggesting fewer interruptions and less fragmented care.  
  • A significant increase in medication tasks among the recorded events suggests that medication administration was integrated into patient care activities.  
  • Travel distances increased for all staff, with highest increases for staff in the older people’s ward and surgical wards.  
  • Ratings for staff toilet facilities, locker facilities, and space at staff bases were higher but those for social interaction and natural light were lower.  

Advantages of quantitative research 1,2

When choosing the right research methodology, also consider the advantages of quantitative research and how it can impact your study.  

  • Quantitative research methods are more scientific and rational. They use quantifiable data leading to objectivity in the results and avoid any chances of ambiguity.  
  • This type of research uses numeric data so analysis is relatively easier .  
  • In most cases, a hypothesis is already developed and quantitative research helps in testing and validatin g these constructed theories based on which researchers can make an informed decision about accepting or rejecting their theory.  
  • The use of statistical analysis software ensures quick analysis of large volumes of data and is less effort intensive.  
  • Higher levels of control can be applied to the research so the chances of bias can be reduced.  
  • Quantitative research is based on measured value s, facts, and verifiable information so it can be easily checked or replicated by other researchers leading to continuity in scientific research.  

Disadvantages of quantitative research 1,2

Quantitative research may also be limiting; take a look at the disadvantages of quantitative research. 

  • Experiments are conducted in controlled settings instead of natural settings and it is possible for researchers to either intentionally or unintentionally manipulate the experiment settings to suit the results they desire.  
  • Participants must necessarily give objective answers (either one- or two-word, or yes or no answers) and the reasons for their selection or the context are not considered.   
  • Inadequate knowledge of statistical analysis methods may affect the results and their interpretation.  
  • Although statistical analysis indicates the trends or patterns among variables, the reasons for these observed patterns cannot be interpreted and the research may not give a complete picture.  
  • Large sample sizes are needed for more accurate and generalizable analysis .  
  • Quantitative research cannot be used to address complex issues.  

What is quantitative research? Definition, methods, types, and examples

Frequently asked questions on  quantitative research    

Q:  What is the difference between quantitative research and qualitative research? 1  

A:  The following table lists the key differences between quantitative research and qualitative research, some of which may have been mentioned earlier in the article.  

     
Purpose and design                   
Research question         
Sample size  Large  Small 
Data             
Data collection method  Experiments, controlled observations, questionnaires and surveys with a rating scale or close-ended questions. The methods can be experimental, quasi-experimental, descriptive, or correlational.  Semi-structured interviews/surveys with open-ended questions, document study/literature reviews, focus groups, case study research, ethnography 
Data analysis             

Q:  What is the difference between reliability and validity? 8,9    

A:  The term reliability refers to the consistency of a research study. For instance, if a food-measuring weighing scale gives different readings every time the same quantity of food is measured then that weighing scale is not reliable. If the findings in a research study are consistent every time a measurement is made, then the study is considered reliable. However, it is usually unlikely to obtain the exact same results every time because some contributing variables may change. In such cases, a correlation coefficient is used to assess the degree of reliability. A strong positive correlation between the results indicates reliability.  

Validity can be defined as the degree to which a tool actually measures what it claims to measure. It helps confirm the credibility of your research and suggests that the results may be generalizable. In other words, it measures the accuracy of the research.  

The following table gives the key differences between reliability and validity.  

     
Importance  Refers to the consistency of a measure  Refers to the accuracy of a measure 
Ease of achieving  Easier, yields results faster  Involves more analysis, more difficult to achieve 
Assessment method  By examining the consistency of outcomes over time, between various observers, and within the test  By comparing the accuracy of the results with accepted theories and other measurements of the same idea 
Relationship  Unreliable measurements typically cannot be valid  Valid measurements are also reliable 
Types  Test-retest reliability, internal consistency, inter-rater reliability  Content validity, criterion validity, face validity, construct validity 

Q:  What is mixed methods research? 10

analysis quantitative research

A:  A mixed methods approach combines the characteristics of both quantitative research and qualitative research in the same study. This method allows researchers to validate their findings, verify if the results observed using both methods are complementary, and explain any unexpected results obtained from one method by using the other method. A mixed methods research design is useful in case of research questions that cannot be answered by either quantitative research or qualitative research alone. However, this method could be more effort- and cost-intensive because of the requirement of more resources. The figure 3 shows some basic mixed methods research designs that could be used.  

Thus, quantitative research is the appropriate method for testing your hypotheses and can be used either alone or in combination with qualitative research per your study requirements. We hope this article has provided an insight into the various facets of quantitative research , including its different characteristics, advantages, and disadvantages, and a few tips to quickly understand when to use this research method.  

References  

  • Qualitative vs quantitative research: Differences, examples, & methods. Simply Psychology. Accessed Feb 28, 2023. https://simplypsychology.org/qualitative-quantitative.html#Quantitative-Research  
  • Your ultimate guide to quantitative research. Qualtrics. Accessed February 28, 2023. https://www.qualtrics.com/uk/experience-management/research/quantitative-research/  
  • The steps of quantitative research. Revise Sociology. Accessed March 1, 2023. https://revisesociology.com/2017/11/26/the-steps-of-quantitative-research/  
  • What are the characteristics of quantitative research? Marketing91. Accessed March 1, 2023. https://www.marketing91.com/characteristics-of-quantitative-research/  
  • Quantitative research: Types, characteristics, methods, & examples. ProProfs Survey Maker. Accessed February 28, 2023. https://www.proprofssurvey.com/blog/quantitative-research/#Characteristics_of_Quantitative_Research  
  • Qualitative research isn’t as scientific as quantitative methods. Kmusial blog. Accessed March 5, 2023. https://kmusial.wordpress.com/2011/11/25/qualitative-research-isnt-as-scientific-as-quantitative-methods/  
  • Maben J, Griffiths P, Penfold C, et al. Evaluating a major innovation in hospital design: workforce implications and impact on patient and staff experiences of all single room hospital accommodation. Southampton (UK): NIHR Journals Library; 2015 Feb. (Health Services and Delivery Research, No. 3.3.) Chapter 5, Case study quantitative data findings. Accessed March 6, 2023. https://www.ncbi.nlm.nih.gov/books/NBK274429/  
  • McLeod, S. A. (2007).  What is reliability?  Simply Psychology. www.simplypsychology.org/reliability.html  
  • Reliability vs validity: Differences & examples. Accessed March 5, 2023. https://statisticsbyjim.com/basics/reliability-vs-validity/  
  • Mixed methods research. Community Engagement Program. Harvard Catalyst. Accessed February 28, 2023. https://catalyst.harvard.edu/community-engagement/mmr  

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

IMRAD format

What is IMRaD Format in Research?

ChatGPT for research

How to Use ChatGPT for Research?

analysis quantitative research

Quantitative Data Analysis 101

The lingo, methods and techniques, explained simply.

By: Derek Jansen (MBA)  and Kerryn Warren (PhD) | December 2020

Quantitative data analysis is one of those things that often strikes fear in students. It’s totally understandable – quantitative analysis is a complex topic, full of daunting lingo , like medians, modes, correlation and regression. Suddenly we’re all wishing we’d paid a little more attention in math class…

The good news is that while quantitative data analysis is a mammoth topic, gaining a working understanding of the basics isn’t that hard , even for those of us who avoid numbers and math . In this post, we’ll break quantitative analysis down into simple , bite-sized chunks so you can approach your research with confidence.

Quantitative data analysis methods and techniques 101

Overview: Quantitative Data Analysis 101

  • What (exactly) is quantitative data analysis?
  • When to use quantitative analysis
  • How quantitative analysis works

The two “branches” of quantitative analysis

  • Descriptive statistics 101
  • Inferential statistics 101
  • How to choose the right quantitative methods
  • Recap & summary

What is quantitative data analysis?

Despite being a mouthful, quantitative data analysis simply means analysing data that is numbers-based – or data that can be easily “converted” into numbers without losing any meaning.

For example, category-based variables like gender, ethnicity, or native language could all be “converted” into numbers without losing meaning – for example, English could equal 1, French 2, etc.

This contrasts against qualitative data analysis, where the focus is on words, phrases and expressions that can’t be reduced to numbers. If you’re interested in learning about qualitative analysis, check out our post and video here .

What is quantitative analysis used for?

Quantitative analysis is generally used for three purposes.

  • Firstly, it’s used to measure differences between groups . For example, the popularity of different clothing colours or brands.
  • Secondly, it’s used to assess relationships between variables . For example, the relationship between weather temperature and voter turnout.
  • And third, it’s used to test hypotheses in a scientifically rigorous way. For example, a hypothesis about the impact of a certain vaccine.

Again, this contrasts with qualitative analysis , which can be used to analyse people’s perceptions and feelings about an event or situation. In other words, things that can’t be reduced to numbers.

How does quantitative analysis work?

Well, since quantitative data analysis is all about analysing numbers , it’s no surprise that it involves statistics . Statistical analysis methods form the engine that powers quantitative analysis, and these methods can vary from pretty basic calculations (for example, averages and medians) to more sophisticated analyses (for example, correlations and regressions).

Sounds like gibberish? Don’t worry. We’ll explain all of that in this post. Importantly, you don’t need to be a statistician or math wiz to pull off a good quantitative analysis. We’ll break down all the technical mumbo jumbo in this post.

Need a helping hand?

analysis quantitative research

As I mentioned, quantitative analysis is powered by statistical analysis methods . There are two main “branches” of statistical methods that are used – descriptive statistics and inferential statistics . In your research, you might only use descriptive statistics, or you might use a mix of both , depending on what you’re trying to figure out. In other words, depending on your research questions, aims and objectives . I’ll explain how to choose your methods later.

So, what are descriptive and inferential statistics?

Well, before I can explain that, we need to take a quick detour to explain some lingo. To understand the difference between these two branches of statistics, you need to understand two important words. These words are population and sample .

First up, population . In statistics, the population is the entire group of people (or animals or organisations or whatever) that you’re interested in researching. For example, if you were interested in researching Tesla owners in the US, then the population would be all Tesla owners in the US.

However, it’s extremely unlikely that you’re going to be able to interview or survey every single Tesla owner in the US. Realistically, you’ll likely only get access to a few hundred, or maybe a few thousand owners using an online survey. This smaller group of accessible people whose data you actually collect is called your sample .

So, to recap – the population is the entire group of people you’re interested in, and the sample is the subset of the population that you can actually get access to. In other words, the population is the full chocolate cake , whereas the sample is a slice of that cake.

So, why is this sample-population thing important?

Well, descriptive statistics focus on describing the sample , while inferential statistics aim to make predictions about the population, based on the findings within the sample. In other words, we use one group of statistical methods – descriptive statistics – to investigate the slice of cake, and another group of methods – inferential statistics – to draw conclusions about the entire cake. There I go with the cake analogy again…

With that out the way, let’s take a closer look at each of these branches in more detail.

Descriptive statistics vs inferential statistics

Branch 1: Descriptive Statistics

Descriptive statistics serve a simple but critically important role in your research – to describe your data set – hence the name. In other words, they help you understand the details of your sample . Unlike inferential statistics (which we’ll get to soon), descriptive statistics don’t aim to make inferences or predictions about the entire population – they’re purely interested in the details of your specific sample .

When you’re writing up your analysis, descriptive statistics are the first set of stats you’ll cover, before moving on to inferential statistics. But, that said, depending on your research objectives and research questions , they may be the only type of statistics you use. We’ll explore that a little later.

So, what kind of statistics are usually covered in this section?

Some common statistical tests used in this branch include the following:

  • Mean – this is simply the mathematical average of a range of numbers.
  • Median – this is the midpoint in a range of numbers when the numbers are arranged in numerical order. If the data set makes up an odd number, then the median is the number right in the middle of the set. If the data set makes up an even number, then the median is the midpoint between the two middle numbers.
  • Mode – this is simply the most commonly occurring number in the data set.
  • In cases where most of the numbers are quite close to the average, the standard deviation will be relatively low.
  • Conversely, in cases where the numbers are scattered all over the place, the standard deviation will be relatively high.
  • Skewness . As the name suggests, skewness indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph, or do they skew to the left or right?

Feeling a bit confused? Let’s look at a practical example using a small data set.

Descriptive statistics example data

On the left-hand side is the data set. This details the bodyweight of a sample of 10 people. On the right-hand side, we have the descriptive statistics. Let’s take a look at each of them.

First, we can see that the mean weight is 72.4 kilograms. In other words, the average weight across the sample is 72.4 kilograms. Straightforward.

Next, we can see that the median is very similar to the mean (the average). This suggests that this data set has a reasonably symmetrical distribution (in other words, a relatively smooth, centred distribution of weights, clustered towards the centre).

In terms of the mode , there is no mode in this data set. This is because each number is present only once and so there cannot be a “most common number”. If there were two people who were both 65 kilograms, for example, then the mode would be 65.

Next up is the standard deviation . 10.6 indicates that there’s quite a wide spread of numbers. We can see this quite easily by looking at the numbers themselves, which range from 55 to 90, which is quite a stretch from the mean of 72.4.

And lastly, the skewness of -0.2 tells us that the data is very slightly negatively skewed. This makes sense since the mean and the median are slightly different.

As you can see, these descriptive statistics give us some useful insight into the data set. Of course, this is a very small data set (only 10 records), so we can’t read into these statistics too much. Also, keep in mind that this is not a list of all possible descriptive statistics – just the most common ones.

But why do all of these numbers matter?

While these descriptive statistics are all fairly basic, they’re important for a few reasons:

  • Firstly, they help you get both a macro and micro-level view of your data. In other words, they help you understand both the big picture and the finer details.
  • Secondly, they help you spot potential errors in the data – for example, if an average is way higher than you’d expect, or responses to a question are highly varied, this can act as a warning sign that you need to double-check the data.
  • And lastly, these descriptive statistics help inform which inferential statistical techniques you can use, as those techniques depend on the skewness (in other words, the symmetry and normality) of the data.

Simply put, descriptive statistics are really important , even though the statistical techniques used are fairly basic. All too often at Grad Coach, we see students skimming over the descriptives in their eagerness to get to the more exciting inferential methods, and then landing up with some very flawed results.

Don’t be a sucker – give your descriptive statistics the love and attention they deserve!

Examples of descriptive statistics

Branch 2: Inferential Statistics

As I mentioned, while descriptive statistics are all about the details of your specific data set – your sample – inferential statistics aim to make inferences about the population . In other words, you’ll use inferential statistics to make predictions about what you’d expect to find in the full population.

What kind of predictions, you ask? Well, there are two common types of predictions that researchers try to make using inferential stats:

  • Firstly, predictions about differences between groups – for example, height differences between children grouped by their favourite meal or gender.
  • And secondly, relationships between variables – for example, the relationship between body weight and the number of hours a week a person does yoga.

In other words, inferential statistics (when done correctly), allow you to connect the dots and make predictions about what you expect to see in the real world population, based on what you observe in your sample data. For this reason, inferential statistics are used for hypothesis testing – in other words, to test hypotheses that predict changes or differences.

Inferential statistics are used to make predictions about what you’d expect to find in the full population, based on the sample.

Of course, when you’re working with inferential statistics, the composition of your sample is really important. In other words, if your sample doesn’t accurately represent the population you’re researching, then your findings won’t necessarily be very useful.

For example, if your population of interest is a mix of 50% male and 50% female , but your sample is 80% male , you can’t make inferences about the population based on your sample, since it’s not representative. This area of statistics is called sampling, but we won’t go down that rabbit hole here (it’s a deep one!) – we’ll save that for another post .

What statistics are usually used in this branch?

There are many, many different statistical analysis methods within the inferential branch and it’d be impossible for us to discuss them all here. So we’ll just take a look at some of the most common inferential statistical methods so that you have a solid starting point.

First up are T-Tests . T-tests compare the means (the averages) of two groups of data to assess whether they’re statistically significantly different. In other words, do they have significantly different means, standard deviations and skewness.

This type of testing is very useful for understanding just how similar or different two groups of data are. For example, you might want to compare the mean blood pressure between two groups of people – one that has taken a new medication and one that hasn’t – to assess whether they are significantly different.

Kicking things up a level, we have ANOVA, which stands for “analysis of variance”. This test is similar to a T-test in that it compares the means of various groups, but ANOVA allows you to analyse multiple groups , not just two groups So it’s basically a t-test on steroids…

Next, we have correlation analysis . This type of analysis assesses the relationship between two variables. In other words, if one variable increases, does the other variable also increase, decrease or stay the same. For example, if the average temperature goes up, do average ice creams sales increase too? We’d expect some sort of relationship between these two variables intuitively , but correlation analysis allows us to measure that relationship scientifically .

Lastly, we have regression analysis – this is quite similar to correlation in that it assesses the relationship between variables, but it goes a step further to understand cause and effect between variables, not just whether they move together. In other words, does the one variable actually cause the other one to move, or do they just happen to move together naturally thanks to another force? Just because two variables correlate doesn’t necessarily mean that one causes the other.

Stats overload…

I hear you. To make this all a little more tangible, let’s take a look at an example of a correlation in action.

Here’s a scatter plot demonstrating the correlation (relationship) between weight and height. Intuitively, we’d expect there to be some relationship between these two variables, which is what we see in this scatter plot. In other words, the results tend to cluster together in a diagonal line from bottom left to top right.

Sample correlation

As I mentioned, these are are just a handful of inferential techniques – there are many, many more. Importantly, each statistical method has its own assumptions and limitations .

For example, some methods only work with normally distributed (parametric) data, while other methods are designed specifically for non-parametric data. And that’s exactly why descriptive statistics are so important – they’re the first step to knowing which inferential techniques you can and can’t use.

Remember that every statistical method has its own assumptions and limitations,  so you need to be aware of these.

How to choose the right analysis method

To choose the right statistical methods, you need to think about two important factors :

  • The type of quantitative data you have (specifically, level of measurement and the shape of the data). And,
  • Your research questions and hypotheses

Let’s take a closer look at each of these.

Factor 1 – Data type

The first thing you need to consider is the type of data you’ve collected (or the type of data you will collect). By data types, I’m referring to the four levels of measurement – namely, nominal, ordinal, interval and ratio. If you’re not familiar with this lingo, check out the video below.

Why does this matter?

Well, because different statistical methods and techniques require different types of data. This is one of the “assumptions” I mentioned earlier – every method has its assumptions regarding the type of data.

For example, some techniques work with categorical data (for example, yes/no type questions, or gender or ethnicity), while others work with continuous numerical data (for example, age, weight or income) – and, of course, some work with multiple data types.

If you try to use a statistical method that doesn’t support the data type you have, your results will be largely meaningless . So, make sure that you have a clear understanding of what types of data you’ve collected (or will collect). Once you have this, you can then check which statistical methods would support your data types here .

If you haven’t collected your data yet, you can work in reverse and look at which statistical method would give you the most useful insights, and then design your data collection strategy to collect the correct data types.

Another important factor to consider is the shape of your data . Specifically, does it have a normal distribution (in other words, is it a bell-shaped curve, centred in the middle) or is it very skewed to the left or the right? Again, different statistical techniques work for different shapes of data – some are designed for symmetrical data while others are designed for skewed data.

This is another reminder of why descriptive statistics are so important – they tell you all about the shape of your data.

Factor 2: Your research questions

The next thing you need to consider is your specific research questions, as well as your hypotheses (if you have some). The nature of your research questions and research hypotheses will heavily influence which statistical methods and techniques you should use.

If you’re just interested in understanding the attributes of your sample (as opposed to the entire population), then descriptive statistics are probably all you need. For example, if you just want to assess the means (averages) and medians (centre points) of variables in a group of people.

On the other hand, if you aim to understand differences between groups or relationships between variables and to infer or predict outcomes in the population, then you’ll likely need both descriptive statistics and inferential statistics.

So, it’s really important to get very clear about your research aims and research questions, as well your hypotheses – before you start looking at which statistical techniques to use.

Never shoehorn a specific statistical technique into your research just because you like it or have some experience with it. Your choice of methods must align with all the factors we’ve covered here.

Time to recap…

You’re still with me? That’s impressive. We’ve covered a lot of ground here, so let’s recap on the key points:

  • Quantitative data analysis is all about  analysing number-based data  (which includes categorical and numerical data) using various statistical techniques.
  • The two main  branches  of statistics are  descriptive statistics  and  inferential statistics . Descriptives describe your sample, whereas inferentials make predictions about what you’ll find in the population.
  • Common  descriptive statistical methods include  mean  (average),  median , standard  deviation  and  skewness .
  • Common  inferential statistical methods include  t-tests ,  ANOVA ,  correlation  and  regression  analysis.
  • To choose the right statistical methods and techniques, you need to consider the  type of data you’re working with , as well as your  research questions  and hypotheses.

analysis quantitative research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

77 Comments

Oddy Labs

Hi, I have read your article. Such a brilliant post you have created.

Derek Jansen

Thank you for the feedback. Good luck with your quantitative analysis.

Abdullahi Ramat

Thank you so much.

Obi Eric Onyedikachi

Thank you so much. I learnt much well. I love your summaries of the concepts. I had love you to explain how to input data using SPSS

MWASOMOLA, BROWN

Very useful, I have got the concept

Lumbuka Kaunda

Amazing and simple way of breaking down quantitative methods.

Charles Lwanga

This is beautiful….especially for non-statisticians. I have skimmed through but I wish to read again. and please include me in other articles of the same nature when you do post. I am interested. I am sure, I could easily learn from you and get off the fear that I have had in the past. Thank you sincerely.

Essau Sefolo

Send me every new information you might have.

fatime

i need every new information

Dr Peter

Thank you for the blog. It is quite informative. Dr Peter Nemaenzhe PhD

Mvogo Mvogo Ephrem

It is wonderful. l’ve understood some of the concepts in a more compréhensive manner

Maya

Your article is so good! However, I am still a bit lost. I am doing a secondary research on Gun control in the US and increase in crime rates and I am not sure which analysis method I should use?

Joy

Based on the given learning points, this is inferential analysis, thus, use ‘t-tests, ANOVA, correlation and regression analysis’

Peter

Well explained notes. Am an MPH student and currently working on my thesis proposal, this has really helped me understand some of the things I didn’t know.

Jejamaije Mujoro

I like your page..helpful

prashant pandey

wonderful i got my concept crystal clear. thankyou!!

Dailess Banda

This is really helpful , thank you

Lulu

Thank you so much this helped

wossen

Wonderfully explained

Niamatullah zaheer

thank u so much, it was so informative

mona

THANKYOU, this was very informative and very helpful

Thaddeus Ogwoka

This is great GRADACOACH I am not a statistician but I require more of this in my thesis

Include me in your posts.

Alem Teshome

This is so great and fully useful. I would like to thank you again and again.

Mrinal

Glad to read this article. I’ve read lot of articles but this article is clear on all concepts. Thanks for sharing.

Emiola Adesina

Thank you so much. This is a very good foundation and intro into quantitative data analysis. Appreciate!

Josyl Hey Aquilam

You have a very impressive, simple but concise explanation of data analysis for Quantitative Research here. This is a God-send link for me to appreciate research more. Thank you so much!

Lynnet Chikwaikwai

Avery good presentation followed by the write up. yes you simplified statistics to make sense even to a layman like me. Thank so much keep it up. The presenter did ell too. i would like more of this for Qualitative and exhaust more of the test example like the Anova.

Adewole Ikeoluwa

This is a very helpful article, couldn’t have been clearer. Thank you.

Samih Soud ALBusaidi

Awesome and phenomenal information.Well done

Nūr

The video with the accompanying article is super helpful to demystify this topic. Very well done. Thank you so much.

Lalah

thank you so much, your presentation helped me a lot

Anjali

I don’t know how should I express that ur article is saviour for me 🥺😍

Saiqa Aftab Tunio

It is well defined information and thanks for sharing. It helps me a lot in understanding the statistical data.

Funeka Mvandaba

I gain a lot and thanks for sharing brilliant ideas, so wish to be linked on your email update.

Rita Kathomi Gikonyo

Very helpful and clear .Thank you Gradcoach.

Hilaria Barsabal

Thank for sharing this article, well organized and information presented are very clear.

AMON TAYEBWA

VERY INTERESTING AND SUPPORTIVE TO NEW RESEARCHERS LIKE ME. AT LEAST SOME BASICS ABOUT QUANTITATIVE.

Tariq

An outstanding, well explained and helpful article. This will help me so much with my data analysis for my research project. Thank you!

chikumbutso

wow this has just simplified everything i was scared of how i am gonna analyse my data but thanks to you i will be able to do so

Idris Haruna

simple and constant direction to research. thanks

Mbunda Castro

This is helpful

AshikB

Great writing!! Comprehensive and very helpful.

himalaya ravi

Do you provide any assistance for other steps of research methodology like making research problem testing hypothesis report and thesis writing?

Sarah chiwamba

Thank you so much for such useful article!

Lopamudra

Amazing article. So nicely explained. Wow

Thisali Liyanage

Very insightfull. Thanks

Melissa

I am doing a quality improvement project to determine if the implementation of a protocol will change prescribing habits. Would this be a t-test?

Aliyah

The is a very helpful blog, however, I’m still not sure how to analyze my data collected. I’m doing a research on “Free Education at the University of Guyana”

Belayneh Kassahun

tnx. fruitful blog!

Suzanne

So I am writing exams and would like to know how do establish which method of data analysis to use from the below research questions: I am a bit lost as to how I determine the data analysis method from the research questions.

Do female employees report higher job satisfaction than male employees with similar job descriptions across the South African telecommunications sector? – I though that maybe Chi Square could be used here. – Is there a gender difference in talented employees’ actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – Is there a gender difference in the cost of actual turnover decisions across the South African telecommunications sector? T-tests or Correlation in this one. – What practical recommendations can be made to the management of South African telecommunications companies on leveraging gender to mitigate employee turnover decisions?

Your assistance will be appreciated if I could get a response as early as possible tomorrow

Like

This was quite helpful. Thank you so much.

kidane Getachew

wow I got a lot from this article, thank you very much, keep it up

FAROUK AHMAD NKENGA

Thanks for yhe guidance. Can you send me this guidance on my email? To enable offline reading?

Nosi Ruth Xabendlini

Thank you very much, this service is very helpful.

George William Kiyingi

Every novice researcher needs to read this article as it puts things so clear and easy to follow. Its been very helpful.

Adebisi

Wonderful!!!! you explained everything in a way that anyone can learn. Thank you!!

Miss Annah

I really enjoyed reading though this. Very easy to follow. Thank you

Reza Kia

Many thanks for your useful lecture, I would be really appreciated if you could possibly share with me the PPT of presentation related to Data type?

Protasia Tairo

Thank you very much for sharing, I got much from this article

Fatuma Chobo

This is a very informative write-up. Kindly include me in your latest posts.

naphtal

Very interesting mostly for social scientists

Boy M. Bachtiar

Thank you so much, very helpfull

You’re welcome 🙂

Dr Mafaza Mansoor

woow, its great, its very informative and well understood because of your way of writing like teaching in front of me in simple languages.

Opio Len

I have been struggling to understand a lot of these concepts. Thank you for the informative piece which is written with outstanding clarity.

Eric

very informative article. Easy to understand

Leena Fukey

Beautiful read, much needed.

didin

Always greet intro and summary. I learn so much from GradCoach

Mmusyoka

Quite informative. Simple and clear summary.

Jewel Faver

I thoroughly enjoyed reading your informative and inspiring piece. Your profound insights into this topic truly provide a better understanding of its complexity. I agree with the points you raised, especially when you delved into the specifics of the article. In my opinion, that aspect is often overlooked and deserves further attention.

Shantae

Absolutely!!! Thank you

Thazika Chitimera

Thank you very much for this post. It made me to understand how to do my data analysis.

lule victor

its nice work and excellent job ,you have made my work easier

Pedro Uwadum

Wow! So explicit. Well done.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Is Quantitative Research? | Definition & Methods

What Is Quantitative Research? | Definition & Methods

Published on 4 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analysing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalised to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Quantitative research methods
Research method How to use Example
Control or manipulate an to measure its effect on a dependent variable. To test whether an intervention can reduce procrastination in college students, you give equal-sized groups either a procrastination intervention or a comparable task. You compare self-ratings of procrastination behaviors between the groups after the intervention.
Ask questions of a group of people in-person, over-the-phone or online. You distribute with rating scales to first-year international college students to investigate their experiences of culture shock.
(Systematic) observation Identify a behavior or occurrence of interest and monitor it in its natural setting. To study college classroom participation, you sit in on classes to observe them, counting and recording the prevalence of active and passive behaviors by students from different backgrounds.
Secondary research Collect data that has been gathered for other purposes e.g., national surveys or historical records. To assess whether attitudes towards climate change have changed since the 1980s, you collect relevant questionnaire data from widely available .

Prevent plagiarism, run a free check.

Once data is collected, you may need to process it before it can be analysed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualise your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalisations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardise data collection and generalise findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardised data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analysed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalised and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardised procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). What Is Quantitative Research? | Definition & Methods. Scribbr. Retrieved 5 August 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

Quantitative Methods

  • Living reference work entry
  • First Online: 11 June 2021
  • Cite this living reference work entry

analysis quantitative research

  • Juwel Rana 2 , 3 , 4 ,
  • Patricia Luna Gutierrez 5 &
  • John C. Oldroyd 6  

597 Accesses

1 Citations

Quantitative analysis ; Quantitative research methods ; Study design

Quantitative method is the collection and analysis of numerical data to answer scientific research questions. Quantitative method is used to summarize, average, find patterns, make predictions, and test causal associations as well as generalizing results to wider populations. It allows us to quantify effect sizes, determine the strength of associations, rank priorities, and weigh the strength of evidence of effectiveness.

Introduction

This entry aims to introduce the most common ways to use numbers and statistics to describe variables, establish relationships among variables, and build numerical understanding of a topic. In general, the quantitative research process uses a deductive approach (Neuman 2014 ; Leavy 2017 ), extrapolating from a particular case to the general situation (Babones 2016 ).

In practical ways, quantitative methods are an approach to studying a research topic. In research, the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Babones S (2016) Interpretive quantitative methods for the social sciences. Sociology. https://doi.org/10.1177/0038038515583637

Balnaves M, Caputi P (2001) Introduction to quantitative research methods: an investigative approach. Sage, London

Book   Google Scholar  

Brenner PS (2020) Understanding survey methodology: sociological theory and applications. Springer, Boston

Google Scholar  

Creswell JW (2014) Research design: qualitative, quantitative, and mixed methods approaches. Sage, London

Leavy P (2017) Research design. The Gilford Press, New York

Mertens W, Pugliese A, Recker J (2018) Quantitative data analysis, research methods: information, systems, and contexts: second edition. https://doi.org/10.1016/B978-0-08-102220-7.00018-2

Neuman LW (2014) Social research methods: qualitative and quantitative approaches. Pearson Education Limited, Edinburgh

Treiman DJ (2009) Quantitative data analysis: doing social research to test ideas. Jossey-Bass, San Francisco

Download references

Author information

Authors and affiliations.

Department of Public Health, School of Health and Life Sciences, North South University, Dhaka, Bangladesh

Department of Biostatistics and Epidemiology, School of Health and Health Sciences, University of Massachusetts Amherst, MA, USA

Department of Research and Innovation, South Asia Institute for Social Transformation (SAIST), Dhaka, Bangladesh

Independent Researcher, Masatepe, Nicaragua

Patricia Luna Gutierrez

School of Behavioral and Health Sciences, Australian Catholic University, Fitzroy, VIC, Australia

John C. Oldroyd

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Juwel Rana .

Editor information

Editors and affiliations.

Florida Atlantic University, Boca Raton, FL, USA

Ali Farazmand

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Cite this entry.

Rana, J., Gutierrez, P.L., Oldroyd, J.C. (2021). Quantitative Methods. In: Farazmand, A. (eds) Global Encyclopedia of Public Administration, Public Policy, and Governance. Springer, Cham. https://doi.org/10.1007/978-3-319-31816-5_460-1

Download citation

DOI : https://doi.org/10.1007/978-3-319-31816-5_460-1

Received : 31 January 2021

Accepted : 14 February 2021

Published : 11 June 2021

Publisher Name : Springer, Cham

Print ISBN : 978-3-319-31816-5

Online ISBN : 978-3-319-31816-5

eBook Packages : Springer Reference Economics and Finance Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • Search Search Please fill out this field.
  • Understanding QA
  • Quantitative vs. Qualitative Analysis

Example of Quantitative Analysis in Finance

Drawbacks and limitations of quantitative analaysis, using quantitative finance outside of finance, the bottom line.

  • Quantitative Analysis

Quantitative Analysis (QA): What It Is and How It's Used in Finance

analysis quantitative research

Ariel Courage is an experienced editor, researcher, and former fact-checker. She has performed editing and fact-checking work for several leading finance publications, including The Motley Fool and Passport to Wall Street.

analysis quantitative research

Investopedia / Hilary Allison

Quantitative analysis (QA) refers to methods used to understand the behavior of financial markets and make more informed investment or trading decisions. It involves the use of mathematical and statistical techniques to analyze financial data. For instance, by examining past stock prices, earnings reports, and other information, quantitative analysts, often called “ quants ,” aim to forecast where the market is headed.

Unlike fundamental analysis that might focus on a company's management team or industry conditions, quantitative analysis relies chiefly on crunching numbers and complex computations to derive actionable insights.

Quantitative analysis can be a powerful tool, especially in modern markets where data is abundant and computational tools are advanced, enabling a more precise examination of the financial landscape. However, many also believe that the raw numbers produced by quantitative analysis should be combined with the more in-depth understanding and nuance afforded by qualitative analysis .

Key Takeaways

  • Quantitative analysis (QA) is a set of techniques that use mathematical and statistical modeling, measurement, and research to understand behavior.
  • Quantitative analysis presents financial information in terms of a numerical value.
  • It's used for the evaluation of financial instruments and for predicting real-world events such as changes in GDP.
  • While powerful, quantitative analysis has some drawbacks that can be supplemented with qualitative analysis.

Understanding Quantitative Analysis

Quantitative analysis (QA) in finance refers to the use of mathematical and statistical techniques to analyze financial & economic data and make trading, investing, and risk management decisions.

QA starts with data collection, where quants gather a vast amount of financial data that might affect the market. This data can include anything from stock prices and company earnings to economic indicators like inflation or unemployment rates. They then use various mathematical models and statistical techniques to analyze this data, looking for trends, patterns, and potential investment opportunities. The outcome of this analysis can help investors decide where to allocate their resources to maximize returns or minimize risks.

Some key aspects of quantitative analysis in finance include:

  • Statistical analysis - this aspect of quantitative analysis involves examining data to identify trends and relationships, build predictive models, and make forecasts. Techniques used can include regression analysis , which helps in understanding relationships between variables; time series analysis , which looks at data points collected or recorded at a specific time; and Monte Carlo simulations , a mathematical technique that allows you to account for uncertainty in your analyses and forecasts. Through statistical analysis, quants can uncover insights that may not be immediately apparent, helping investors and financial analysts make more informed decisions.
  • Algorithmic trading - this entails using computer algorithms to automate the trading process. Algorithms can be programmed to carry out trades based on a variety of factors such as timing, price movements, liquidity changes, and other market signals. High-frequency trading (HFT), a type of algorithmic trading, involves making a large number of trades within fractions of a second to capitalize on small price movements. This automated approach to trading can lead to more efficient and often profitable trading strategies.
  • Risk modeling - risk is an inherent part of financial markets. Risk modeling involves creating mathematical models to measure and quantify various risk exposures within a portfolio. Methods used in risk modeling include Value-at-Risk (VaR) models, scenario analysis , and stress testing . These tools help in understanding the potential downside and uncertainties associated with different investment scenarios, aiding in better risk management and mitigation strategies.
  • Derivatives pricing - derivatives are financial contracts whose value is derived from other underlying assets like stocks or bonds. Derivatives pricing involves creating mathematical models to evaluate these contracts and determine their fair prices and risk profiles. A well-known model used in this domain is the Black-Scholes model , which helps in pricing options contracts . Accurate derivatives pricing is crucial for investors and traders to make sound financial decisions regarding buying, selling, or hedging with derivatives.
  • Portfolio optimization - This is about constructing a portfolio in such a way that it yields the highest possible expected return for a given level of risk. Techniques like Modern Portfolio Theory (MPT) are employed to find the optimal allocation of assets within a portfolio. By analyzing various asset classes and their expected returns, risks, and correlations, quants can suggest the best mix of investments to achieve specific financial goals while minimizing risk.

The overall goal is to use data, math, statistics, and software to make more informed financial decisions, automate processes, and ultimately generate greater risk-adjusted returns.

Quantitative analysis is widely used in central banking, algorithmic trading, hedge fund management, and investment banking activities. Quantitative analysts, employ advanced skills in programming, statistics, calculus, linear algebra etc. to execute quantitative analysis.

Quantitative Analysis vs. Qualitative Analysis

Quantitative analysis relies heavily on numerical data and mathematical models to make decisions regarding investments and financial strategies. It focuses on the measurable, objective data that can be gathered about a company or a financial instrument.

But analysts also evaluate information that is not easily quantifiable or reduced to numeric values to get a better picture of a company's performance. This important qualitative data can include reputation, regulatory insights, or employee morale. Qualitative analysis thus focuses more on understanding the underlying qualities of a company or a financial instrument, which may not be immediately quantifiable.

Quantitative isn't the opposite of qualitative analysis. They're different and often complementary philosophies. They each provide useful information for informed decisions. When used together. better decisions can be made than using either one in isolation.

Some common uses of qualitative analysis include:

  • Management Evaluation: Qualitative analysis is often better at evaluating a company's management team, their experience, and their ability to lead the company toward growth. While quantifiable metrics are useful, they often cannot capture the full picture of management's ability and potential. For example, the leadership skills, vision, and corporate culture instilled by management are intangible factors that can significantly impact a company's success, yet are difficult to measure with numbers alone.
  • Industry Analysis: It also includes an analysis of the industry in which the company operates, the competition, and market conditions. For instance, it can explore how changes in technology or societal behaviors could impact the industry. Qualitative approaches can also better identify barriers to entry or exit, which can affect the level of competition and profitability within the industry.
  • Brand Value and Company Reputation: The reputation of a company, its brand value, and customer loyalty are also significant factors considered in qualitative analysis. Understanding how consumers perceive the brand, their level of trust, and satisfaction can provide insights into customer loyalty and the potential for sustained revenue. This can be done through focus groups, surveys, or interviews.
  • Regulatory Environment: The regulatory environment, potential legal issues, and other external factors that could impact a company are also analyzed qualitatively. Evaluating a company's compliance with relevant laws, regulations, and industry standards to ascertain its legal standing and the potential risk of legal issues. In addition, understanding a company's ethical practices and social responsibility initiatives, that can influence its relationship with stakeholders and the community at large.
Quant vs. Qual
Aspect Quantitative Analysis Qualitative Analysis
Data Type Numerical data, financial statistics Non-numerical information, subjective data
Methodology Mathematical and statistical modeling Personal judgement, industry experience
Focus Objective, measurable aspects Subjective, non-quantifiable aspects
Outcome Predictive models, trading algorithms Insight into management, industry conditions, company reputation
Tools Used Statistical software, algorithms Interviews, surveys, industry reports
Typical Applications Investment decision-making, risk management, algorithmic trading Company valuation, management assessment, industry analysis

Suppose you are interested in investing in a particular company, XYZ Inc. One way to evaluate its potential as an investment is by analyzing its past financial performance using quantitative analysis. Let's say, over the past five years, XYZ Inc. has been growing its revenue at an average rate of 8% per year. You decide to use regression analysis to forecast its future revenue growth. Regression analysis is a statistical method used to examine the relationship between variables.

After collecting the necessary data, you run a simple linear regression with the year as the independent variable and the revenue as the dependent variable. The output gives you a regression equation, let's say, R e v e n u e = 100 + 8 ( Y e a r ) Revenue=100+8(Year) R e v e n u e = 100 + 8 ( Y e a r ) . This equation suggests that for every year, the revenue of XYZ Inc. increases by $8 million, starting from a base of $100 million. This quantitative insight could be instrumental in helping you decide whether XYZ Inc. represents a good investment opportunity based on its historical revenue growth trend.

However, while you can quantify revenue growth for the firm and make predictions, the reasons for why may not be apparent from quantitative number crunching.

Augmenting with Qualitative Analysis

Qualitative analysis can provide a more nuanced understanding of XYZ Inc.'s potential. You decide to delve into the company's management and industry reputation. Through interviews, reviews, and industry reports, you find that the management team at XYZ Inc. is highly regarded with a track record of successful ventures. Moreover, the company has a strong brand value and a loyal customer base.

Additionally, you assess the industry in which XYZ Inc. operates and find it to be stable with a steady demand for the products that XYZ Inc. offers. The regulatory environment is also favorable, and the company has a good relationship with the local communities in which it operates.

By analyzing these qualitative factors, you obtain a more comprehensive understanding of the company's operational environment, the competence of its management team, and its reputation in the market. This qualitative insight complements the quantitative analysis, providing you with a well-rounded view of XYZ Inc.'s investment potential.

Combining both quantitative and qualitative analyses could therefore lead to a more informed investment decision regarding XYZ Inc.

Quantitative analysis, while powerful, comes with certain limitations:

  • Data Dependency: Quantitative analysis is heavily dependent on the quality and availability of numerical data. If the data is inaccurate, outdated, or incomplete, the analysis and the subsequent conclusions drawn will be flawed. As they say, 'garbage-in, garbage-out'.
  • Complexity: The methods and models used in quantitative analysis can be very complex, requiring a high level of expertise to develop, interpret, and act upon. This complexity can also make it difficult to communicate findings to individuals who lack a quantitative background.
  • Lack of Subjectivity: Quantitative analysis often overlooks qualitative factors like management quality, brand reputation, and other subjective factors that can significantly affect a company's performance or a financial instrument's value. In other words, you may have the 'what' without the 'why' or 'how.' Qualitative analysis can augment this blind spot.
  • Assumption-based Modeling: Many quantitative models are built on assumptions that may not hold true in real-world situations. For example, assumptions about normal distribution of returns or constant volatility may not reflect actual market conditions.
  • Over-reliance on Historical Data: Quantitative analysis often relies heavily on historical data to make predictions about the future. However, past performance is not always indicative of future results, especially in rapidly changing markets or unforeseen situations like economic crises.
  • Inability to Capture Human Emotion and Behavior: Markets are often influenced by human emotions and behaviors which can be erratic and hard to predict. Quantitative analysis, being number-driven, struggles to properly account for these human factors.
  • Cost and Time Intensive: Developing accurate and reliable quantitative models can be time-consuming and expensive. It requires skilled personnel, sophisticated software tools, and often, extensive computational resources.
  • Overfitting: There's a risk of overfitting , where a model might perform exceedingly well on past data but fails to predict future outcomes accurately because it's too tailored to past events.
  • Lack of Flexibility: Quantitative models may lack the flexibility to adapt to new information or changing market conditions quickly, which can lead to outdated or incorrect analysis.
  • Model Risk: There's inherent model risk involved where the model itself may have flaws or errors that can lead to incorrect analysis and potentially significant financial losses.

Understanding these drawbacks is crucial for analysts and decision-makers to interpret quantitative analysis results accurately and to balance them with qualitative insights for more holistic decision-making.

Quantitative analysis is a versatile tool that extends beyond the realm of finance into a variety of fields. In the domain of social sciences, for instance, it's used to analyze behavioral patterns, social trends, and the impact of policies on different demographics. Researchers employ statistical models to examine large datasets, enabling them to identify correlations, causations, and trends that can provide a deeper understanding of human behaviors and societal dynamics. Similarly, in the field of public policy, quantitative analysis plays a crucial role in evaluating the effectiveness of different policies, analyzing economic indicators, and forecasting the potential impacts of policy changes. By providing a method to measure and analyze data, it aids policymakers in making informed decisions based on empirical evidence.

In the arena of healthcare, quantitative analysis is employed for clinical trials, genetic research, and epidemiological studies to name a few areas. It assists in analyzing patient data, evaluating treatment outcomes, and understanding disease spread and its determinants. Meanwhile, in engineering and manufacturing, it's used to optimize processes, improve quality control, and enhance operational efficiency. By analyzing data related to production processes, material properties, and operational performance, engineers can identify bottlenecks, optimize workflows, and ensure the reliability and quality of products. Additionally, in the field of marketing, quantitative analysis is fundamental for market segmentation, advertising effectiveness, and consumer satisfaction studies. It helps marketers understand consumer preferences, the impact of advertising campaigns, and the market potential for new products. Through these diverse applications, quantitative analysis serves as a bedrock for data-driven decision-making, enabling professionals across different fields to derive actionable insights from complex data.

What Is Quantitative Analysis Used for in Finance?

Quantitative analysis is used by governments, investors, and businesses (in areas such as finance, project management, production planning, and marketing) to study a certain situation or event, measure it, predict outcomes, and thus help in decision-making. In finance, it's widely used for assessing investment opportunities and risks. For instance, before venturing into investments, analysts rely on quantitative analysis to understand the performance metrics of different financial instruments such as stocks, bonds, and derivatives. By delving into historical data and employing mathematical and statistical models, they can forecast potential future performance and evaluate the underlying risks. This practice isn't just confined to individual assets; it's also essential for portfolio management. By examining the relationships between different assets and assessing their risk and return profiles, investors can construct portfolios that are optimized for the highest possible returns for a given level of risk.

What Kind of Education Do You Need to Be a Quant?

Individuals pursuing a career in quantitative analysis usually have a strong educational background in quantitative fields like mathematics, statistics, computer science, finance, economics, or engineering. Advanced degrees (Master’s or Ph.D.) in quantitative disciplines are often preferred, and additional coursework or certifications in finance and programming can also be beneficial.

What Is the Difference Between Quantitative Analysis and Fundamental Analysis?

While both rely on the use of math and numbers, fundamental analysis takes a broader approach by examining the intrinsic value of a security. It dives into a company's financial statements, industry position, the competence of the management team, and the economic environment in which it operates. By evaluating factors like earnings, dividends, and the financial health of a company, fundamental analysts aim to ascertain the true value of a security and whether it is undervalued or overvalued in the market. This form of analysis is more holistic and requires a deep understanding of the company and the industry in which it operates.

How Does Artificial Intelligence (AI) Influence Quantitative Analysis?

Quantitative analysis often intersects with machine learning (ML) and other forms of artificial intelligence (AI). ML and AI can be employed to develop predictive models and algorithms based on the quantitative data. These technologies can automate the analysis process, handle large datasets, and uncover complex patterns or trends that might be difficult to detect through traditional quantitative methods.

Quantitative analysis is a mathematical approach that collects and evaluates measurable and verifiable data in order to evaluate performance, make better decisions, and predict trends. Unlike qualitative analysis, quantitative analysis uses numerical data to provide an explanation of "what" happened, but not "why" those events occurred.

DeFusco, R. A., McLeavey, D. W., Pinto, J. E., Runkle, D. E., & Anson, M. J. (2015). Quantitative investment analysis . John Wiley & Sons.

University of Sydney. " On Becoming a Quant ," Page 1

Linsmeier, Thomas J., and Neil D. Pearson. " Value at risk ." Financial analysts journal 56, no. 2 (2000): 47-67.

Fischer, Black, and Myron Scholes, " The Pricing of Options and Corporate Liabilities ." Journal of Political Economy, vol. 81, no. 3, 1974, pp. 637-654.

Francis, J. C., & Kim, D. (2013). Modern portfolio theory: Foundations, analysis, and new developments . John Wiley & Sons.

Kaczynski, D., Salmona, M., & Smith, T. (2014). " Qualitative research in finance ." Australian Journal of Management , 39 (1), 127-135.

analysis quantitative research

  • Terms of Service
  • Editorial Policy
  • Privacy Policy

Quantitative Data: Definition, Examples, Types, Methods, and Analysis

11 min read

Quantitative Data: Definition, Examples, Types, Methods, and Analysis cover

35% of startups fail because there is no market need. This is because they haven’t conducted any customer research to determine whether the product they are building is actually what customers want.

To gather the information needed to avoid this, quantitative data is a valuable tool for all startups. This article will examine quantitative data, the difference between quantitative and qualitative data, and how to collect the former.

  • Quantitative data, expressed numerically, is crucial for analysis, driving strategic decisions, and understanding consumer behavior and market trends .
  • Metrics like DAU, MRR, sales figures, satisfaction scores, and traffic are examples of quantitative data across industries.
  • Quantitative data is numeric and measurable, identifying patterns or trends, while qualitative data is descriptive, providing deeper insights and context.
  • Nominal data categorizes information without order and labels variables like user roles or subscription types. It is often shown in bar or pie charts .
  • Ordinal data categorizes information in a specific order, such as satisfaction ratings or ticket priorities, and is often shown in a bar or stacked bar chart.
  • Discrete data is numerical and takes specific values, like daily sign-ups or support tickets , and is often shown in bar or column charts.
  • Continuous data can take any numerical value within a range, such as user time on a platform or revenue over time, and is often shown in line graphs or histograms.
  • Quantitative data is objective, handles large datasets, and enables easy comparisons, providing clear insights and generalized conclusions in various fields.
  • However, quantitative data analysis lacks contextual understanding, requires analytical expertise, and is influenced by data collection quality that may affect result validity.
  • Customer feedback surveys , triggered by tools like Userpilot, collect consistent quantitative data, providing reliable numerical insights into customer satisfaction and experiences.
  • Product analytics tools track user interactions and feature usage , offering insights into user behavior and improving the user experience.
  • Tracking customer support data identifies common issues and areas for improvement , enhances service quality, and helps understand customer needs.
  • Implementing A/B tests and other experiments provides quantitative data on feature performance, helping teams make informed decisions to enhance product and user experience.
  • Searching platforms like Kaggle or Statista for accurate, reliable datasets enhances product analysis by providing broader context and robust comparison data.
  • Statistical analysis uses mathematical techniques to summarize and infer data patterns, helping SaaS companies understand user behavior, evaluate features, and identify engagement trends.
  • Trend analysis tracks quantitative data to identify patterns, helping SaaS companies forecast outcomes, understand variations, and plan strategic initiatives effectively.
  • Funnel analysis tracks user progression through stages, identifies drop-off points to enhance user experience, and increases conversions for SaaS companies.
  • Cohort analysis groups users by attribute and tracks behavior over time to understand retention and engagement.
  • Path analysis maps user journeys to identify users’ optimal routes, helping SaaS companies streamline and enhance the user experience.
  • Feedback analysis examines responses to close-ended questions to identify user sentiments and areas for improvement.
  • If you want to collect quantitative data within your product and analyze it, then learn how Userpilot can help you. Book a demo now !

analysis quantitative research

Try Userpilot and Take Your Product Experience to the Next Level

  • 14 Day Trial
  • No Credit Card Required

analysis quantitative research

What is quantitative data?

Quantitative data is information that can be measured and expressed numerically. It is essential for making data-driven decisions, as it provides a concrete foundation for analysis and evaluation.

In various fields, such as market research , quantitative data helps businesses understand consumer behavior, market trends, and overall performance. Companies can gain insights that drive strategic decisions and improve their products or services by collecting and analyzing numerical data.

Whether conducting a survey, running experiments , or gathering information from other sources, quantitative data analysis is key to uncovering patterns, testing hypotheses, and making informed decisions based on solid evidence.

What are examples of quantitative data?

Quantitative data comes in many forms and is used across various industries to provide measurable and numerical insights. Here are some examples of quantitative data:

  • Daily Active Users (DAU) : This metric counts the number of unique users interacting with a product or service daily. It is crucial for understanding user engagement and product usage trends.
  • Monthly Recurring Revenue (MRR) : For SaaS businesses, MRR is a vital metric that shows the predictable revenue generated each month from subscriptions. It helps forecast growth and financial planning.
  • Sales figures : This includes the total number of products sold or services rendered over a specific period. Sales data helps in evaluating business performance and market demand.
  • Customer satisfaction scores : Often collected through surveys , these scores quantify customers’ satisfaction with a product or service.
  • Website traffic : Measured in terms of visits, page views, and unique visitors, this quantitative data helps businesses understand their online presence and the effectiveness of their marketing efforts.
  • Conversion rates : This metric shows the percentage of users who take a desired action, such as making a purchase or signing up for a newsletter, out of the total number of visitors.
  • Churn rate : This represents the percentage of customers who stop using a product or service over time. It’s essential for understanding customer retention .
  • Average Revenue Per User (ARPU) : This metric calculates the average revenue generated per user, which helps assess each customer’s value to the business.
  • Bounce rate : In web analytics, the bounce rate indicates the percentage of visitors who leave a website after viewing only one page. It’s useful for evaluating the effectiveness of a website’s content and user experience .

Differences between quantitative and qualitative data

Quantitative data and qualitative data are two fundamental types of information used in research and analysis, each serving distinct purposes and represented in different forms.

Quantitative data is numeric and measurable. It allows you to quantify variables and identify patterns or trends that can be generalized. For example, tracking product trends or analyzing charts to understand market movements. Some quantitative data examples include:

  • The number of daily active users on a platform.
  • Monthly recurring revenue.
  • Customer satisfaction scores .
  • Website traffic metrics, like page views.

On the other hand, qualitative data is descriptive and subjective, often represented in words and visuals. It aims to explore deeper insights, understand data , and provide context to behaviors and experiences.

Examples of qualitative data include:

  • Customer reviews and testimonials.
  • Interview responses.
  • Social media interactions.
  • Observations recorded during user tests .

Different types of quantitative data

Understanding the different types of quantitative data is essential for effective data analysis . These types help categorize and analyze data accurately to derive meaningful insights and make informed decisions.

Nominal data

Nominal data categorizes information without a specific order or ranking. It is used to label variables that do not have a quantitative value.

For instance, in a SaaS platform , user roles can be categorized as ‘admin,’ ‘editor,’ or ‘viewer.’ Subscription types might be classified as ‘free,’ ‘basic,’ ‘premium,’ or ‘enterprise.’

This data type is typically represented using bar charts or pie charts to show the frequency or proportion of each category.

Ordinal data

Ordinal data categorizes information with a specific order or ranking. It is used to label variables that follow a particular sequence.

Examples include:

  • Rating customer satisfaction as ‘poor,’ ‘fair,’ ‘good,’ ‘very good,’ or ‘excellent.’
  • Ranking support ticket priorities as ‘low,’ ‘medium,’ or ‘high.’
  • User feedback ratings on features as ‘1 star’ to ‘5 stars.’

This type of data is typically represented using bar charts or stacked bar charts to illustrate the order and frequency of each category.

Discrete data

Discrete data is numerical values that can only take on specific values and cannot be subdivided meaningfully.

Examples include the number of new sign-ups daily, the count of support tickets received, and the number of active users at a given time.

This type of numerical data is often represented using bar charts or column charts to display the frequency of each value.

Continuous data

Continuous data is numerical information that can take on any numerical value within a range.

In a SaaS context, examples include measuring the amount of time users spend on a platform, the bandwidth usage of an application, and the revenue generated over a specific period. Continuous data, along with interval data, helps identify patterns and trends over time.

Pros of analyzing quantitative data

Analyzing quantitative data offers several advantages, making it a valuable approach in various fields, especially in SaaS. Here are some key benefits:

Provides measurable and verifiable data

Quantitative data is numeric and objective, allowing for precise measurement and verification. This reduces the influence of personal biases and subjectivity in analysis, leading to more reliable and consistent results.

Analyzing customer data using quantitative methods can provide clear insights into user behavior and preferences, helping businesses make data-driven decisions.

Enables analysis of large datasets

Quantitative data analysis can handle large datasets efficiently, enabling the identification of patterns and trends across extensive samples.

This capability makes it possible to draw broad, generalized conclusions that can be applied to larger populations. For example, a company might analyze usage data from thousands of users to understand overall engagement trends and identify areas for improvement .

Allows easy comparison across different groups, time periods, and variables

Quantitative data allows straightforward comparisons across various groups, time periods, and variables. This facilitates the evaluation of changes over time, differences between demographics, and the impact of different factors on outcomes.

For instance, comparing customer satisfaction scores before and after a product update can help assess the effectiveness of the changes and guide future improvements.

Cons of quantitative data analysis

While quantitative data analysis offers many benefits, it also has some drawbacks:

Lacks contextual understanding

Quantitative data can miss the deeper context and nuances of human behavior, focusing solely on numbers without explaining the reasons behind actions. For example, tracking user behavior may show usage patterns but not the motivations or feelings behind them.

Requires analytical expertise

Accurate analysis and interpretation of quantitative data require specialized skills . Without proper expertise, there is a risk of misinterpretation and incorrect conclusions, which can negatively impact decision-making.

Influenced by data collection quality

The reliability of quantitative analysis depends on the data collection methods and the quality of measurement tools. Poor data collection can lead to data discrepancies , affecting the validity of the results. Ensuring consistent, high-quality data collection is essential for accurate analysis.

How to collect data for quantitative research?

Collecting data for quantitative research involves using systematic and structured methods to gather numerical information. Let’s look at a few methods in detail.

Customer feedback surveys

Customer feedback surveys are a key method for collecting quantitative data. Tools like Userpilot can trigger in-app surveys with closed-ended questions to ensure consistent data collection.

Conducting these surveys quarterly or after a specific period helps track changes in customer satisfaction and other important metrics. This approach provides reliable, numerical insights into customer opinions and experiences.

A screenshot of a customer survey created in Userpilot to collect Quantitative Data

Product usage data

Product analytics tools are essential for tracking user interactions and feature usage. Utilizing these tools allows you to monitor metrics such as user sessions, feature adoption , and user engagement regularly.

This quantitative data provides valuable insights into how users interact with your product, helping you understand their behavior and improve the overall user experience.

Customer support data

Tracking customer support data is crucial for quantitative research. You can record details such as ticket number, issue type, resolution time, and customer feedback by monitoring support tickets.

Organize these tickets into categories, such as feature requests , to identify common problems and areas needing product improvement . This approach helps understand customer needs and enhance overall service quality.

An example of a resource center you can collect in Userpilot

Experiments

Implementing experiments, such as A/B tests , is a powerful method for collecting quantitative data. By comparing the performance of different features or designs, you can gain valuable insights into what works best for your users.

Use the insights gained from these A/B tests and other product experimentation methods to make informed decisions that enhance your product and user experience.

A screenshot showing the results of an A/B test in Userpilot to help with Quantitative Data

Open-source datasets

Searching for datasets on platforms like Kaggle or Statista can provide valuable information relevant to your research. However, to avoid issues with data discrepancy , ensure these datasets are accurate and reliable before incorporating them into your analysis.

Utilizing accurate open-source datasets can significantly enhance your product analysis by providing a broader context and more robust quantitative data for comparison and insights.

A screenshot of Statista showing a AI report

Quantitative data analysis methods for gathering actionable insights

Analyzing quantitative data involves using various methods to extract meaningful and actionable insights. These techniques help understand the data’s patterns, trends, and relationships, enabling informed decision-making and strategic planning .

Statistical analysis

Statistical analysis involves using mathematical techniques to summarize, describe, and infer patterns from data. This method helps validate hypotheses and make data-driven decisions .

For SaaS companies, statistical analysis can be crucial in understanding user behavior , evaluating the effectiveness of new features, and identifying trends in user engagement.

By leveraging statistical techniques, SaaS businesses can derive meaningful insights from their data, allowing them to optimize their products and services based on empirical evidence.

Trend analysis

Trend analysis involves tracking quantitative data points and metrics to identify consistent patterns. Using a tool like Userpilot, SaaS companies can generate detailed trend analysis reports that provide valuable insights into how various metrics evolve.

This method enables SaaS companies to forecast future outcomes, understand seasonal variations, and plan strategic initiatives accordingly. By identifying trends, businesses can anticipate changes, adapt their strategies, and stay ahead of market dynamics.

A screenshot showing a trend analysis report in Userpilot

Funnel analysis

Funnel analysis defines key stages in the user journey and tracks the number of users progressing through each stage.

This method helps SaaS companies identify friction and drop-off points within the funnel. By understanding where users are dropping off, businesses can implement targeted improvements to enhance user experience and increase conversions.

An example of a funnel analysis report in Userpilot

Cohort analysis

Cohort analysis groups users into cohorts based on attributes such as the month of sign-up or acquisition channel and tracks their behavior over time.

This method allows SaaS companies to understand user retention and engagement patterns by comparing how cohorts perform over various periods. By analyzing these patterns, businesses can identify successful strategies and improvement areas.

A screenshot showing a cohort analysis report in Userpilot

Path analysis

Path analysis maps user journeys and analyzes the actions taken by users. This method helps SaaS companies identify the “ happy path ” or the optimal route users take to achieve their goals.

By understanding these paths , businesses can streamline the user experience, making it more intuitive and efficient.

Feedback analysis

Feedback analysis involves using questionnaires and examining responses to close-ended questions to identify patterns in customer feedback . This quantitative data helps you to understand common user sentiments, preferences, and areas needing improvement.

Businesses can make informed decisions to enhance their products and services by systematically analyzing feedback.

A screenshot of a feedback analysis report in Userpilot

Collecting quantitative data is important if you want a product that will succeed. Your customers are the only people who can signal your success, so speaking to them and analyzing the quantitative data you collect will help you to produce the best product you can.

If you want help collecting quantitative data and analyzing it, Userpilot can help. Book a demo now to see exactly how it can help.

Leave a comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Book a demo with on of our product specialists

Get The Insights!

The fastest way to learn about Product Growth,Management & Trends.

The coolest way to learn about Product Growth, Management & Trends. Delivered fresh to your inbox, weekly.

analysis quantitative research

The fastest way to learn about Product Growth, Management & Trends.

You might also be interested in ...

10 customer service metrics + how to track them, 7 product analytics examples to learn from (+best tools).

Saffa Faisal

Psychographic Vs Behavioral Segmentation: What Are the Differences?

Aazar Ali Shad

Quantitative Analysis

The collection and evaluation of measurable and verifiable financial data to understand the behavior and performance of a business

What is Quantitative Analysis?

Quantitative analysis is the process of collecting and evaluating measurable and verifiable data such as revenues, market share, and wages in order to understand the behavior and performance of a business. In the past, business owners and company directors relied heavily on their experience and instinct when making decisions. However, with data technology, quantitative analysis is now considered a better approach to making informed decisions.

Quantitative Analysis - Image of a handwritten word calculate and related concepts

A quantitative analyst’s main task is to present a given hypothetical situation in terms of numerical values. Quantitative analysis helps in evaluating performance, assessing financial instruments, and making predictions. It encompasses three main techniques of measuring data: regression analysis , linear programming, and data mining.

Quantitative Analysis Techniques

1. regression analysis.

Regression analysis is a common technique that is not only employed by business owners but also by statisticians and economists. It involves using statistical equations to predict or estimate the impact of one variable on another. For instance, regression analysis can determine how interest rates affect consumers’ behavior regarding asset investment. One other core application of regression analysis is establishing the effect of education and work experience on employees’ annual earnings.

In the business sector, owners can use regression analysis to determine the impact of advertising expenses on business profits. Using this approach, a business owner can establish a positive or negative correlation between two variables.

2. Linear Programming

Most companies occasionally encounter a shortage of resources such as facility space, production machinery , and labor. In such situations, company managers must find ways to allocate resources effectively. Linear programming is a quantitative method that determines how to achieve such an optimal solution. It is also used to determine how a company can make optimal profits and reduce its operating costs, subject to a given set of constraints, such as labor.

3. Data Mining

Data mining is a combination of computer programming skills and statistical methods. The popularity of data mining continues to grow in parallel with the increase in the quantity and size of available data sets. Data mining techniques are used to evaluate very large sets of data to find patterns or correlations concealed within them.

Applications of Quantitative Analysis in the Business Sector

Business owners are often forced to make decisions under conditions of uncertainty. Luckily, quantitative techniques enable them to make the best estimates and thus minimize the risks associated with a particular decision. Ideally, quantitative models provide company owners with a better understanding of information to enable them to make the best possible decisions.

Project Management

One area where quantitative analysis is considered an indispensable tool is in project management . As mentioned earlier, quantitative methods are used to find the best ways of allocating resources, especially if these resources are scarce. Projects are then scheduled based on the availability of certain resources.

Production Planning

Quantitative analysis also helps individuals to make informed product-planning decisions. Let’s say a company finds it challenging to estimate the size and location of a new production facility. Quantitative analysis can be employed to assess different proposals for costs, timing, and location. With effective product planning and scheduling, companies will be more able to meet their customers’ needs while maximizing their profits.

Every business needs a proper marketing strategy. However, setting a budget for the marketing department can be tricky, especially if its objectives are not set. With the right quantitative method, marketers can easily set the required budget and allocate media purchases. The decisions can be based on data obtained from marketing campaigns.

The accounting department of a business also relies heavily on quantitative analysis. Accounting personnel uses different quantitative data and methods, such as the discounted cash flow model , to estimate the value of an investment. Products can also be evaluated based on the costs of producing them and the profits they generate.

Purchase and Inventory

One of the greatest challenges that businesses face is being able to predict the demand for a product or service. However, with quantitative techniques, companies can be guided on just how many materials they need to purchase, the level of inventory to maintain, and the costs they’re likely to incur when shipping and storing finished goods.

The Bottom Line

Quantitative analysis is the use of mathematical and statistical techniques to assess the performance of a business. Before the advent of quantitative analysis, many company directors based their decisions on experience and gut. Business owners can now use quantitative methods to predict trends, determine the allocation of resources, and manage projects.

Quantitative techniques are also used to evaluate investments. In such a way, organizations can determine the best assets to invest in and the best time to do so. Some of the quantitative analysis methods include regression analysis, linear programming, and data mining.

Related Readings

Thank you for reading CFI’s guide to quantitative analysis. To keep learning and advancing your career, the following CFI resources will be helpful:

  • Correlation
  • Consumer Surplus Formula
  • Quantitative Trading
  • Econometrics
  • See all data science resources
  • Share this article

Excel Fundamentals - Formulas for Finance

Create a free account to unlock this Template

Access and download collection of free Templates to help power your productivity and performance.

Already have an account? Log in

Supercharge your skills with Premium Templates

Take your learning and productivity to the next level with our Premium Templates.

Upgrading to a paid membership gives you access to our extensive collection of plug-and-play Templates designed to power your performance—as well as CFI's full course catalog and accredited Certification Programs.

Already have a Self-Study or Full-Immersion membership? Log in

Access Exclusive Templates

Gain unlimited access to more than 250 productivity Templates, CFI's full course catalog and accredited Certification Programs, hundreds of resources, expert reviews and support, the chance to work with real-world finance and research tools, and more.

Already have a Full-Immersion membership? Log in

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

analysis quantitative research

Home Market Research

Data Analysis in Research: Types & Methods

data-analysis-in-research

Content Index

Why analyze data in research?

Types of data in research, finding patterns in the qualitative data, methods used for data analysis in qualitative research, preparing data for analysis, methods used for data analysis in quantitative research, considerations in research data analysis, what is data analysis in research.

Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. 

Three essential things occur during the data analysis process — the first is data organization . Summarization and categorization together contribute to becoming the second known method used for data reduction. It helps find patterns and themes in the data for easy identification and linking. The third and last way is data analysis – researchers do it in both top-down and bottom-up fashion.

LEARN ABOUT: Research Process Steps

On the other hand, Marshall and Rossman describe data analysis as a messy, ambiguous, and time-consuming but creative and fascinating process through which a mass of collected data is brought to order, structure and meaning.

We can say that “the data analysis and data interpretation is a process representing the application of deductive and inductive logic to the research and data analysis.”

Researchers rely heavily on data as they have a story to tell or research problems to solve. It starts with a question, and data is nothing but an answer to that question. But, what if there is no question to ask? Well! It is possible to explore data even without a problem – we call it ‘Data Mining’, which often reveals some interesting patterns within the data that are worth exploring.

Irrelevant to the type of data researchers explore, their mission and audiences’ vision guide them to find the patterns to shape the story they want to tell. One of the essential things expected from researchers while analyzing data is to stay open and remain unbiased toward unexpected patterns, expressions, and results. Remember, sometimes, data analysis tells the most unforeseen yet exciting stories that were not expected when initiating data analysis. Therefore, rely on the data you have at hand and enjoy the journey of exploratory research. 

Create a Free Account

Every kind of data has a rare quality of describing things after assigning a specific value to it. For analysis, you need to organize these values, processed and presented in a given context, to make it useful. Data can be in different forms; here are the primary data types.

  • Qualitative data: When the data presented has words and descriptions, then we call it qualitative data . Although you can observe this data, it is subjective and harder to analyze data in research, especially for comparison. Example: Quality data represents everything describing taste, experience, texture, or an opinion that is considered quality data. This type of data is usually collected through focus groups, personal qualitative interviews , qualitative observation or using open-ended questions in surveys.
  • Quantitative data: Any data expressed in numbers of numerical figures are called quantitative data . This type of data can be distinguished into categories, grouped, measured, calculated, or ranked. Example: questions such as age, rank, cost, length, weight, scores, etc. everything comes under this type of data. You can present such data in graphical format, charts, or apply statistical analysis methods to this data. The (Outcomes Measurement Systems) OMS questionnaires in surveys are a significant source of collecting numeric data.
  • Categorical data: It is data presented in groups. However, an item included in the categorical data cannot belong to more than one group. Example: A person responding to a survey by telling his living style, marital status, smoking habit, or drinking habit comes under the categorical data. A chi-square test is a standard method used to analyze this data.

Learn More : Examples of Qualitative Data in Education

Data analysis in qualitative research

Data analysis and qualitative data research work a little differently from the numerical data as the quality data is made up of words, descriptions, images, objects, and sometimes symbols. Getting insight from such complicated information is a complicated process. Hence it is typically used for exploratory research and data analysis .

Although there are several ways to find patterns in the textual information, a word-based method is the most relied and widely used global technique for research and data analysis. Notably, the data analysis process in qualitative research is manual. Here the researchers usually read the available data and find repetitive or commonly used words. 

For example, while studying data collected from African countries to understand the most pressing issues people face, researchers might find  “food”  and  “hunger” are the most commonly used words and will highlight them for further analysis.

LEARN ABOUT: Level of Analysis

The keyword context is another widely used word-based technique. In this method, the researcher tries to understand the concept by analyzing the context in which the participants use a particular keyword.  

For example , researchers conducting research and data analysis for studying the concept of ‘diabetes’ amongst respondents might analyze the context of when and how the respondent has used or referred to the word ‘diabetes.’

The scrutiny-based technique is also one of the highly recommended  text analysis  methods used to identify a quality data pattern. Compare and contrast is the widely used method under this technique to differentiate how a specific text is similar or different from each other. 

For example: To find out the “importance of resident doctor in a company,” the collected data is divided into people who think it is necessary to hire a resident doctor and those who think it is unnecessary. Compare and contrast is the best method that can be used to analyze the polls having single-answer questions types .

Metaphors can be used to reduce the data pile and find patterns in it so that it becomes easier to connect data with theory.

Variable Partitioning is another technique used to split variables so that researchers can find more coherent descriptions and explanations from the enormous data.

LEARN ABOUT: Qualitative Research Questions and Questionnaires

There are several techniques to analyze the data in qualitative research, but here are some commonly used methods,

  • Content Analysis:  It is widely accepted and the most frequently employed technique for data analysis in research methodology. It can be used to analyze the documented information from text, images, and sometimes from the physical items. It depends on the research questions to predict when and where to use this method.
  • Narrative Analysis: This method is used to analyze content gathered from various sources such as personal interviews, field observation, and  surveys . The majority of times, stories, or opinions shared by people are focused on finding answers to the research questions.
  • Discourse Analysis:  Similar to narrative analysis, discourse analysis is used to analyze the interactions with people. Nevertheless, this particular method considers the social context under which or within which the communication between the researcher and respondent takes place. In addition to that, discourse analysis also focuses on the lifestyle and day-to-day environment while deriving any conclusion.
  • Grounded Theory:  When you want to explain why a particular phenomenon happened, then using grounded theory for analyzing quality data is the best resort. Grounded theory is applied to study data about the host of similar cases occurring in different settings. When researchers are using this method, they might alter explanations or produce new ones until they arrive at some conclusion.

LEARN ABOUT: 12 Best Tools for Researchers

Data analysis in quantitative research

The first stage in research and data analysis is to make it for the analysis so that the nominal data can be converted into something meaningful. Data preparation consists of the below phases.

Phase I: Data Validation

Data validation is done to understand if the collected data sample is per the pre-set standards, or it is a biased data sample again divided into four different stages

  • Fraud: To ensure an actual human being records each response to the survey or the questionnaire
  • Screening: To make sure each participant or respondent is selected or chosen in compliance with the research criteria
  • Procedure: To ensure ethical standards were maintained while collecting the data sample
  • Completeness: To ensure that the respondent has answered all the questions in an online survey. Else, the interviewer had asked all the questions devised in the questionnaire.

Phase II: Data Editing

More often, an extensive research data sample comes loaded with errors. Respondents sometimes fill in some fields incorrectly or sometimes skip them accidentally. Data editing is a process wherein the researchers have to confirm that the provided data is free of such errors. They need to conduct necessary checks and outlier checks to edit the raw edit and make it ready for analysis.

Phase III: Data Coding

Out of all three, this is the most critical phase of data preparation associated with grouping and assigning values to the survey responses . If a survey is completed with a 1000 sample size, the researcher will create an age bracket to distinguish the respondents based on their age. Thus, it becomes easier to analyze small data buckets rather than deal with the massive data pile.

LEARN ABOUT: Steps in Qualitative Research

After the data is prepared for analysis, researchers are open to using different research and data analysis methods to derive meaningful insights. For sure, statistical analysis plans are the most favored to analyze numerical data. In statistical analysis, distinguishing between categorical data and numerical data is essential, as categorical data involves distinct categories or labels, while numerical data consists of measurable quantities. The method is again classified into two groups. First, ‘Descriptive Statistics’ used to describe data. Second, ‘Inferential statistics’ that helps in comparing the data .

Descriptive statistics

This method is used to describe the basic features of versatile types of data in research. It presents the data in such a meaningful way that pattern in the data starts making sense. Nevertheless, the descriptive analysis does not go beyond making conclusions. The conclusions are again based on the hypothesis researchers have formulated so far. Here are a few major types of descriptive analysis methods.

Measures of Frequency

  • Count, Percent, Frequency
  • It is used to denote home often a particular event occurs.
  • Researchers use it when they want to showcase how often a response is given.

Measures of Central Tendency

  • Mean, Median, Mode
  • The method is widely used to demonstrate distribution by various points.
  • Researchers use this method when they want to showcase the most commonly or averagely indicated response.

Measures of Dispersion or Variation

  • Range, Variance, Standard deviation
  • Here the field equals high/low points.
  • Variance standard deviation = difference between the observed score and mean
  • It is used to identify the spread of scores by stating intervals.
  • Researchers use this method to showcase data spread out. It helps them identify the depth until which the data is spread out that it directly affects the mean.

Measures of Position

  • Percentile ranks, Quartile ranks
  • It relies on standardized scores helping researchers to identify the relationship between different scores.
  • It is often used when researchers want to compare scores with the average count.

For quantitative research use of descriptive analysis often give absolute numbers, but the in-depth analysis is never sufficient to demonstrate the rationale behind those numbers. Nevertheless, it is necessary to think of the best method for research and data analysis suiting your survey questionnaire and what story researchers want to tell. For example, the mean is the best way to demonstrate the students’ average scores in schools. It is better to rely on the descriptive statistics when the researchers intend to keep the research or outcome limited to the provided  sample  without generalizing it. For example, when you want to compare average voting done in two different cities, differential statistics are enough.

Descriptive analysis is also called a ‘univariate analysis’ since it is commonly used to analyze a single variable.

Inferential statistics

Inferential statistics are used to make predictions about a larger population after research and data analysis of the representing population’s collected sample. For example, you can ask some odd 100 audiences at a movie theater if they like the movie they are watching. Researchers then use inferential statistics on the collected  sample  to reason that about 80-90% of people like the movie. 

Here are two significant areas of inferential statistics.

  • Estimating parameters: It takes statistics from the sample research data and demonstrates something about the population parameter.
  • Hypothesis test: I t’s about sampling research data to answer the survey research questions. For example, researchers might be interested to understand if the new shade of lipstick recently launched is good or not, or if the multivitamin capsules help children to perform better at games.

These are sophisticated analysis methods used to showcase the relationship between different variables instead of describing a single variable. It is often used when researchers want something beyond absolute numbers to understand the relationship between variables.

Here are some of the commonly used methods for data analysis in research.

  • Correlation: When researchers are not conducting experimental research or quasi-experimental research wherein the researchers are interested to understand the relationship between two or more variables, they opt for correlational research methods.
  • Cross-tabulation: Also called contingency tables,  cross-tabulation  is used to analyze the relationship between multiple variables.  Suppose provided data has age and gender categories presented in rows and columns. A two-dimensional cross-tabulation helps for seamless data analysis and research by showing the number of males and females in each age category.
  • Regression analysis: For understanding the strong relationship between two variables, researchers do not look beyond the primary and commonly used regression analysis method, which is also a type of predictive analysis used. In this method, you have an essential factor called the dependent variable. You also have multiple independent variables in regression analysis. You undertake efforts to find out the impact of independent variables on the dependent variable. The values of both independent and dependent variables are assumed as being ascertained in an error-free random manner.
  • Frequency tables: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Analysis of variance: The statistical procedure is used for testing the degree to which two or more vary or differ in an experiment. A considerable degree of variation means research findings were significant. In many contexts, ANOVA testing and variance analysis are similar.
  • Researchers must have the necessary research skills to analyze and manipulation the data , Getting trained to demonstrate a high standard of research practice. Ideally, researchers must possess more than a basic understanding of the rationale of selecting one statistical method over the other to obtain better data insights.
  • Usually, research and data analytics projects differ by scientific discipline; therefore, getting statistical advice at the beginning of analysis helps design a survey questionnaire, select data collection methods , and choose samples.

LEARN ABOUT: Best Data Collection Tools

  • The primary aim of data research and analysis is to derive ultimate insights that are unbiased. Any mistake in or keeping a biased mind to collect data, selecting an analysis method, or choosing  audience  sample il to draw a biased inference.
  • Irrelevant to the sophistication used in research data and analysis is enough to rectify the poorly defined objective outcome measurements. It does not matter if the design is at fault or intentions are not clear, but lack of clarity might mislead readers, so avoid the practice.
  • The motive behind data analysis in research is to present accurate and reliable data. As far as possible, avoid statistical errors, and find a way to deal with everyday challenges like outliers, missing data, data altering, data mining , or developing graphical representation.

LEARN MORE: Descriptive Research vs Correlational Research The sheer amount of data generated daily is frightening. Especially when data analysis has taken center stage. in 2018. In last year, the total data supply amounted to 2.8 trillion gigabytes. Hence, it is clear that the enterprises willing to survive in the hypercompetitive world must possess an excellent capability to analyze complex research data, derive actionable insights, and adapt to the new market needs.

LEARN ABOUT: Average Order Value

QuestionPro is an online survey platform that empowers organizations in data analysis and research and provides them a medium to collect data by creating appealing surveys.

MORE LIKE THIS

analysis quantitative research

Life@QuestionPro: Thomas Maiwald-Immer’s Experience

Aug 9, 2024

Top 13 Reporting Tools to Transform Your Data Insights & More

Top 13 Reporting Tools to Transform Your Data Insights & More

Aug 8, 2024

Employee satisfaction

Employee Satisfaction: How to Boost Your  Workplace Happiness?

Aug 7, 2024

jotform vs formstack

Jotform vs Formstack: Which Form Builder Should You Choose?

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Logo for UEN Digital Press with Pressbooks

Part II: Data Analysis Methods in Quantitative Research

Data analysis methods in quantitative research.

We started this module with levels of measurement as a way to categorize our data. Data analysis is directed toward answering the original research question and achieving the study purpose (or aim). Now, we are going to delve into two main statistical analyses to describe our data and make inferences about our data:

Descriptive Statistics and Inferential Statistics.

Descriptive Statistics:

Before you panic, we will not be going into statistical analyses very deeply. We want to simply get a good overview of some of the types of general statistical analyses so that it makes some sense to us when we read results in published research articles.

Descriptive statistics   summarize or describe the characteristics of a data set. This is a method of simply organizing and describing our data. Why? Because data that are not organized in some fashion are super difficult to interpret.

Let’s say our sample is golden retrievers (population “canines”). Our descriptive statistics  tell us more about the same.

  • 37% of our sample is male, 43% female
  • The mean age is 4 years
  • Mode is 6 years
  • Median age is 5.5 years

Image of golden retriever in field

Let’s explore some of the types of descriptive statistics.

Frequency Distributions : A frequency distribution describes the number of observations for each possible value of a measured variable. The numbers are arranged from lowest to highest and features a count of how many times each value occurred.

For example, if 18 students have pet dogs, dog ownership has a frequency of 18.

We might see what other types of pets that students have. Maybe cats, fish, and hamsters. We find that 2 students have hamsters, 9 have fish, 1 has a cat.

You can see that it is very difficult to interpret the various pets into any meaningful interpretation, yes?

Now, let’s take those same pets and place them in a frequency distribution table.                          

Type of Pet

Frequency

Dog

18

Fish

9

Hamsters

2

Cat

1

As we can now see, this is much easier to interpret.

Let’s say that we want to know how many books our sample population of  students have read in the last year. We collect our data and find this:

Number of Books

Frequency (How many students read that number of books)

13

1

12

6

11

18

10

58

9

99

8

138

7

99

6

56

5

21

4

8

3

2

2

1

1

0

We can then take that table and plot it out on a frequency distribution graph. This makes it much easier to see how the numbers are disbursed. Easier on the eyes, yes?

Chart, histogram Description automatically generated

Here’s another example of symmetrical, positive skew, and negative skew:

Understanding Descriptive Statistics | by Sarang Narkhede | Towards Data Science

Correlation : Relationships between two research variables are called correlations . Remember, correlation is not cause-and-effect. Correlations  simply measure the extent of relationship between two variables. To measure correlation in descriptive statistics, the statistical analysis called Pearson’s correlation coefficient I is often used.  You do not need to know how to calculate this for this course. But, do remember that analysis test because you will often see this in published research articles. There really are no set guidelines on what measurement constitutes a “strong” or “weak” correlation, as it really depends on the variables being measured.

However, possible values for correlation coefficients range from -1.00 through .00 to +1.00. A value of +1 means that the two variables are positively correlated, as one variable goes up, the other goes up. A value of r = 0 means that the two variables are not linearly related.

Often, the data will be presented on a scatter plot. Here, we can view the data and there appears to be a straight line (linear) trend between height and weight. The association (or correlation) is positive. That means, that there is a weight increase with height. The Pearson correlation coefficient in this case was r = 0.56.

analysis quantitative research

A type I error is made by rejecting a null hypothesis that is true. This means that there was no difference but the researcher concluded that the hypothesis was true.

A type II error is made by accepting that the null hypothesis is true when, in fact, it was false. Meaning there was actually a difference but the researcher did not think their hypothesis was supported.

Hypothesis Testing Procedures : In a general sense, the overall testing of a hypothesis has a systematic methodology. Remember, a hypothesis is an educated guess about the outcome. If we guess wrong, we might set up the tests incorrectly and might get results that are invalid. Sometimes, this is super difficult to get right. The main purpose of statistics is to test a hypothesis.

  • Selecting a statistical test. Lots of factors go into this, including levels of measurement of the variables.
  • Specifying the level of significance. Usually 0.05 is chosen.
  • Computing a test statistic. Lots of software programs to help with this.
  • Determining degrees of freedom ( df ). This refers to the number of observations free to vary about a parameter. Computing this is easy (but you don’t need to know how for this course).
  • Comparing the test statistic to a theoretical value. Theoretical values exist for all test statistics, which is compared to the study statistics to help establish significance.

Some of the common inferential statistics you will see include:

Comparison tests: Comparison tests look for differences among group means. They can be used to test the effect of a categorical variable on the mean value of some other characteristic.

T-tests are used when comparing the means of precisely two groups (e.g., the average heights of men and women). ANOVA and MANOVA tests are used when comparing the means of more than two groups (e.g., the average heights of children, teenagers, and adults).

  • t -tests (compares differences in two groups) – either paired t-test (example: What is the effect of two different test prep programs on the average exam scores for students from the same class?) or independent t-test (example: What is the difference in average exam scores for students from two different schools?)
  • analysis of variance (ANOVA, which compares differences in three or more groups) (example: What is the difference in average pain levels among post-surgical patients given three different painkillers?) or MANOVA (compares differences in three or more groups, and 2 or more outcomes) (example: What is the effect of flower species on petal length, petal width, and stem length?)

Correlation tests: Correlation tests check whether variables are related without hypothesizing a cause-and-effect relationship.

  • Pearson r (measures the strength and direction of the relationship between two variables) (example: How are latitude and temperature related?)

Nonparametric tests: Non-parametric tests don’t make as many assumptions about the data, and are useful when one or more of the common statistical assumptions are violated. However, the inferences they make aren’t as strong as with parametric tests.

  • chi-squared ( X 2 ) test (measures differences in proportions). Chi-square tests are often used to test hypotheses. The chi-square statistic compares the size of any discrepancies between the expected results and the actual results, given the size of the sample and the number of variables in the relationship. For example, the results of tossing a fair coin meet these criteria. We can apply a chi-square test to determine which type of candy is most popular and make sure that our shelves are well stocked. Or maybe you’re a scientist studying the offspring of cats to determine the likelihood of certain genetic traits being passed to a litter of kittens.

Inferential Versus Descriptive Statistics Summary Table

Inferential Statistics

Descriptive Statistics

Used to make conclusions about the population by using analytical tools on the sample data.

Used to qualify the characteristics of the data.

Hypothesis testing.

Measures of central tendency and measures of dispersion are the important tools used.

Is used to make inferences about an unknown population.

Used to describe the characteristics of a known sample or population.

Measures of inferential statistics include t-tests, ANOVA, chi-squared test, etc.

Measures of descriptive statistics are variances, range, mean, median, etc.

Statistical Significance Versus Clinical Significance

Finally, when it comes to statistical significance  in hypothesis testing, the normal probability value in nursing is <0.05. A p=value (probability) is a statistical measurement used to validate a hypothesis against measured data in the study. Meaning, it measures the likelihood that the results were actually observed due to the intervention, or if the results were just due by chance. The p-value, in measuring the probability of obtaining the observed results, assumes the null hypothesis is true.

The lower the p-value, the greater the statistical significance of the observed difference.

In the example earlier about our diabetic patients receiving online diet education, let’s say we had p = 0.05. Would that be a statistically significant result?

If you answered yes, you are correct!

What if our result was p = 0.8?

Not significant. Good job!

That’s pretty straightforward, right? Below 0.05, significant. Over 0.05 not   significant.

Could we have significance clinically even if we do not have statistically significant results? Yes. Let’s explore this a bit.

Statistical hypothesis testing provides little information for interpretation purposes. It’s pretty mathematical and we can still get it wrong. Additionally, attaining statistical significance does not really state whether a finding is clinically meaningful. With a large enough sample, even a small very tiny relationship may be statistically significant. But, clinical significance  is the practical importance of research. Meaning, we need to ask what the palpable effects may be on the lives of patients or healthcare decisions.

Remember, hypothesis testing cannot prove. It also cannot tell us much other than “yeah, it’s probably likely that there would be some change with this intervention”. Hypothesis testing tells us the likelihood that the outcome was due to an intervention or influence and not just by chance. Also, as nurses and clinicians, we are not concerned with a group of people – we are concerned at the individual, holistic level. The goal of evidence-based practice is to use best evidence for decisions about specific individual needs.

analysis quantitative research

Additionally, begin your Discussion section. What are the implications to practice? Is there little evidence or a lot? Would you recommend additional studies? If so, what type of study would you recommend, and why?

analysis quantitative research

  • Were all the important results discussed?
  • Did the researchers discuss any study limitations and their possible effects on the credibility of the findings? In discussing limitations, were key threats to the study’s validity and possible biases reviewed? Did the interpretations take limitations into account?
  • What types of evidence were offered in support of the interpretation, and was that evidence persuasive? Were results interpreted in light of findings from other studies?
  • Did the researchers make any unjustifiable causal inferences? Were alternative explanations for the findings considered? Were the rationales for rejecting these alternatives convincing?
  • Did the interpretation consider the precision of the results and/or the magnitude of effects?
  • Did the researchers draw any unwarranted conclusions about the generalizability of the results?
  • Did the researchers discuss the study’s implications for clinical practice or future nursing research? Did they make specific recommendations?
  • If yes, are the stated implications appropriate, given the study’s limitations and the magnitude of the effects as well as evidence from other studies? Are there important implications that the report neglected to include?
  • Did the researchers mention or assess clinical significance? Did they make a distinction between statistical and clinical significance?
  • If clinical significance was examined, was it assessed in terms of group-level information (e.g., effect sizes) or individual-level results? How was clinical significance operationalized?

References & Attribution

“ Green check mark ” by rawpixel licensed CC0 .

“ Magnifying glass ” by rawpixel licensed CC0

“ Orange flame ” by rawpixel licensed CC0 .

Polit, D. & Beck, C. (2021).  Lippincott CoursePoint Enhanced for Polit’s Essentials of Nursing Research  (10th ed.). Wolters Kluwer Health 

Vaid, N. K. (2019) Statistical performance measures. Medium. https://neeraj-kumar-vaid.medium.com/statistical-performance-measures-12bad66694b7

Evidence-Based Practice & Research Methodologies Copyright © by Tracy Fawns is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • Qualitative vs. Quantitative Research | Differences, Examples & Methods

Qualitative vs. Quantitative Research | Differences, Examples & Methods

Published on April 12, 2019 by Raimo Streefkerk . Revised on June 22, 2023.

When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge.

Common quantitative methods include experiments, observations recorded as numbers, and surveys with closed-ended questions.

Quantitative research is at risk for research biases including information bias , omitted variable bias , sampling bias , or selection bias . Qualitative research Qualitative research is expressed in words . It is used to understand concepts, thoughts or experiences. This type of research enables you to gather in-depth insights on topics that are not well understood.

Common qualitative methods include interviews with open-ended questions, observations described in words, and literature reviews that explore concepts and theories.

Table of contents

The differences between quantitative and qualitative research, data collection methods, when to use qualitative vs. quantitative research, how to analyze qualitative and quantitative data, other interesting articles, frequently asked questions about qualitative and quantitative research.

Quantitative and qualitative research use different research methods to collect and analyze data, and they allow you to answer different kinds of research questions.

Qualitative vs. quantitative research

Quantitative and qualitative data can be collected using various methods. It is important to use a data collection method that will help answer your research question(s).

Many data collection methods can be either qualitative or quantitative. For example, in surveys, observational studies or case studies , your data can be represented as numbers (e.g., using rating scales or counting frequencies) or as words (e.g., with open-ended questions or descriptions of what you observe).

However, some methods are more commonly used in one type or the other.

Quantitative data collection methods

  • Surveys :  List of closed or multiple choice questions that is distributed to a sample (online, in person, or over the phone).
  • Experiments : Situation in which different types of variables are controlled and manipulated to establish cause-and-effect relationships.
  • Observations : Observing subjects in a natural environment where variables can’t be controlled.

Qualitative data collection methods

  • Interviews : Asking open-ended questions verbally to respondents.
  • Focus groups : Discussion among a group of people about a topic to gather opinions that can be used for further research.
  • Ethnography : Participating in a community or organization for an extended period of time to closely observe culture and behavior.
  • Literature review : Survey of published works by other authors.

A rule of thumb for deciding whether to use qualitative or quantitative data is:

  • Use quantitative research if you want to confirm or test something (a theory or hypothesis )
  • Use qualitative research if you want to understand something (concepts, thoughts, experiences)

For most research topics you can choose a qualitative, quantitative or mixed methods approach . Which type you choose depends on, among other things, whether you’re taking an inductive vs. deductive research approach ; your research question(s) ; whether you’re doing experimental , correlational , or descriptive research ; and practical considerations such as time, money, availability of data, and access to respondents.

Quantitative research approach

You survey 300 students at your university and ask them questions such as: “on a scale from 1-5, how satisfied are your with your professors?”

You can perform statistical analysis on the data and draw conclusions such as: “on average students rated their professors 4.4”.

Qualitative research approach

You conduct in-depth interviews with 15 students and ask them open-ended questions such as: “How satisfied are you with your studies?”, “What is the most positive aspect of your study program?” and “What can be done to improve the study program?”

Based on the answers you get you can ask follow-up questions to clarify things. You transcribe all interviews using transcription software and try to find commonalities and patterns.

Mixed methods approach

You conduct interviews to find out how satisfied students are with their studies. Through open-ended questions you learn things you never thought about before and gain new insights. Later, you use a survey to test these insights on a larger scale.

It’s also possible to start with a survey to find out the overall trends, followed by interviews to better understand the reasons behind the trends.

Qualitative or quantitative data by itself can’t prove or demonstrate anything, but has to be analyzed to show its meaning in relation to the research questions. The method of analysis differs for each type of data.

Analyzing quantitative data

Quantitative data is based on numbers. Simple math or more advanced statistical analysis is used to discover commonalities or patterns in the data. The results are often reported in graphs and tables.

Applications such as Excel, SPSS, or R can be used to calculate things like:

  • Average scores ( means )
  • The number of times a particular answer was given
  • The correlation or causation between two or more variables
  • The reliability and validity of the results

Analyzing qualitative data

Qualitative data is more difficult to analyze than quantitative data. It consists of text, images or videos instead of numbers.

Some common approaches to analyzing qualitative data include:

  • Qualitative content analysis : Tracking the occurrence, position and meaning of words or phrases
  • Thematic analysis : Closely examining the data to identify the main themes and patterns
  • Discourse analysis : Studying how communication works in social contexts

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square goodness of fit test
  • Degrees of freedom
  • Null hypothesis
  • Discourse analysis
  • Control groups
  • Mixed methods research
  • Non-probability sampling
  • Quantitative research
  • Inclusion and exclusion criteria

Research bias

  • Rosenthal effect
  • Implicit bias
  • Cognitive bias
  • Selection bias
  • Negativity bias
  • Status quo bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Streefkerk, R. (2023, June 22). Qualitative vs. Quantitative Research | Differences, Examples & Methods. Scribbr. Retrieved August 10, 2024, from https://www.scribbr.com/methodology/qualitative-quantitative-research/

Is this article helpful?

Raimo Streefkerk

Raimo Streefkerk

Other students also liked, what is quantitative research | definition, uses & methods, what is qualitative research | methods & examples, mixed methods research | definition, guide & examples, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Root out friction in every digital experience, super-charge conversion rates, and optimize digital self-service

Uncover insights from any interaction, deliver AI-powered agent coaching, and reduce cost to serve

Increase revenue and loyalty with real-time insights and recommendations delivered to teams on the ground

Know how your people feel and empower managers to improve employee engagement, productivity, and retention

Take action in the moments that matter most along the employee journey and drive bottom line growth

Whatever they’re are saying, wherever they’re saying it, know exactly what’s going on with your people

Get faster, richer insights with qual and quant tools that make powerful market research available to everyone

Run concept tests, pricing studies, prototyping + more with fast, powerful studies designed by UX research experts

Track your brand performance 24/7 and act quickly to respond to opportunities and challenges in your market

Explore the platform powering Experience Management

  • Free Account
  • Product Demos
  • For Digital
  • For Customer Care
  • For Human Resources
  • For Researchers
  • Financial Services
  • All Industries

Popular Use Cases

  • Customer Experience
  • Employee Experience
  • Net Promoter Score
  • Voice of Customer
  • Customer Success Hub
  • Product Documentation
  • Training & Certification
  • XM Institute
  • Popular Resources
  • Customer Stories
  • Artificial Intelligence

Market Research

  • Partnerships
  • Marketplace

The annual gathering of the experience leaders at the world’s iconic brands building breakthrough business results, live in Salt Lake City.

  • English/AU & NZ
  • Español/Europa
  • Español/América Latina
  • Português Brasileiro
  • REQUEST DEMO
  • Experience Management
  • Quantitative Research

Try Qualtrics for free

Your ultimate guide to quantitative research.

12 min read You may be already using quantitative research and want to check your understanding, or you may be starting from the beginning. Here’s an exploration of this research method and how you can best use it for maximum effect for your business.

You may be already using quantitative research and want to check your understanding, or you may be starting from the beginning. Here’s an exploration of this research method and how you can best use it for maximum effect for your business.

What is quantitative research?

Quantitative is the research method of collecting quantitative data – this is data that can be converted into numbers or numerical data, which can be easily quantified, compared, and analyzed.

Quantitative research deals with primary and secondary sources where data is represented in numerical form. This can include closed-question poll results, statistics, and census information or demographic data .

Quantitative data tends to be used when researchers are interested in understanding a particular moment in time and examining data sets over time to find trends and patterns.

To collect numerical data, surveys are often employed as one of the main research methods to source first-hand information in primary research . Quantitative research can also come from third-party research studies .

Quantitative research is widely used in the realms of social sciences, such as biology, chemistry, psychology, economics, sociology, and marketing .

Research teams collect data that is significant to proving or disproving a hypothesis research question – known as the research objective. When they collect quantitative data, researchers will aim to use a sample size that is representative of the total population of the target market they’re interested in.

Then the data collected will be manually or automatically stored and compared for insights.

Free eBook: The ultimate guide to conducting market research

Quantitative vs qualitative research

While the quantitative research definition focuses on numerical data, qualitative research is defined as data that supplies non-numerical information.

Quantitative research focuses on the thoughts, feelings, and values of a participant , to understand why people act in the way they do . They result in data types like quotes, symbols, images, and written testimonials.

These data types tell researchers subjective information, which can help us assign people into categories, such as a participant’s religion, gender , social class, political alignment, likely favored products to buy, or their preferred training learning style.

For this reason, qualitative research is often used in social research, as this gives a window into the behavior and actions of people.

analysis quantitative research

In general, if you’re interested in measuring something or testing a hypothesis, use quantitative methods. If you want to explore ideas, thoughts, and meanings, use qualitative methods.

However, quantitative and qualitative research methods are both recommended when you’re looking to understand a point in time, while also finding out the reason behind the facts.

Quantitative research data collection methods

Quantitative research methods can use structured research instruments like:

  • Surveys : A survey is a simple-to-create and easy-to-distribute research method , which helps gather information from large groups of participants quickly. Traditionally, paper-based surveys can now be made online, so costs can stay quite low.

Quantitative questions tend to be closed questions that ask for a numerical result, based on a range of options, or a yes/no answer that can be tallied quickly.

  • Face-to-face or phone interviews: Interviews are a great way to connect with participants , though they require time from the research team to set up and conduct.

Researchers may also have issues connecting with participants in different geographical regions . The researcher uses a set of predefined close-ended questions, which ask for yes/no or numerical values.

  • Polls: Polls can be a shorter version of surveys , used to get a ‘flavor’ of what the current situation is with participants. Online polls can be shared easily, though polls are best used with simple questions that request a range or a yes/no answer.

Quantitative data is the opposite of qualitative research, another dominant framework for research in the social sciences, explored further below.

Quantitative data types

Quantitative research methods often deliver the following data types:

  • Test Scores
  • Percent of training course completed
  • Performance score out of 100
  • Number of support calls active
  • Customer Net Promoter Score (NPS)

When gathering numerical data, the emphasis is on how specific the data is, and whether they can provide an indication of what ‘is’ at the time of collection. Pre-existing statistical data can tell us what ‘was’ for the date and time range that it represented

Quantitative research design methods (with examples)

Quantitative research has a number of quantitative research designs you can choose from:

Descriptive

This design type describes the state of a data type is telling researchers, in its native environment. There won’t normally be a clearly defined research question to start with. Instead, data analysis will suggest a conclusion , which can become the hypothesis to investigate further.

Examples of descriptive quantitative design include:

  • A description of child’s Christmas gifts they received that year
  • A description of what businesses sell the most of during Black Friday
  • A description of a product issue being experienced by a customer

Correlational

This design type looks at two or more data types, the relationship between them, and the extent that they differ or align. This does not look at the causal links deeper – instead statistical analysis looks at the variables in a natural environment.

Examples of correlational quantitative design include:

  • The relationship between a child’s Christmas gifts and their perceived happiness level
  • The relationship between a business’ sales during Black Friday and the total revenue generated over the year
  • The relationship between a customer’s product issue and the reputation of the product

Causal-Comparative/Quasi-Experimental

This design type looks at two or more data types and tries to explain any relationship and differences between them, using a cause-effect analysis. The research is carried out in a near-natural environment, where information is gathered from two groups – a naturally occurring group that matches the original natural environment, and one that is not naturally present.

This allows for causal links to be made, though they might not be correct, as other variables may have an impact on results.

Examples of causal-comparative/quasi-experimental quantitative design include:

  • The effect of children’s Christmas gifts on happiness
  • The effect of Black Friday sales figures on the productivity of company yearly sales
  • The effect of product issues on the public perception of a product

Experimental Research

This design type looks to make a controlled environment in which two or more variables are observed to understand the exact cause and effect they have. This becomes a quantitative research study, where data types are manipulated to assess the effect they have. The participants are not naturally occurring groups, as the setting is no longer natural. A quantitative research study can help pinpoint the exact conditions in which variables impact one another.

Examples of experimental quantitative design include:

  • The effect of children’s Christmas gifts on a child’s dopamine (happiness) levels
  • The effect of Black Friday sales on the success of the company
  • The effect of product issues on the perceived reliability of the product

Quantitative research methods need to be carefully considered, as your data collection of a data type can be used to different effects. For example, statistics can be descriptive or correlational (or inferential). Descriptive statistics help us to summarize our data, while inferential statistics help infer conclusions about significant differences.

Advantages of quantitative research

  • Easy to do : Doing quantitative research is more straightforward, as the results come in numerical format, which can be more easily interpreted.
  • Less interpretation : Due to the factual nature of the results, you will be able to accept or reject your hypothesis based on the numerical data collected.
  • Less bias : There are higher levels of control that can be applied to the research, so bias can be reduced , making your data more reliable and precise.

Disadvantages of quantitative research

  • Can’t understand reasons: Quantitative research doesn’t always tell you the full story, meaning you won’t understand the context – or the why, of the data you see, why do you see the results you have uncovered?
  • Useful for simpler situations: Quantitative research on its own is not great when dealing with complex issues. In these cases, quantitative research may not be enough.

How to use quantitative research to your business’s advantage

Quantitative research methods may help in areas such as:

  • Identifying which advert or landing page performs better
  • Identifying how satisfied your customers are
  • How many customers are likely to recommend you
  • Tracking how your brand ranks in awareness and customer purchase intent
  • Learn what consumers are likely to buy from your brand.

6 steps to conducting good quantitative research

Businesses can benefit from quantitative research by using it to evaluate the impact of data types. There are several steps to this:

  • Define your problem or interest area : What do you observe is happening and is it frequent? Identify the data type/s you’re observing.
  • Create a hypothesis : Ask yourself what could be the causes for the situation with those data types.
  • Plan your quantitative research : Use structured research instruments like surveys or polls to ask questions that test your hypothesis.
  • Data Collection : Collect quantitative data and understand what your data types are telling you. Using data collected on different types over long time periods can give you information on patterns.
  • Data analysis : Does your information support your hypothesis? (You may need to redo the research with other variables to see if the results improve)
  • Effectively present data : Communicate the results in a clear and concise way to help other people understand the findings.

How Qualtrics products can enhance & simplify the quantitative research process

The Qualtrics XM system gives you an all-in-one, integrated solution to help you all the way through conducting quantitative research. From survey creation and data collection to statistical analysis and data reporting, it can help all your internal teams gain insights from your numerical data.

Quantitative methods are catered to your business through templates or advanced survey designs. While you can manually collect data and conduct data analysis in a spreadsheet program, this solution helps you automate the process of quantitative research, saving you time and administration work.

Using computational techniques helps you to avoid human errors, and participant results come in are already incorporated into the analysis in real-time.

Our key tools, Stats IQ™ and Driver IQ™ make analyzing numerical data easy and simple. Choose to highlight key findings based on variables or highlight statistically insignificant findings. The choice is yours.

Qualitative research Qualtrics products

Some examples of your workspace in action, using drag and drop to create fast data visualizations quickly:

quantitative data - qualtrics products

Related resources

Market intelligence 10 min read, marketing insights 11 min read, ethnographic research 11 min read, qualitative vs quantitative research 13 min read, qualitative research questions 11 min read, qualitative research design 12 min read, primary vs secondary research 14 min read, request demo.

Ready to learn more about Qualtrics?

Glossary

  • Agile & Development
  • Prioritization
  • Product Management
  • Product Marketing & Growth
  • Product Metrics
  • Product Strategy

Home » Quantitative Research: Definition, Methods, and Examples

Quantitative Research: Definition, Methods, and Examples

June 13, 2023 max 8min read.

Quantitative Research

This article covers:

What Is Quantitative Research?

Quantitative research methods .

  • Data Collection and Analysis

Types of Quantitative Research

  • Advantages and Disadvantages of Quantitative Research

Examples of Quantitative Research

Picture this: you’re a product or project manager and must make a crucial decision. You need data-driven insights to guide your choices, understand customer preferences, and predict market trends. That’s where quantitative research comes into play. It’s like having a secret weapon that empowers you to make informed decisions confidently.

Quantitative research is all about numbers, statistics, and measurable data. It’s a systematic approach that allows you to gather and analyze numerical information to uncover patterns, trends, and correlations. 

Quantitative research provides concrete, objective data to drive your strategies, whether conducting surveys, analyzing large datasets, or crunching numbers.

In this article, we’ll dive and learn all about quantitative research; get ready to uncover the power of numbers.

Quantitative Research Definition:

Quantitative research is a systematic and objective approach to collecting, analyzing, and interpreting numerical data. It measures and quantifies variables, employing statistical methods to uncover patterns, relationships, and trends.

Quantitative research gets utilized across a wide range of fields, including market research, social sciences, psychology, economics, and healthcare. It follows a structured methodology that uses standardized instruments, such as surveys, experiments, or polls, to collect data. This data is then analyzed using statistical techniques to uncover patterns and relationships.

The purpose of quantitative research is to measure and quantify variables, assess the connections between variables, and draw objective and generalizable conclusions. Its benefits are numerous:

  • Rigorous and scientific approach : Quantitative research provides a comprehensive and scientific approach to studying phenomena. It enables researchers to gather empirical evidence and draw reliable conclusions based on solid data.
  • Evidence-based decision-making : By utilizing quantitative research, researchers can make evidence-based decisions. It helps in developing informed strategies and evaluating the effectiveness of interventions or policies by relying on data-driven insights.
  • Advancement of knowledge : Quantitative research contributes to the advancement of knowledge by building upon existing theories. It expands understanding in various fields and informs future research directions, allowing for continued growth and development.

Here are various quantitative research methods:

Survey research : This method involves collecting data from a sample of individuals through questionnaires, interviews, or online surveys. Surveys gather information about people’s attitudes, opinions, behaviors, and characteristics.

Experimentation: It is a research method that allows researchers to determine cause-and-effect relationships. In an experiment, participants randomly get assigned to different groups. While the other group does not receive treatment or intervention, one group does. The outcomes of the two groups then get measured to analyze the effects of the treatment or intervention.

Here are the steps involved in an experiment:

  • Define the research question. What do you want to learn about?
  • Develop a hypothesis. What do you think the answer to your research question is?
  • Design the experiment. How will you manipulate the variables and measure the outcomes?
  • Recruit participants. Who will you study?
  • Randomly assign participants to groups. This ensures that the groups are as similar as possible.
  • Apply the treatments or interventions. This is what the researcher is attempting to test the effects of.
  • Measure the outcomes. This is how the researcher will determine whether the treatments or interventions had any effect.
  • Analyze the data. This is how the researcher will determine whether the results support the hypothesis.
  • Draw conclusions. What do the results mean?
  • Content analysis : Content analysis is a systematic approach to analyzing written, verbal, or visual communication. Researchers identify and categorize specific content, themes, or patterns in various forms of media, such as books, articles, speeches, or social media posts.
  • Secondary data analysis : It is a research method that involves analyzing data already collected by someone else. This data can be from various sources, such as government reports, previous research studies, or large datasets like surveys or medical records. 

Researchers use secondary data analysis to answer new research questions or gain additional insights into a topic.

Data Collection and Analysis for Quantitative Research

Quantitative research is research that uses numbers and statistics to answer questions. It often measures things like attitudes, behaviors, and opinions.

There are three main methods for collecting quantitative data:

  • Surveys and questionnaires: These are structured instruments used to gather data from a sample of people.
  • Experiments and controlled observations: These are conducted in a controlled setting to measure variables and determine cause-and-effect relationships.
  • Existing data sources (secondary data): This data gets collected from databases, archives, or previous studies.

Data preprocessing and cleaning is the first step in data analysis. It involves identifying and correcting errors, removing outliers, and ensuring the data is consistent.

Descriptive statistics is a branch of statistics that deals with the description of the data. It summarizes and describes the data using central tendency, variability, and shape measures.

Inferential statistics again comes under statistics which deals with the inference of properties of a population from a sample. It tests hypotheses, estimates parameters, and makes predictions.

Here are some of the most common inferential statistical techniques:

  • Hypothesis testing : This assesses the significance of relationships or differences between variables.
  • Confidence intervals : This estimates the range within which population parameters likely fall.
  • Correlation and regression analysis : This examines relationships and predicts outcomes based on variables.
  • Analysis of variance (ANOVA) : This compare means across multiple groups or conditions.

Statistical software and tools for data analysis can perform complex statistical analyses efficiently. Some of the most popular statistical software packages include SPSS, SAS, and R.

Here are some of the main types of quantitative research methodology:

  • Descriptive research describes a particular population’s characteristics, trends, or behaviors. For example, a descriptive study might look at the average height of students in a school, the number of people who voted in an election, or the types of food people eat.
  • Correlational research checks the relationship between two or more variables. For example, a correlational study might examine the relationship between income and happiness or stress and weight gain. Correlational research can show that two variables are related but cannot show that one variable causes the other.
  • Experimental research is a type of research that investigates cause-and-effect relationships. In an experiment, researchers manipulate one variable (the independent variable) and measure the impact on another variable (the dependent variable). This allows researchers to make inferences about the relationship between the two variables.
  • Quasi-experimental research is similar to experimental research. However, it does not involve random assignment of participants to groups. This can be due to practical or ethical considerations, such as when assigning people to receive a new medication randomly is impossible. In quasi-experimental research, researchers try to control for other factors affecting the results, such as the participant’s age, gender, or health status.
  • Longitudinal research studies change patterns over an extended time. For example, a longitudinal study might examine how children’s reading skills develop over a few years or how people’s attitudes change as they age. But longitudinal research can be expensive and time-consuming. Still, it can offer valuable insights into how people and things change over time.

 Advantages and Disadvantages of Quantitative Research

Here are the advantages and downsides of quantitative research:

Advantages of Quantitative Research:

  • Objectivity: Quantitative research aims to be objective and unbiased. This is because it relies on numbers and statistical methods, which reduce the potential for researcher bias and subjective interpretation.
  • Generalizability: Quantitative research often involves large sample sizes, which increases the likelihood of obtaining representative data. The study findings are more likely to apply to a wider population.
  • Replicability: Using standardized procedures and measurement instruments in quantitative research enhances replicability. This means that other researchers can repeat the study using the same methods to test the reliability of the findings.
  • Statistical analysis: Quantitative research employs various statistical techniques for data analysis. This allows researchers to identify data patterns, relationships, and associations. Additionally, statistical analysis can provide precision and help draw objective conclusions.
  • Numerical precision: Quantitative research produces numerical data that can be analyzed using mathematical calculations. This numeric precision allows for clear comparisons and quantitative interpretations.

Disadvantages of Quantitative Research :

  • Lack of Contextual Understanding : Quantitative research often focuses on measurable variables, which may limit the exploration of complex phenomena. It may overlook the social, cultural, and contextual factors that could influence the research findings.
  • Limited Insight : While quantitative research can identify correlations and associations, it may not uncover underlying causes or explanations of these relationships. It may provide answers to “what” and “how much,” but not necessarily “why.”
  • Potential for Simplification : The quantification of data can lead to oversimplification, as it may reduce complex phenomena into numerical values. This simplification may overlook nuances and intricacies important to understanding the research topic fully.
  • Cost and Time-Intensive : Quantitative research requires significant resources. It includes time, funding, and specialized expertise. Researchers must collect and analyze large amounts of numerical data, which can be lengthy and expensive.
  • Limited Flexibility : A systematic and planned strategy typically gets employed in quantitative research. It signifies the researcher’s use of a predetermined data collection and analysis approach. As a result, you may be more confident that your study gets conducted consistently and equitably. But it may also make it more difficult for the researcher to change the research plan or pose additional inquiries while gathering data. This could lead to missing valuable insights.

Here are some real-life examples of quantitative research:

  • Market Research : Quantitative market research is a type of market research that uses numerical data to understand consumer preferences, buying behavior, and market trends. This data typically gets gathered through surveys and questionnaires, which are then analyzed to make informed business decisions.
  • Health Studies : Quantitative research, such as clinical trials and epidemiological research, is vital in health studies. Researchers collect numerical data on treatment effectiveness, disease prevalence, risk factors, and patient outcomes. This data is then analyzed statistically to draw conclusions and make evidence-based recommendations for healthcare practices.
  • Educational Research : Quantitative research is used extensively in educational studies to examine various aspects of learning, teaching methods, and academic achievement. Researchers collect data through standardized tests, surveys, or observations. The reason for this approach is to analyze factors influencing student performance, educational interventions, and educational policy effectiveness.
  • Social Science Surveys : Social science researchers often employ quantitative research methods. The aim here is to study social phenomena and gather data on individuals’ or groups’ attitudes, beliefs, and behaviors. Large-scale surveys collect numerical data, then statistically analyze to identify patterns, trends, and associations within the population.
  • Opinion Polls : Opinion polls and public opinion research rely heavily on quantitative research techniques. Polling organizations conduct surveys with representative samples of the population. The companies do this intending to gather numerical data on public opinions, political preferences, and social attitudes. The data then gets analyzed to gauge public sentiment and predict election outcomes or public opinion on specific issues.
  • Economic Research : Quantitative research is widely used in economic studies to analyze economic indicators, trends, and patterns. Economists collect numerical data on GDP, inflation, employment, and consumer spending. Statistical analysis of this data helps understand economic phenomena, forecast future trends, and inform economic policy decisions.

More To Read :-

  • Daily Active Users: Calculate + Tips to Increase DAU
  • Artificial Intelligence (AI): Definition and Examples
  • What Is Operations Management? Definition and Overview

Qualitative research is about understanding and exploring something in depth. It uses non-numerical data, like interviews, observations, and open-ended survey responses, to gather rich, descriptive insights. Quantitative research is about measuring and analyzing relationships between variables using numerical data.

Quantitative research gets characterized by the following:

  • The collection of numerical information
  • The use of statistical analysis
  • The goal of measuring and quantifying phenomena
  • The purpose of examining relationships between variables
  • The purpose of generalizing findings to a larger population
  • The use of large sample sizes
  • The use of structured surveys or experiments
  • The usage of statistical techniques to analyze data objectively

The primary goal of quantitative research is to gather numerical data and analyze it statistically to uncover patterns, relationships, and trends. It aims to provide objective and generalizable insights using systematic data collection methods, standardized instruments, and statistical analysis techniques. Quantitative research seeks to test hypotheses, make predictions, and inform decision-making in various fields.

Crafting great product requires great tools. Try Chisel today, it's free forever.

  • (855) 776-7763

Training Maker

All Products

Qualaroo Insights

ProProfs.com

  • Get Started Free

FREE. All Features. FOREVER!

Try our Forever FREE account with all premium features!

What Is Quantitative Research? Types, Characteristics & Methods

analysis quantitative research

Market Research Specialist

Emma David, a seasoned market research professional, specializes in employee engagement, survey administration, and data management. Her expertise in leveraging data for informed decisions has positively impacted several brands, enhancing their market position.

analysis quantitative research

Step into the fascinating world of quantitative research , where numbers reveal extraordinary insights!

By gathering and studying data in a systematic way, quantitative research empowers us to understand our ever-changing world better. It helps understand a problem or an already-formed hypothesis by generating numerical data. The results don’t end here, as you can process these numbers to get actionable insights that aid decision-making.

You can use quantitative research to quantify opinions, behaviors, attitudes, and other definitive variables related to the market, customers, competitors, etc. The research is conducted on a larger sample population to draw predictive, average, and pattern-based insights.

Here, we delve into the intricacies of this research methodology, exploring various quantitative methods, their advantages, and real-life examples that showcase their impact and relevance.

Ready to embark on a journey of discovery and knowledge? Let’s go!

What Is Quantitative Research?

Quantitative research is a method that uses numbers and statistics to test theories about customer attitudes and behaviors. It helps researchers gather and analyze data systematically to gain valuable insights and draw evidence-based conclusions about customer preferences and trends.

Researchers use online surveys, questionnaires , polls , and quizzes to question a large number of people to obtain measurable and bias-free data.

In technical terms, quantitative research is mainly concerned with discovering facts about social phenomena while assuming a fixed and measurable reality.

Offering numbers and stats-based insights, this research methodology is a crucial part of primary research and helps understand how well an organizational decision is going to work out.

Let’s consider an example.

Suppose your qualitative analysis shows that your customers are looking for social media-based customer support. In that case, quantitative analysis will help you see how many of your customers are looking for this support.

If 10% of your customers are looking for such a service, you might or might not consider offering this feature. But, if 40% of your regular customers are seeking support via social media, then it is something you just cannot overlook.

Characteristics of Quantitative Research

Quantitative research clarifies the fuzziness of research data from qualitative research analysis. With numerical insights, you can formulate a better and more profitable business decision.

Hence, quantitative research is more readily contestable, sharpens intelligent discussion, helps you see the rival hypotheses, and dynamically contributes to the research process.

Let us have a quick look at some of its characteristics.

1. Measurable Variables

The data collection methods in quantitative research are structured and contain items requiring measurable variables, such as age, number of family members, salary range, highest education, etc.

These structured data collection methods comprise polls, surveys, questionnaires, etc., and may have questions like the ones shown in the following image:

analysis quantitative research

As you can see, all the variables are measurable. This ensures that the research is in-depth and provides less erroneous data for reliable, actionable insights.

2. Sample Size

No matter what data analysis methods for quantitative research are being used, the sample size is kept such that it represents the target market.

As the main aim of the research methodology is to get numerical insights, the sample size should be fairly large. Depending on the survey objective and scope, it might span hundreds of thousands of people.

3. Normal Population Distribution

To maintain the reliability of a quantitative research methodology, we assume that the population distribution curve is normal.

analysis quantitative research

This type of population distribution curve is preferred over a non-normal distribution as the sample size is large, and the characteristics of the sample vary with its size.

This requires adhering to the random sampling principle to avoid the researcher’s bias in result interpretation. Any bias can ruin the fairness of the entire process and defeats the purpose of research.

4. Well-Structured Data Representation

Data analysis in quantitative research produces highly structured results and can form well-defined graphical representations. Some common examples include tables, figures, graphs, etc., that combine large blocks of data.

analysis quantitative research

This way, you can discover hidden data trends, relationships, and differences among various measurable variables. This can help researchers understand the survey data and formulate actionable insights for decision-making.

5. Predictive Outcomes

Quantitative analysis of data can also be used for estimations and prediction outcomes. You can construct if-then scenarios and analyze the data for the identification of any upcoming trends or events.

However, this requires advanced analytics and involves complex mathematical computations. So, it is mostly done via quantitative research tools that come with advanced analytics capabilities.

Types of Quantitative Research Methods

Quantitative research is usually conducted using two methods. They are-

  • Primary quantitative research methods
  • Secondary quantitative research methods

1. Primary quantitative research methods

Primary quantitative research is the most popular way of conducting market research. The differentiating factor of this method is that the researcher relies on collecting data firsthand instead of relying on data collected from previous research.

There are multiple types of primary quantitative research. They can be distinguished based on three distinctive aspects, which are:

1.1. Techniques & Types of Studies:

  • Survey Research

Surveys are the easiest, most common, and one of the most sought-after quantitative research techniques. The main aim of a survey is to widely gather and describe the characteristics of a target population or customers. Surveys are the foremost quantitative method preferred by both small and large organizations.

They help them understand their customers, products, and other brand offerings in a proper manner.

Surveys can be conducted using various methods, such as online polls, web-based surveys, paper questionnaires, phone calls, or face-to-face interviews. Survey research allows organizations to understand customer opinions, preferences, and behavior, making it crucial for market research and decision-making.

You can watch this quick video to learn more about creating surveys.

Watch: How to Create a Survey Using ProProfs Survey Maker

Surveys are of two types:

  • Cross-Sectional Surveys Cross-sectional surveys are used to collect data from a sample of the target population at a specific point in time. Researchers evaluate various variables simultaneously to understand the relationships and patterns within the data.
  • Cross-sectional surveys are popular in retail, small and medium-sized enterprises (SMEs), and healthcare industries, where they assess customer satisfaction, market trends, and product feedback.
  • Longitudinal Surveys Longitudinal surveys are conducted over an extended period, observing changes in respondent behavior and thought processes.
  • Researchers gather data from the same sample multiple times, enabling them to study trends and developments over time. These surveys are valuable in fields such as medicine, applied sciences, and market trend analysis.

Surveys can be distributed via various channels. Some of the most popular ones are listed below:

  • Email: Sending surveys via email is a popular and effective method. People recognize your brand, leading to a higher response rate. With ProProfs Survey Maker’s in-mail survey-filling feature, you can easily send out and collect survey responses.
  • Embed on a website: Boost your response rate by embedding the survey on your website. When visitors are already engaged with your brand, they are more likely to take the survey.
  • Social media: Take advantage of social media platforms to distribute your survey. People familiar with your brand are likely to respond, increasing your response numbers.
  • QR codes: QR codes store your survey’s URL, and you can print or publish these codes in magazines, signs, business cards, or any object to make it easy for people to access your survey.
  • SMS survey: Collect a high number of responses quickly with SMS surveys. It’s a time-effective way to reach your target audience.

1.2. Correlational Research:

Correlational research aims to establish relationships between two or more variables.

Researchers use statistical analysis to identify patterns and trends in the data, but it does not determine causality between the variables. This method helps understand how changes in one variable may impact another.

Examples of correlational research questions include studying the relationship between stress and depression, fame and money, or classroom activities and student performance.

1.3. Causal-Comparative Research:

Causal-comparative research, also known as quasi-experimental research, seeks to determine cause-and-effect relationships between variables.

Researchers analyze how an independent variable influences a dependent variable, but they do not manipulate the independent variable. Instead, they observe and compare different groups to draw conclusions.

Causal-comparative research is useful in situations where it’s not ethical or feasible to conduct true experiments.

Examples of questions for this type of research include analyzing the effect of training programs on employee performance, studying the influence of customer support on client retention, investigating the impact of supply chain efficiency on cost reduction, etc.

1.4. Experimental Research:

Experimental research is based on testing theories to validate or disprove them. Researchers conduct experiments and manipulate variables to observe their impact on the outcomes.

This type of research is prevalent in natural and social sciences, and it is a powerful method to establish cause-and-effect relationships. By randomly assigning participants to experimental and control groups, researchers can draw more confident conclusions.

Examples of experimental research include studying the effectiveness of a new drug, the impact of teaching methods on student performance, or the outcomes of a marketing campaign.

2. Data collection methodologies

After defining research objectives, the next significant step in primary quantitative research is data collection. This involves using two main methods: sampling and conducting surveys or polls.

2.1Sampling methods:

In quantitative research, there are two primary sampling methods: Probability and Non-probability sampling.

2.2Probability Sampling

In probability sampling, researchers use the concept of probability to create samples from a population. This method ensures that every individual in the target audience has an equal chance of being selected for the sample.

There are four main types of probability sampling:

  • Simple random sampling: Here, the elements or participants of a sample are selected randomly, and this technique is used in studies that are conducted over considerably large audiences. It works well for large target populations.
  • Stratified random sampling: In this method, the entire population is divided into strata or groups, and the sample members get chosen randomly from these strata only. It is always ensured that different segregated strata do not overlap with each other.
  • Cluster sampling: Here, researchers divide the population into clusters, often based on geography or demographics. Then, random clusters are selected for the sample.
  • Systematic sampling: In this method, only the starting point of the sample is randomly chosen. All the other participants are chosen using a fixed interval. Researchers calculate this interval by dividing the size of the study population by the target sample size.

2.3Non-probability Sampling

Non-probability sampling is a method where the researcher’s knowledge and experience guide the selection of samples. This approach doesn’t give all members of the target population an equal chance of being included in the sample.

There are five non-probability sampling models:

  • Convenience sampling: The elements or participants are chosen on the basis of their nearness to the researcher. The people in close proximity can be studied and analyzed easily and quickly, as there is no other selection criterion involved. Researchers simply choose samples based on what is most convenient for them.
  • Consecutive sampling: Similar to convenience sampling, researchers select samples one after another over a significant period. They can opt for a single participant or a group of samples to conduct quantitative research in a consecutive manner for a significant period of time. Once this is over, they can conduct the research from the start.
  • Quota sampling: With quota sampling, researchers use their understanding of target traits and personalities to form groups (strata). They then choose samples from each stratum based on their own judgment.
  • Snowball sampling: This method is used where the target audiences are difficult to contact and interviewed for data collection. Researchers start with a few participants and then ask them to refer others, creating a snowball effect.
  • Judgmental sampling: In judgmental sampling, researchers rely solely on their experience and research skills to handpick samples that they believe will be most relevant to the study.

3. Data analysis techniques

To analyze the quantitative data accurately, you’ll need to use specific statistical methods such as:

  • SWOT Analysis: This stands for Strengths, Weaknesses, Opportunities, and Threats analysis. Organizations use SWOT analysis to evaluate their performance internally and externally. It helps develop effective improvement strategies.
  • Conjoint Analysis: This market research method uncovers how individuals make complex purchasing decisions. It involves considering trade-offs in their daily activities when choosing from a list of product/service options.
  • Cross-tabulation: A preliminary statistical market analysis method that reveals relationships, patterns, and trends within various research study parameters.
  • TURF Analysis: Short for Totally Unduplicated Reach and Frequency Analysis, this method helps analyze the reach and frequency of favorable communication sources. It provides insights into the potential of a target market.
  • By using these statistical techniques and inferential statistics methods like confidence intervals and margin of error, you can draw meaningful insights from your primary quantitative research that you can use in making informed decisions.

2. Secondary Quantitative Research Methods

  • Secondary quantitative research, also known as desk research, is a valuable method that uses existing data, called secondary data.
  • Instead of collecting new data, researchers analyze and combine already available information to enhance their research. This approach involves gathering quantitative data from various sources such as the internet, government databases, libraries, and research reports.
  • Secondary quantitative research plays a crucial role in validating data collected through primary quantitative research. It helps reinforce or challenge existing findings.

Here are five commonly used secondary quantitative research methods:

A. Data Available on the Internet:

The Internet has become a vast repository of data, making it easier for researchers to access a wealth of information. Online databases, websites, and research repositories provide valuable quantitative data for researchers to analyze and validate their primary research findings.

B. Government and Non-Government Sources:

Government agencies and non-government organizations often conduct extensive research and publish reports. These reports cover a wide range of topics, providing researchers with reliable and comprehensive data for quantitative analysis.

C. Public Libraries:

While less commonly used in the digital age, public libraries still hold valuable research reports, historical data, and publications that can contribute to quantitative research.

D. Educational Institutions:

Educational institutions frequently conduct research on various subjects. Their research reports and publications can serve as valuable sources of information for researchers, validating and supporting primary quantitative research outcomes.

E. Commercial Information Sources:

Commercial sources such as local newspapers, journals, magazines, and media outlets often publish relevant data on economic trends, market research, and demographic analyses. Researchers can access this data to supplement their own findings and draw better conclusions.

Advantages of Quantitative Research Methods

Quantitative research data is often standardized and can be easily used to generalize findings for making crucial business decisions and uncover insights to supplement the qualitative research findings.

Here are some core benefits this research methodology offers.

Direct Result Comparison

As the studies can be replicated for different cultural settings and different times, even with different groups of participants, they tend to be extremely useful. Researchers can compare the results of different studies in a statistical manner and arrive at comprehensive conclusions for a broader understanding.

Replication

Researchers can repeat the study by using standardized data collection protocols over well-structured data sets. They can also apply tangible definitions of abstract concepts to arrive at different conclusions for similar research objectives with minor variations.

Large Samples

As the research data comes from large samples, the researchers can process and analyze the data via highly reliable and consistent analysis procedures. They can arrive at well-defined conclusions that can be used to make the primary research more thorough and reliable.

Hypothesis Testing

This research methodology follows standardized and established hypothesis testing procedures. So, you have to be careful while reporting and analyzing your research data , and the overall quality of results gets improved.

Proven Examples of Quantitative Research Methods

Below, we discuss two excellent examples of quantitative research methods that were used by highly distinguished business and consulting organizations. Both examples show how different types of analysis can be performed with qualitative approaches and how the analysis is done once the data is collected.

1. STEP Project Global Consortium / KPMG 2019 Global Family Business survey

This research utilized quantitative methods to identify ways that kept the family businesses sustainably profitable with time.

The study also identified the ways in which the family business behavior changed with demographic changes and had “why” and “how” questions. Their qualitative research methods allowed the KPMG team to dig deeper into the mindsets and perspectives of the business owners and uncover unexpected research avenues as well.

It was a joint effort in which STEP Project Global Consortium collected 26 cases, and KPMG collected 11 cases.

The research reached the stage of data analysis in 2020, and the analysis process spanned over 4 stages.

The results, which were also the reasons why family businesses tend to lose their strength with time, were found to be:

  • Family governance
  • Family business legacy

2. EY Seren Teams Research 2020

This is yet another commendable example of qualitative research where the EY Seren Team digs into the unexplored depths of human behavior and how it affected their brand or service expectations.

The research was done across 200+ sources and involved in-depth virtual interviews with people in their homes, exploring their current needs and wishes. It also involved diary studies across the entire UK customer base to analyze human behavior changes and patterns.

The study also included interviews with professionals and design leaders from a wide range of industries to explore how COVID-19 transformed their industries. Finally, quantitative surveys were conducted to gain insights into the EY community after every 15 days.

The insights and results were:

  • A culture of fear, daily resilience, and hopes for a better world and a better life – these were the macro trends.
  • People felt massive digitization to be a resourceful yet demanding aspect as they have to adapt every day.
  • Some people wished to have a new world with lots of possibilities, and some were looking for a new purpose.

8 Best Practices to Conduct Quantitative Research

Here are some best practices to keep in mind while conducting quantitative research:

1. Define Research Objectives

There can be many ways to collect data via quantitative research methods that are chosen as per the research objective and scope. These methods allow you to build your own observations regarding any hypotheses – unknown, entirely new, or unexplained. 

You can hypothesize a proof and build a prediction of outcomes supporting the same. You can also create a detailed stepwise plan for data collection, analysis, and testing. 

Below, we explore quantitative research methods and discuss some examples to enhance your understanding of them.

2. Keep Your Questions Simple

The surveys are meant to reach people en-masse, and that includes a wide demographic range with recipients from all walks of life. Asking simple questions will ensure that they grasp what’s being asked easily.

3. Develop a Solid Research Design

Choose an appropriate research design that aligns with your objectives, whether it’s experimental, quasi-experimental, or correlational. You also need to pay attention to the sample size and sampling technique such that it represents the target population accurately.

4. Use Reliable & Valid Instruments

It’s crucial to select or develop measurement instruments such as questionnaires, scales, or tests that have been validated and are reliable. Before proceeding with the main study, pilot-test these instruments on a small sample to assess their effectiveness and make any necessary improvements.

5. Ensure Data Quality

Implement data collection protocols to minimize errors and bias during data gathering. Double-check data entries and cleaning procedures to eliminate any inconsistencies or missing values that may affect the accuracy of your results. For instance, you might regularly cross-verify data entries to identify and correct any discrepancies.

6. Employ Appropriate Data Analysis Techniques

Select statistical methods that match the nature of your data and research questions. Whether it’s regression analysis, t-tests, ANOVA, or other techniques, using the right approach is important for drawing meaningful conclusions. Utilize software tools like SPSS or R for data analysis to ensure the accuracy and reproducibility of your findings.

7. Interpret Results Objectively

Present your findings in a clear and unbiased manner. Avoid making unwarranted causal claims, especially in correlational studies. Instead, focus on describing the relationships and patterns observed in your data.

8. Address Ethical Considerations

Prioritize ethical considerations throughout your research process. Obtain informed consent from participants, ensuring their voluntary participation and confidentiality of data. Comply with ethical guidelines and gain approval from a governing body if necessary.

Enhance Your Quantitative Research With Cutting-Edge Software

While no single research methodology can produce 100% reliable results, you can always opt for a hybrid research method by opting for the methods that are most relevant to your objective.

This understanding comes gradually as you learn how to implement the correct combination of qualitative and quantitative research methods for your research projects. For the best results, we recommend investing in smart, efficient, and scalable research tools that come with delightful reporting and advanced analytics to make every research initiative a success.

These software tools, such as ProProfs Survey Maker, come with pre-built survey templates and question libraries and allow you to create a high-converting survey in just a few minutes.

So, choose the best research partner, create the right research plan, and gather insights that drive sustainable growth for your business.

Emma David

About the author

Emma David is a seasoned market research professional with 8+ years of experience. Having kick-started her journey in research, she has developed rich expertise in employee engagement, survey creation and administration, and data management. Emma believes in the power of data to shape business performance positively. She continues to help brands and businesses make strategic decisions and improve their market standing through her understanding of research methodologies.

Related Posts

analysis quantitative research

How to Create Rating Scale Surveys: Benefits, Types & Examples

analysis quantitative research

Voice of Customer Survey: Questions, Examples ,Types & Strategies

analysis quantitative research

20+ Best Software Survey Questions to Ask Your Customers in 2024

analysis quantitative research

Market Segmentation: Types and Benefits

analysis quantitative research

Focus Group in Market Research: Types, Examples and Best Practices

analysis quantitative research

How Many Questions Should Be Asked in a Survey?

Research-Methodology

Quantitative Data Analysis

In quantitative data analysis you are expected to turn raw numbers into meaningful data through the application of rational and critical thinking. Quantitative data analysis may include the calculation of frequencies of variables and differences between variables. A quantitative approach is usually associated with finding evidence to either support or reject hypotheses you have formulated at the earlier stages of your research process .

The same figure within data set can be interpreted in many different ways; therefore it is important to apply fair and careful judgement.

For example, questionnaire findings of a research titled “A study into the impacts of informal management-employee communication on the levels of employee motivation: a case study of Agro Bravo Enterprise” may indicate that the majority 52% of respondents assess communication skills of their immediate supervisors as inadequate.

This specific piece of primary data findings needs to be critically analyzed and objectively interpreted through comparing it to other findings within the framework of the same research. For example, organizational culture of Agro Bravo Enterprise, leadership style, the levels of frequency of management-employee communications need to be taken into account during the data analysis.

Moreover, literature review findings conducted at the earlier stages of the research process need to be referred to in order to reflect the viewpoints of other authors regarding the causes of employee dissatisfaction with management communication. Also, secondary data needs to be integrated in data analysis in a logical and unbiased manner.

Let’s take another example. You are writing a dissertation exploring the impacts of foreign direct investment (FDI) on the levels of economic growth in Vietnam using correlation quantitative data analysis method . You have specified FDI and GDP as variables for your research and correlation tests produced correlation coefficient of 0.9.

In this case simply stating that there is a strong positive correlation between FDI and GDP would not suffice; you have to provide explanation about the manners in which the growth on the levels of FDI may contribute to the growth of GDP by referring to the findings of the literature review and applying your own critical and rational reasoning skills.

A set of analytical software can be used to assist with analysis of quantitative data. The following table  illustrates the advantages and disadvantages of three popular quantitative data analysis software: Microsoft Excel, Microsoft Access and SPSS.

Cost effective or Free of Charge

Can be sent as e-mail attachments & viewed by most smartphones

All in one program

Excel files can be secured by a password

Big Excel files may run slowly

Numbers of rows and columns are limited

Advanced analysis functions are time consuming to be learned by beginners

Virus vulnerability through macros

 

One of the cheapest amongst premium programs

Flexible information retrieval

Ease of use

 

Difficult in dealing with large database

Low level of interactivity

Remote use requires installation of the same version of Microsoft Access

Broad coverage of formulas and statistical routines

Data files can be imported through other programs

Annually updated to increase sophistication

Expensive cost

Limited license duration

Confusion among the different versions due to regular update

Advantages and disadvantages of popular quantitative analytical software

Quantitative data analysis with the application of statistical software consists of the following stages [1] :

  • Preparing and checking the data. Input of data into computer.
  • Selecting the most appropriate tables and diagrams to use according to your research objectives.
  • Selecting the most appropriate statistics to describe your data.
  • Selecting the most appropriate statistics to examine relationships and trends in your data.

It is important to note that while the application of various statistical software and programs are invaluable to avoid drawing charts by hand or undertake calculations manually, it is easy to use them incorrectly. In other words, quantitative data analysis is “a field where it is not at all difficult to carry out an analysis which is simply wrong, or inappropriate for your data or purposes. And the negative side of readily available specialist statistical software is that it becomes that much easier to generate elegantly presented rubbish” [2] .

Therefore, it is important for you to seek advice from your dissertation supervisor regarding statistical analyses in general and the choice and application of statistical software in particular.

My  e-book,  The Ultimate Guide to Writing a Dissertation in Business Studies: a step by step approach  contains a detailed, yet simple explanation of quantitative data analysis methods . The e-book explains all stages of the research process starting from the selection of the research area to writing personal reflection. Important elements of dissertations such as research philosophy, research approach, research design, methods of data collection and data analysis are explained in simple words. John Dudovskiy

Quantitative Data Analysis

[1] Saunders, M., Lewis, P. & Thornhill, A. (2012) “Research Methods for Business Students” 6th edition, Pearson Education Limited.

[2] Robson, C. (2011) Real World Research: A Resource for Users of Social Research Methods in Applied Settings (3rd edn). Chichester: John Wiley.

Qualitative vs Quantitative Research Methods & Data Analysis

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Learn about our Editorial Process

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

What is the difference between quantitative and qualitative?

The main difference between quantitative and qualitative research is the type of data they collect and analyze.

Quantitative research collects numerical data and analyzes it using statistical methods. The aim is to produce objective, empirical data that can be measured and expressed in numerical terms. Quantitative research is often used to test hypotheses, identify patterns, and make predictions.

Qualitative research , on the other hand, collects non-numerical data such as words, images, and sounds. The focus is on exploring subjective experiences, opinions, and attitudes, often through observation and interviews.

Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings.

Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

What Is Qualitative Research?

Qualitative research is the process of collecting, analyzing, and interpreting non-numerical data, such as language. Qualitative research can be used to understand how an individual subjectively perceives and gives meaning to their social reality.

Qualitative data is non-numerical data, such as text, video, photographs, or audio recordings. This type of data can be collected using diary accounts or in-depth interviews and analyzed using grounded theory or thematic analysis.

Qualitative research is multimethod in focus, involving an interpretive, naturalistic approach to its subject matter. This means that qualitative researchers study things in their natural settings, attempting to make sense of, or interpret, phenomena in terms of the meanings people bring to them. Denzin and Lincoln (1994, p. 2)

Interest in qualitative data came about as the result of the dissatisfaction of some psychologists (e.g., Carl Rogers) with the scientific study of psychologists such as behaviorists (e.g., Skinner ).

Since psychologists study people, the traditional approach to science is not seen as an appropriate way of carrying out research since it fails to capture the totality of human experience and the essence of being human.  Exploring participants’ experiences is known as a phenomenological approach (re: Humanism ).

Qualitative research is primarily concerned with meaning, subjectivity, and lived experience. The goal is to understand the quality and texture of people’s experiences, how they make sense of them, and the implications for their lives.

Qualitative research aims to understand the social reality of individuals, groups, and cultures as nearly as possible as participants feel or live it. Thus, people and groups are studied in their natural setting.

Some examples of qualitative research questions are provided, such as what an experience feels like, how people talk about something, how they make sense of an experience, and how events unfold for people.

Research following a qualitative approach is exploratory and seeks to explain ‘how’ and ‘why’ a particular phenomenon, or behavior, operates as it does in a particular context. It can be used to generate hypotheses and theories from the data.

Qualitative Methods

There are different types of qualitative research methods, including diary accounts, in-depth interviews , documents, focus groups , case study research , and ethnography.

The results of qualitative methods provide a deep understanding of how people perceive their social realities and in consequence, how they act within the social world.

The researcher has several methods for collecting empirical materials, ranging from the interview to direct observation, to the analysis of artifacts, documents, and cultural records, to the use of visual materials or personal experience. Denzin and Lincoln (1994, p. 14)

Here are some examples of qualitative data:

Interview transcripts : Verbatim records of what participants said during an interview or focus group. They allow researchers to identify common themes and patterns, and draw conclusions based on the data. Interview transcripts can also be useful in providing direct quotes and examples to support research findings.

Observations : The researcher typically takes detailed notes on what they observe, including any contextual information, nonverbal cues, or other relevant details. The resulting observational data can be analyzed to gain insights into social phenomena, such as human behavior, social interactions, and cultural practices.

Unstructured interviews : generate qualitative data through the use of open questions.  This allows the respondent to talk in some depth, choosing their own words.  This helps the researcher develop a real sense of a person’s understanding of a situation.

Diaries or journals : Written accounts of personal experiences or reflections.

Notice that qualitative data could be much more than just words or text. Photographs, videos, sound recordings, and so on, can be considered qualitative data. Visual data can be used to understand behaviors, environments, and social interactions.

Qualitative Data Analysis

Qualitative research is endlessly creative and interpretive. The researcher does not just leave the field with mountains of empirical data and then easily write up his or her findings.

Qualitative interpretations are constructed, and various techniques can be used to make sense of the data, such as content analysis, grounded theory (Glaser & Strauss, 1967), thematic analysis (Braun & Clarke, 2006), or discourse analysis .

For example, thematic analysis is a qualitative approach that involves identifying implicit or explicit ideas within the data. Themes will often emerge once the data has been coded .

RESEARCH THEMATICANALYSISMETHOD

Key Features

  • Events can be understood adequately only if they are seen in context. Therefore, a qualitative researcher immerses her/himself in the field, in natural surroundings. The contexts of inquiry are not contrived; they are natural. Nothing is predefined or taken for granted.
  • Qualitative researchers want those who are studied to speak for themselves, to provide their perspectives in words and other actions. Therefore, qualitative research is an interactive process in which the persons studied teach the researcher about their lives.
  • The qualitative researcher is an integral part of the data; without the active participation of the researcher, no data exists.
  • The study’s design evolves during the research and can be adjusted or changed as it progresses. For the qualitative researcher, there is no single reality. It is subjective and exists only in reference to the observer.
  • The theory is data-driven and emerges as part of the research process, evolving from the data as they are collected.

Limitations of Qualitative Research

  • Because of the time and costs involved, qualitative designs do not generally draw samples from large-scale data sets.
  • The problem of adequate validity or reliability is a major criticism. Because of the subjective nature of qualitative data and its origin in single contexts, it is difficult to apply conventional standards of reliability and validity. For example, because of the central role played by the researcher in the generation of data, it is not possible to replicate qualitative studies.
  • Also, contexts, situations, events, conditions, and interactions cannot be replicated to any extent, nor can generalizations be made to a wider context than the one studied with confidence.
  • The time required for data collection, analysis, and interpretation is lengthy. Analysis of qualitative data is difficult, and expert knowledge of an area is necessary to interpret qualitative data. Great care must be taken when doing so, for example, looking for mental illness symptoms.

Advantages of Qualitative Research

  • Because of close researcher involvement, the researcher gains an insider’s view of the field. This allows the researcher to find issues that are often missed (such as subtleties and complexities) by the scientific, more positivistic inquiries.
  • Qualitative descriptions can be important in suggesting possible relationships, causes, effects, and dynamic processes.
  • Qualitative analysis allows for ambiguities/contradictions in the data, which reflect social reality (Denscombe, 2010).
  • Qualitative research uses a descriptive, narrative style; this research might be of particular benefit to the practitioner as she or he could turn to qualitative reports to examine forms of knowledge that might otherwise be unavailable, thereby gaining new insight.

What Is Quantitative Research?

Quantitative research involves the process of objectively collecting and analyzing numerical data to describe, predict, or control variables of interest.

The goals of quantitative research are to test causal relationships between variables , make predictions, and generalize results to wider populations.

Quantitative researchers aim to establish general laws of behavior and phenomenon across different settings/contexts. Research is used to test a theory and ultimately support or reject it.

Quantitative Methods

Experiments typically yield quantitative data, as they are concerned with measuring things.  However, other research methods, such as controlled observations and questionnaires , can produce both quantitative information.

For example, a rating scale or closed questions on a questionnaire would generate quantitative data as these produce either numerical data or data that can be put into categories (e.g., “yes,” “no” answers).

Experimental methods limit how research participants react to and express appropriate social behavior.

Findings are, therefore, likely to be context-bound and simply a reflection of the assumptions that the researcher brings to the investigation.

There are numerous examples of quantitative data in psychological research, including mental health. Here are a few examples:

Another example is the Experience in Close Relationships Scale (ECR), a self-report questionnaire widely used to assess adult attachment styles .

The ECR provides quantitative data that can be used to assess attachment styles and predict relationship outcomes.

Neuroimaging data : Neuroimaging techniques, such as MRI and fMRI, provide quantitative data on brain structure and function.

This data can be analyzed to identify brain regions involved in specific mental processes or disorders.

For example, the Beck Depression Inventory (BDI) is a clinician-administered questionnaire widely used to assess the severity of depressive symptoms in individuals.

The BDI consists of 21 questions, each scored on a scale of 0 to 3, with higher scores indicating more severe depressive symptoms. 

Quantitative Data Analysis

Statistics help us turn quantitative data into useful information to help with decision-making. We can use statistics to summarize our data, describing patterns, relationships, and connections. Statistics can be descriptive or inferential.

Descriptive statistics help us to summarize our data. In contrast, inferential statistics are used to identify statistically significant differences between groups of data (such as intervention and control groups in a randomized control study).

  • Quantitative researchers try to control extraneous variables by conducting their studies in the lab.
  • The research aims for objectivity (i.e., without bias) and is separated from the data.
  • The design of the study is determined before it begins.
  • For the quantitative researcher, the reality is objective, exists separately from the researcher, and can be seen by anyone.
  • Research is used to test a theory and ultimately support or reject it.

Limitations of Quantitative Research

  • Context: Quantitative experiments do not take place in natural settings. In addition, they do not allow participants to explain their choices or the meaning of the questions they may have for those participants (Carr, 1994).
  • Researcher expertise: Poor knowledge of the application of statistical analysis may negatively affect analysis and subsequent interpretation (Black, 1999).
  • Variability of data quantity: Large sample sizes are needed for more accurate analysis. Small-scale quantitative studies may be less reliable because of the low quantity of data (Denscombe, 2010). This also affects the ability to generalize study findings to wider populations.
  • Confirmation bias: The researcher might miss observing phenomena because of focus on theory or hypothesis testing rather than on the theory of hypothesis generation.

Advantages of Quantitative Research

  • Scientific objectivity: Quantitative data can be interpreted with statistical analysis, and since statistics are based on the principles of mathematics, the quantitative approach is viewed as scientifically objective and rational (Carr, 1994; Denscombe, 2010).
  • Useful for testing and validating already constructed theories.
  • Rapid analysis: Sophisticated software removes much of the need for prolonged data analysis, especially with large volumes of data involved (Antonius, 2003).
  • Replication: Quantitative data is based on measured values and can be checked by others because numerical data is less open to ambiguities of interpretation.
  • Hypotheses can also be tested because of statistical analysis (Antonius, 2003).

Antonius, R. (2003). Interpreting quantitative data with SPSS . Sage.

Black, T. R. (1999). Doing quantitative research in the social sciences: An integrated approach to research design, measurement and statistics . Sage.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology . Qualitative Research in Psychology , 3, 77–101.

Carr, L. T. (1994). The strengths and weaknesses of quantitative and qualitative research : what method for nursing? Journal of advanced nursing, 20(4) , 716-721.

Denscombe, M. (2010). The Good Research Guide: for small-scale social research. McGraw Hill.

Denzin, N., & Lincoln. Y. (1994). Handbook of Qualitative Research. Thousand Oaks, CA, US: Sage Publications Inc.

Glaser, B. G., Strauss, A. L., & Strutzel, E. (1968). The discovery of grounded theory; strategies for qualitative research. Nursing research, 17(4) , 364.

Minichiello, V. (1990). In-Depth Interviewing: Researching People. Longman Cheshire.

Punch, K. (1998). Introduction to Social Research: Quantitative and Qualitative Approaches. London: Sage

Further Information

  • Mixed methods research
  • Designing qualitative research
  • Methods of data collection and analysis
  • Introduction to quantitative and qualitative research
  • Checklists for improving rigour in qualitative research: a case of the tail wagging the dog?
  • Qualitative research in health care: Analysing qualitative data
  • Qualitative data analysis: the framework approach
  • Using the framework method for the analysis of
  • Qualitative data in multi-disciplinary health research
  • Content Analysis
  • Grounded Theory
  • Thematic Analysis

Print Friendly, PDF & Email

Qualitative vs. Quantitative Data: 7 Key Differences

' src=

Qualitative data is information you can describe with words rather than numbers. 

Quantitative data is information represented in a measurable way using numbers. 

One type of data isn’t better than the other. 

To conduct thorough research, you need both. But knowing the difference between them is important if you want to harness the full power of both qualitative and quantitative data. 

In this post, we’ll explore seven key differences between these two types of data. 

#1. The Type of Data

The single biggest difference between quantitative and qualitative data is that one deals with numbers, and the other deals with concepts and ideas. 

The words “qualitative” and “quantitative” are really similar, which can make it hard to keep track of which one is which. I like to think of them this way: 

  • Quantitative = quantity = numbers-related data
  • Qualitative = quality = descriptive data

Qualitative data—the descriptive one—usually involves written or spoken words, images, or even objects. It’s collected in all sorts of ways: video recordings, interviews, open-ended survey responses, and field notes, for example. 

I like how researcher James W. Crick defines qualitative research in a 2021 issue of the Journal of Strategic Marketing : “Qualitative research is designed to generate in-depth and subjective findings to build theory.”

In other words, qualitative research helps you learn more about a topic—usually from a primary, or firsthand, source—so you can form ideas about what it means. This type of data is often rich in detail, and its interpretation can vary depending on who’s analyzing it. 

Here’s what I mean: if you ask five different people to observe how 60 kittens behave when presented with a hamster wheel, you’ll get five different versions of the same event. 

Quantitative data, on the other hand, is all about numbers and statistics. There’s no wiggle room when it comes to interpretation. In our kitten scenario, quantitative data might show us that of the 60 kittens presented with a hamster wheel, 40 pawed at it, 5 jumped inside and started spinning, and 15 ignored it completely.

There’s no ifs, ands, or buts about the numbers. They just are. 

#2. When to Use Each Type of Data

You should use both quantitative and quantitative data to make decisions for your business. 

Quantitative data helps you get to the what . Qualitative data unearths the why .

Quantitative data collects surface information, like numbers. Qualitative data dives deep beneath these same numbers and fleshes out the nuances there. 

Research projects can often benefit from both types of data, which is why you’ll see the term “mixed-method” research in peer-reviewed journals. The term “mixed-method” refers to using both quantitative and qualitative methods in a study. 

So, maybe you’re diving into original research. Or maybe you’re looking at other peoples’ studies to make an important business decision. In either case, you can use both quantitative and qualitative data to guide you.

Imagine you want to start a company that makes hamster wheels for cats. You run that kitten experiment, only to learn that most kittens aren’t all that interested in the hamster wheel. That’s what your quantitative data seems to say. Of the 60 kittens who participated in the study, only 5 hopped into the wheel. 

But 40 of the kittens pawed at the wheel. According to your quantitative data, these 40 kittens touched the wheel but did not get inside. 

This is where your qualitative data comes into play. Why did these 40 kittens touch the wheel but stop exploring it? You turn to the researchers’ observations. Since there were five different researchers, you have five sets of detailed notes to study. 

From these observations, you learn that many of the kittens seemed frightened when the wheel moved after they pawed it. They grew suspicious of the structure, meowing and circling it, agitated.

One researcher noted that the kittens seemed desperate to enjoy the wheel, but they didn’t seem to feel it was safe. 

So your idea isn’t a flop, exactly. 

It just needs tweaking. 

According to your quantitative data, 75% of the kittens studied either touched or actively participated in the hamster wheel. Your qualitative data suggests more kittens would have jumped into the wheel if it hadn’t moved so easily when they pawed at it. 

You decide to make your kitten wheel sturdier and try the whole test again with a new set of kittens. Hopefully, this time a higher percentage of your feline participants will hop in and enjoy the fun. 

This is a very simplistic and fictional example of how a mixed-method approach can help you make important choices for your business. 

#3. Data You Have Access To

When you can swing it, you should look at both qualitative and quantitative data before you make any big decisions. 

But this is where we come to another big difference between quantitative vs. qualitative data: it’s a lot easier to source qualitative data than quantitative data. 

Why? Because it’s easy to run a survey, host a focus group, or conduct a round of interviews. All you have to do is hop on SurveyMonkey or Zoom and you’re on your way to gathering original qualitative data. 

And yes, you can get some quantitative data here. If you run a survey and 45 customers respond, you can collect demographic data and yes/no answers for that pool of 45 respondents.

But this is a relatively small sample size. (More on why this matters in a moment.) 

To tell you anything meaningful, quantitative data must achieve statistical significance. 

If it’s been a while since your college statistics class, here’s a refresh: statistical significance is a measuring stick. It tells you whether the results you get are due to a specific cause or if they can be attributed to random chance. 

To achieve statistical significance in a study, you have to be really careful to set the study up the right way and with a meaningful sample size.

This doesn’t mean it’s impossible to get quantitative data. But unless you have someone on your team who knows all about null hypotheses and p-values and statistical analysis, you might need to outsource quantitative research. 

Plenty of businesses do this, but it’s pricey. 

When you’re just starting out or you’re strapped for cash, qualitative data can get you valuable information—quickly and without gouging your wallet. 

#4. Big vs. Small Sample Size

Another reason qualitative data is more accessible? It requires a smaller sample size to achieve meaningful results. 

Even one person’s perspective brings value to a research project—ever heard of a case study?

The sweet spot depends on the purpose of the study, but for qualitative market research, somewhere between 10-40 respondents is a good number. 

Any more than that and you risk reaching saturation. That’s when you keep getting results that echo each other and add nothing new to the research.

Quantitative data needs enough respondents to reach statistical significance without veering into saturation territory. 

The ideal sample size number is usually higher than it is for qualitative data. But as with qualitative data, there’s no single, magic number. It all depends on statistical values like confidence level, population size, and margin of error.

Because it often requires a larger sample size, quantitative research can be more difficult for the average person to do on their own. 

#5. Methods of Analysis

Running a study is just the first part of conducting qualitative and quantitative research. 

After you’ve collected data, you have to study it. Find themes, patterns, consistencies, inconsistencies. Interpret and organize the numbers or survey responses or interview recordings. Tidy it all up into something you can draw conclusions from and apply to various situations. 

This is called data analysis, and it’s done in completely different ways for qualitative vs. quantitative data. 

For qualitative data, analysis includes: 

  • Data prep: Make all your qualitative data easy to access and read. This could mean organizing survey results by date, or transcribing interviews, or putting photographs into a slideshow format. 
  • Coding: No, not that kind. Think color coding, like you did for your notes in school. Assign colors or codes to specific attributes that make sense for your study—green for positive emotions, for instance, and red for angry emotions. Then code each of your responses. 
  • Thematic analysis: Organize your codes into themes and sub-themes, looking for the meaning—and relationships—within each one. 
  • Content analysis: Quantify the number of times certain words or concepts appear in your data. If this sounds suspiciously like quantitative research to you, it is. Sort of. It’s looking at qualitative data with a quantitative eye to identify any recurring themes or patterns. 
  • Narrative analysis: Look for similar stories and experiences and group them together. Study them and draw inferences from what they say.
  • Interpret and document: As you organize and analyze your qualitative data, decide what the findings mean for you and your project.

You can often do qualitative data analysis manually or with tools like NVivo and ATLAS.ti. These tools help you organize, code, and analyze your subjective qualitative data. 

Quantitative data analysis is a lot less subjective. Here’s how it generally goes: 

  • Data cleaning: Remove all inconsistencies and inaccuracies from your data. Check for duplicates, incorrect formatting (mistakenly writing a 1.00 value as 10.1, for example), and incomplete numbers. 
  • Summarize data with descriptive statistics: Use mean, median, mode, range, and standard deviation to summarize your data. 
  • Interpret the data with inferential statistics: This is where it gets more complicated. Instead of simply summarizing stats, you’ll now use complicated mathematical and statistical formulas and tests—t-tests, chi-square tests, analysis of variance (ANOVA), and correlation, for starters—to assign meaning to your data. 

Researchers generally use sophisticated data analysis tools like RapidMiner and Tableau to help them do this work. 

#6. Flexibility 

Quantitative research tends to be less flexible than qualitative research. It relies on structured data collection methods, which researchers must set up well before the study begins.

This rigid structure is part of what makes quantitative data so reliable. But the downside here is that once you start the study, it’s hard to change anything without negatively affecting the results. If something unexpected comes up—or if new questions arise—researchers can’t easily change the scope of the study. 

Qualitative research is a lot more flexible. This is why qualitative data can go deeper than quantitative data. If you’re interviewing someone and an interesting, unexpected topic comes up, you can immediately explore it.

Other qualitative research methods offer flexibility, too. Most big survey software brands allow you to build flexible surveys using branching and skip logic. These features let you customize which questions respondents see based on the answers they give.  

This flexibility is unheard of in quantitative research. But even though it’s as flexible as an Olympic gymnast, qualitative data can be less reliable—and harder to validate. 

#7. Reliability and Validity

Quantitative data is more reliable than qualitative data. Numbers can’t be massaged to fit a certain bias. If you replicate the study—in other words, run the exact same quantitative study two or more times—you should get nearly identical results each time. The same goes if another set of researchers runs the same study using the same methods.

This is what gives quantitative data that reliability factor. 

There are a few key benefits here. First, reliable data means you can confidently make generalizations that apply to a larger population. It also means the data is valid and accurately measures whatever it is you’re trying to measure. 

And finally, reliable data is trustworthy. Big industries like healthcare, marketing, and education frequently use quantitative data to make life-or-death decisions. The more reliable and trustworthy the data, the more confident these decision-makers can be when it’s time to make critical choices. 

Unlike quantitative data, qualitative data isn’t overtly reliable. It’s not easy to replicate. If you send out the same qualitative survey on two separate occasions, you’ll get a new mix of responses. Your interpretations of the data might look different, too. 

There’s still incredible value in qualitative data, of course—and there are ways to make sure the data is valid. These include: 

  • Member checking: Circling back with survey, interview, or focus group respondents to make sure you accurately summarized and interpreted their feedback. 
  • Triangulation: Using multiple data sources, methods, or researchers to cross-check and corroborate findings.
  • Peer debriefing: Showing the data to peers—other researchers—so they can review the research process and its findings and provide feedback on both. 

Whether you’re dealing with qualitative or quantitative data, transparency, accuracy, and validity are crucial. Focus on sourcing (or conducting) quantitative research that’s easy to replicate and qualitative research that’s been peer-reviewed.

With rock-solid data like this, you can make critical business decisions with confidence.

Make your website better. Instantly.

Keep reading about user experience.

analysis quantitative research

7 Qualitative Data Examples and Why They Work

Qualitative data presents information using descriptive language, images, and videos instead of numbers. To help make sense of this type of data—as opposed to quantitative…

analysis quantitative research

The 5 Best Usability Testing Tools Compared

Usability testing helps designers, product managers, and other teams figure out how easily users can use a website, app, or product.  With these tools, user…

analysis quantitative research

5 Qualitative Data Analysis Methods + When To Use Each

Qualitative data analysis is the work of organizing and interpreting descriptive data. Interview recordings, open-ended survey responses, and focus group observations all yield descriptive—qualitative—information. This…

analysis quantitative research

The 5 Best UX Research Tools Compared

UX research tools help designers, product managers, and other teams understand users and how they interact with a company’s products and services. The tools provide…

analysis quantitative research

Qualitative data is information you can describe with words rather than numbers.  Quantitative data is information represented in a measurable way using numbers.  One type…

analysis quantitative research

6 Real Ways AI Has Improved the User Experience

It seems like every other company is bragging about their AI-enhanced user experiences. Consumers and the UX professionals responsible for designing great user experiences are…

analysis quantitative research

12 Key UX Metrics: What They Mean + How To Calculate Each

UX metrics help identify where users struggle when using an app or website and where they are successful. The data collected helps designers, developers, and…

analysis quantitative research

5 Key Principles Of Good Website Usability

Ease of use is a common expectation for a site to be considered well designed. Over the past few years, we have been used to…

increase website speed

20 Ways to Speed Up Your Website and Improve Conversion in 2024

Think that speeding up your website isn’t important? Big mistake. A one-second delay in page load time yields: Your site taking a few extra seconds to…

Why Usability Test

How to Do Usability Testing Right

User experience is one of the most important aspects of having a successful website, app, piece of software, or any other product that you’ve built. …

website navigation

Website Navigation: Tips, Examples and Best Practices

Your website’s navigation structure has a huge impact on conversions, sales, and bounce rates. If visitors can’t figure out where to find what they want,…

analysis quantitative research

How to Create a Heatmap Online for Free in Less Than 15 Minutes

A heatmap is an extremely valuable tool for anyone with a website. Heatmaps are a visual representation of crucial website data. With just a simple…

Website Analysis: Our 4-Step Process Plus the Tools and Examples You Need to Get Started

Website Analysis: Our 4-Step Process Plus the Tools and Examples You Need to Get Started

The problem with a lot of the content that covers website analysis is that the term “website analysis” can refer to a lot of different things—and…

How to Improve My Website: Grow Engagement and Conversions by Fixing 3 Common Website Problems

How to Improve My Website: Grow Engagement and Conversions by Fixing 3 Common Website Problems

Here, we show you how to use Google Analytics together with Crazy Egg’s heatmap reports to easily identify and fix 3 common website problems.

Comprehensive Guide to Website Usability Testing (With Tools and Software to Help)

Comprehensive Guide to Website Usability Testing (With Tools and Software to Help)

We share the 3-step process for the website usability testing we recommend to our customers, plus the tools to pull actionable insights out of the process.

Over 300,000 websites use Crazy Egg to improve what's working, fix what isn't and test new ideas.

Last Updated on September 14, 2021

  • Search Menu
  • Sign in through your institution
  • Advance Access
  • Collections
  • Author Guidelines
  • Submission Site
  • Open Access Policy
  • Self-Archiving Policy
  • Why Submit?
  • About Horticulture Research
  • About Nanjing Agricultural University
  • Editorial Board
  • Advertising & Corporate Services
  • Journals on Oxford Academic
  • Books on Oxford Academic

Nanjing Agricultural University

Article Contents

Introduction, materials and methods, acknowledgements, author contributions, data availability, conflict of interest, supplementary information.

  • < Previous

Tracing the color: quantitative trait loci analysis reveals new insights into red-flesh pigmentation in apple ( Malus domestica )

ORCID logo

  • Article contents
  • Figures & tables
  • Supplementary Data

Pierre Bouillon, Anne-Laure Fanciullino, Etienne Belin, Sylvain Hanteville, Hélène Muranty, Frédéric Bernard, Jean-Marc Celton, Tracing the color: quantitative trait loci analysis reveals new insights into red-flesh pigmentation in apple ( Malus domestica ), Horticulture Research , Volume 11, Issue 8, August 2024, uhae171, https://doi.org/10.1093/hr/uhae171

  • Permissions Icon Permissions

Red-flesh color development in apple fruit is known to depend upon a particular allele of the MdMYB10 gene. While the anthocyanin metabolic pathway is well characterized, current genetic models do not explain the observed variations in red-flesh pigmentation intensity. Previous studies focused on total anthocyanin content as a phenotypic trait to characterize overall flesh color. While this approach led to a global understanding of the genetic mechanisms involved in color expression, it is essential to adopt a more quantitative approach, by analyzing the variations of other phenolic compound classes, in order to better understand the molecular mechanisms involved in the subtle flesh color variation and distribution. In this study, we performed pedigree-based quantitative trait loci (QTL) mapping, using the FlexQTL™ software, to decipher the genetic determinism of red-flesh color in five F1 inter-connected families segregating for the red-flesh trait. A total of 452 genotypes were evaluated for flesh color and phenolic profiles during 3 years (2021–2023). We identified a total of 24 QTLs for flesh color intensity and phenolic compound profiles. Six QTLs were detected for red-flesh color on LG1, LG2, LG8, LG9, LG11, and LG16. Several genes identified in QTL confidence intervals were related to anthocyanin metabolism. Further analyses allowed us to propose a model in which the competition between anthocyanins and flavan-3-ols (monomer and oligomer) end-products is decisive for red-flesh color development. In this model, alleles favorable to high red-flesh color intensity can be inherited from both white-flesh and red-flesh parents.

Most modern apple cultivars originate from a limited number of elite genotypes [ 1 ]. These cultivars can be broadly categorized into red and yellow skin-colored fruits. Once this distinction is established, achieving innovative breakthroughs in fruit phenotype becomes challenging. Red-flesh apples, characterized by their appealing color, have garnered significant attention from breeders. The breeding of red-flesh apples dates back to 1897 and this phenotype finds its origin in the wild species Malus sieversii f. niedzwetzkyana [ 2 ].

Fruit flesh color is closely associated with anthocyanin accumulation [ 3 ], a water-soluble phenolic compound that imparts red, purple, and bluish hues to many flowers and fruits. The consumption of anthocyanins is known to have beneficial effects on human health, which underlines the importance of improving their content in plant products [ 4 ].

Anthocyanins belong to the antioxidant compound class that also contains flavan-3-ols (soluble and condensed tannins), flavonols, hydroxycinnamic acids, and dihydrochalcones, which serve as the primary polyphenols [ 5 ]. Previous research has shown that domestication and selection processes have influenced the biochemical profile of white-flesh apple fruits [ 6 ], including tannins (flavan-3-ols), organic acids, and phenolic acids, while some phenolics remained unaffected by selection [ 7 ]. Recent studies on red-flesh apples found that these fruits generally contain higher amounts of anthocyanins, dihydrochalcones, phenolic acids, and organic acids, but lower amounts of flavan-3-ols compared to white-flesh fruits [ 8 ]. Alternatively, some cultivars exhibit higher levels of both anthocyanins and flavan-3-ols [ 9 ]. These contrasted results highlight the need to consider the fruit phenolic profile in the breeding process.

The sequential steps leading to the biosynthesis of anthocyanins are well conserved among plant species [ 10 ] and involve structural genes and transcription factors (TFs) regulating anthocyanin accumulation [ 11 ]. Theses TFs comprise the myelobla-stosis family (MYB), the basic helix–loop–helix (bHLH) and the tryptophan-aspartic acid repeat (WDR) proteins. Generally, members of these three families of regulatory factors are self-associated through a MYB-bHLH-WD40 (MBW) complex to activate flavonoid late biosynthesis genes [ 12 ]. Additionally, WRKY class TFs have been linked to anthocyanin synthesis by regulating vacuolar acidification [ 12 ]. Until now, two different types of red-flesh apples have been characterized. In cultivars displaying the type 1 red-flesh phenotype, anthocyanins are distributed throughout the fruit, from fruit set through maturity. This phenotype is associated with red pigmentation of leaves, stems, roots, and flowers. The type 2 red-flesh apple phenotype is characterized by green vegetative tissue, yellow-orange fruit skin, and a red pigmentation that occurs only in the fruit flesh during later stages of fruit development [ 13 ]. Type 1 red-flesh is dependent upon the presence of a particular allele of the MdMYB10 gene (historically termed ‘R’ locus) [ 14 ]. This MdMYB10 allele contains a minisatellite-like structure comprising six tandem repeats located in the promoter region (R6-MdMYB10), while in white-flesh cultivars, only one repeat occurs (R1-MdMYB10). The R6 repeat sequences are self-binding sites of the MdMYB10 protein and are positively correlated with the self-activating activity of its promoter causing anthocyanin ectopic accumulation [ 15 ]. In this respect, R6-MdMYB10 is a prerequisite for type 1 red-flesh development. MdMYB110a, a MdMYB10 paralog that arose from a whole-genome duplication event, is responsible for type 2 red-flesh development [ 13 ].

Numerous studies have identified additional MYB TFs that positively or negatively regulate anthocyanin synthesis in apples [ 11 ]. Other TFs, such as MdbHLH3, MdbHLH33, and WD40 proteins, are involved in anthocyanin synthesis through the formation of the ternary MBW complex [ 11 ]. A QTL analysis identified a region associated with red-flesh on linkage group (LG) 16 in a F1 biparental population [ 16 ], which colocalized with MdLAR1, a key enzyme in the flavonoid biosynthesis pathway [ 17 ]. Transcriptomic analyses revealed differentially expressed genes associated with the flavonoid pathway between red-flesh and white-flesh apples [ 18 ], as well as between different sectors of the same bicolor fruit [ 19 ]. The WRKY-family TF MdWRKY11 has also been identified as determinant in flavonoid and anthocyanin synthesis [ 20 ]. Furthermore, an extreme-phenotype genome-wide association study (XP-GWAS) identified several genetic regions involved in red-flesh color in apples [ 21 ].

In fruit species, transposable elements (TEs) have been found in the promoter region of MYB factors, leading to significant modifications in gene expression with consequences on anthocyanin ectopic accumulation [ 22 , 23 ]. Another activation–repression system has been characterized in fruit species from the Actinidia genus and involves an interplay between positive contributions of a MYB TF and negative regulation by miRNA in anthocyanin synthesis and distribution [ 24 ].

In red-flesh apple, despite the presence of R6-MdMYB10, there is wide variation in the intensity and distribution of red-flesh pigmentation [ 25 , 26 ]. R6-MdMYB10 is needed for red-flesh development but other genetic factors modulate red-flesh color expression and lead to important phenotypic variation. While previous studies focused on total anthocyanin contents as a phenotypic trait reflecting flesh color, it is essential to adopt a more quantitative approach to better understand the genetic mechanisms of anthocyanin synthesis in apples. Some genetic studies used rough color intensity visual notation as a phenotypic trait; however, red-flesh pigmentation in apples is complex, leading to continuous variation within and among genotypes [ 25 ]. The use of quantitative color descriptors, rather than qualitative indices, is likely to assist in detecting new QTLs [ 27 ] and understanding the interactions among these loci.

In this study, we conducted a pedigree-based QTL analysis (PBA-QTL) on five F1 red-flesh apple progenies (452 genotypes), supplemented with genetic data from parents, grandparents, and founders (totaling 544 genotypes). We used quantitative color descriptors (a * parameter for red color intensity) and relevant biochemical factors (anthocyanin, flavan-3-ol and flavonol contents) as phenotypic traits to unravel the genetic architecture of red-flesh color in apples. This study aims to provide new insights into the genetic determinism of red-flesh pigmentation in apples and complete the current genetic model.

Phenolic, color variability, and relationship between traits

Hybrid phenotypes were distributed along a continuous gradient from white-off to dark-red flesh as observed in [ 25 ]. a * values varied from −8.1 to 51.8 ( Table S1 ) and exhibited broad-sense heritability over years ( h 2  = 0.86). b * values were also repeatable from 2022 and 2023 with h 2  = 0.685 (values oscillating from 1.3 to 22.2 among samples). Anthocyanin, flavan-3-ol, and flavonol contents varied among hybrid samples from 2.96 to 2148.6, 16.09 to 3677.76, and 0.47 to 34.7 μg per gram of dry weight, respectively (considering 2021 and 2022 raw data) ( Table S5 ). Phenolic contents and color descriptors demonstrated robust broad-sense heritability (0.53 |$<$| h 2 |$<$| 0.86) ( Table 1 ). The association between phenolic profile and color expression was confirmed through PCA ( Fig. 1 ) and correlation analysis ( Fig. S1 ). Preliminary results in RF1–1 hybrid progeny identified biochemical factors (anthocyanins, flavan-3-ols, flavonols, and pH) involved in color expression [ 25 ]. In this study, we confirm their correlations in the five families.

Broad-sense heritability of color descriptors estimated in 2021, 2022 and 2023 and phenolic compounds quantified in 2021 and 2022.

Phenotypic traitBroad-sense heritability
a 0.86
b 0.69
Anthocyanin0.70
Flavan-3-ol0.83
Flavonol0.63
Hydroxycinnamic acid0.76
Dihydrochalcone0.53
Phenotypic traitBroad-sense heritability
a 0.86
b 0.69
Anthocyanin0.70
Flavan-3-ol0.83
Flavonol0.63
Hydroxycinnamic acid0.76
Dihydrochalcone0.53

Principal components analysis of color descriptors and phenolic compounds for 432 genotypes from the five F1 hybrid families. The biplot shows the first and third PCA components. PCA loadings of the explanatory variables are colored according to their cos2 values (squared cosines represent the correlation of the variables with each principal component), and genotype scores are colored in black (one dot represents one genotype).

Principal components analysis of color descriptors and phenolic compounds for 432 genotypes from the five F1 hybrid families. The biplot shows the first and third PCA components. PCA loadings of the explanatory variables are colored according to their cos 2 values (squared cosines represent the correlation of the variables with each principal component), and genotype scores are colored in black (one dot represents one genotype).

PCA confirmed between-trait relationships ( Fig. 1 ). First and third axis accounted for 43.7% and 14.7% of the total variance, respectively. Second dimension (17.4% of the total variance) where mostly associated with BLUP dihydrochalcone and BLUP hydroxicinnamic acid variations and showed no clear correlations with BLUP a * and BLUP b * ( Fig. S2 ). Genotypes with high BLUP a * displayed elevated anthocyanin and lower flavan-3-ol contents compared to those with low BLUP a * , as illustrated in Fig. 1 . As expected, anthocyanin content showed a high correlation with BLUP a * (0.731 - Fig. S1 ). Flavonol and flavan-3-ol also exhibited correlations with BLUP a * (0.638 and − 0.461, respectively). Flavonol content displayed a positive correlation with anthocyanin content (Pearson correlation = 0.66). x – y plot between BLUP anthocyanin and BLUP flavan-3-ol confirmed these two trends between high anthoycanin/low flavan-3-ol profiles and, inversely, low anthocyanin/high flavan-3-ol profiles ( Fig. S1 ). Hydroxycinnamic acids and dihydrochalcones were weakly associated with BLUP a * (0.23 and − 0.23) and, consequently, were not included in the proposed genetic model associated with red-flesh color development.

QTL detection

QTLs were detected for all phenolic and color traits ( Fig. 2 . Tables 2 and S2 ). A total of 24 BLUP-associated QTLs were detected with strong evidence (Bayes Factor; BF; 2lnBf |$_{10}>5$|⁠ ) for the seven traits. For BLUP a * , BLUP anthocyanin, and BLUP flavan-3-ol, two QTLs were detected at the top of LG16, suggesting a 3-alleles model given that the two putative QTL regions were very close together ( ⁠|$<5$| cM) as discussed in [ 28 , 29 ].

Positions of QTLs controlling flesh color parameters and phenolic compounds. Number of linkage group (LG) are indicated above each group. Positions of SNPs are indicated on the genetic map. Name of the trait is following by Bayes Factor (BF); QTL region and phenotypic variance explained (PVE). Missing PVE indicated inability of QTL model to estimate an accurate value.

Positions of QTLs controlling flesh color parameters and phenolic compounds. Number of linkage group (LG) are indicated above each group. Positions of SNPs are indicated on the genetic map. Name of the trait is following by Bayes Factor (BF); QTL region and phenotypic variance explained (PVE). Missing PVE indicated inability of QTL model to estimate an accurate value.

Two regions each contained clusters of several QTLs. At the bottom of LG9, QTLs were detected for BLUP a * , BLUP anthocyanin, BLUP flavanol, and BLUP hydroxycinnamic acid. At the top of LG16, QTLs were detected for BLUP a * , BLUP anthocyanin, BLUP flavan-3-ol, and BLUP hydroxycinnamic acid ( Fig. 2 ; Table 2 ).

Six QTLs were detected for BLUP a * , across six linkage groups. The proportion of phenotypic variance (PVE) explained by these ranged from 4.8% to 39.2% ( Table 2 ). These six regions were then investigated for candidate genes ( Table 3 ). An additional QTL, on LG7 (PVE = 3.3%) was detected in 2022 only (data not shown). Four QTLs were detected for BLUP hydroxycinnamic acid, three QTLs each for BLUP b * , BLUP anthocyanin, BLUP flavonols and BLUP dihydrochalcone, and two QTLs detected for BLUP flavan-3-ols ( Fig. 2 ; Table 2 ).

Summary of BLUP color and phenolic QTLs.

Trait (BLUP)LG BF (1 vs. 0) BF (2 vs. 1) QTL interval (cM) Mode (cM) PVE (%)
BLUP a 19.3−2.6[26,40]295
28.1−0.6[31,49]465
814.8−0.7[16,30]284.7
928.84.2[61,66]6517.3
116.8−3.7[18,26]214.8
16-30.2[11,13]1239.2
BLUP b 810.7−0.7[3,22]117
146.70.5[1,24]236.8
16-10.2[2,26]1620.8
BLUP anthocyanin130.4−4.5[32,35]3450
929.61.9[63,66]65-
16-9.6[9,13]1220.1
BLUP flavan-3-ol814.6−0.7[2,7]346
16-31.1[2,6]4-
BLUP flavonol130.2−1[29,48]3820
87.70.6[28,48]295
9-9.1[62,67]6734
BLUP hydroxycinnamic acid4132[13,35]277.6
929.81.1[46,67]6649.6
166.10.5[3,22]73.4
17293[48,72]60-
BLUP dihydrochalcone5-31.4[32,35]345.3
1029.9−9.6[65,73]6649
15274.5[55,60]586
Trait (BLUP)LG BF (1 vs. 0) BF (2 vs. 1) QTL interval (cM) Mode (cM) PVE (%)
BLUP a 19.3−2.6[26,40]295
28.1−0.6[31,49]465
814.8−0.7[16,30]284.7
928.84.2[61,66]6517.3
116.8−3.7[18,26]214.8
16-30.2[11,13]1239.2
BLUP b 810.7−0.7[3,22]117
146.70.5[1,24]236.8
16-10.2[2,26]1620.8
BLUP anthocyanin130.4−4.5[32,35]3450
929.61.9[63,66]65-
16-9.6[9,13]1220.1
BLUP flavan-3-ol814.6−0.7[2,7]346
16-31.1[2,6]4-
BLUP flavonol130.2−1[29,48]3820
87.70.6[28,48]295
9-9.1[62,67]6734
BLUP hydroxycinnamic acid4132[13,35]277.6
929.81.1[46,67]6649.6
166.10.5[3,22]73.4
17293[48,72]60-
BLUP dihydrochalcone5-31.4[32,35]345.3
1029.9−9.6[65,73]6649
15274.5[55,60]586

BLUP calculated for the phenotypic trait.

Linkage group.

Chromosome-wide Bayes factor (2lnBF10) for a 1 QTL vs. 0 QTL model, with Bayes Factor (BF) |$>$| 2, 5, and 10 indicating positive, strong and decisive evidence, respectively, for the presence of one QTL.

Chromosome-wide Bayes factor (2lnBF10) for a 2 QTLs vs. 1 QTL model, with BF |$>$| 2, 5, and 10 indicating positive, strong and decisive evidence, respectively, for the presence of one QTL.

QTL interval defined as consecutive 2 cM bins (chromosomal segments used by and reported from FlexQTL™) with BF |$>$| 5.

Mode of QTL interval, representing the most probable QTL position.

Estimated proportion of phenotypic variance explained (PVE) by QTL.

Haplotype analysis

Haplotype analysis was conducted on LG9-QTL and LG16-QTL. The LG9-QTL haploblock (H9) was constructed from 2 SNPs at 64 cM and colocalized with MdMYB10 ( Table S3 ). Three haplotypes were identified at this QTL locus and denoted as R1, R1’, and R6. Each hybrid had at least one R6 haploallele, coinciding with the presence of R6-MYB10. This is due to selection for red-leaf color at the seedling stage. In the RF1–5 family, which was the sole R1R6 × R1R6 cross, R6-homozygotes were detected. R6R6 diplotypes exhibited significantly higher red-flesh intensity ( P |$<$| 0.05; Fig. 4 ) with BLUP a * mean values of 51.79 against 32.92 for R1R6 diplotypes.

LG16-QTL haploblock (H16) was constructed from 3 SNPs located at 8 cM ( Table S3 ). A 4 cM shift was observed between the QTL mode (12 cM) and the actual QTL position, which can be attributed to the diallelic model implemented by FlexQTL™, while a 3-allele model is generally characterized by two very close putative QTLs. Indeed, three LG16-QTL haplotypes were successfully identified in the hybrid population and designated as H16-A, H16-a, and H16-F for major anthocyanins (A, a) or major flavan-3-ols (F) accumulation, respectively. BLUP a * mean values of diplotype groups A/a, a/a, A/F, F/F, F/a were 37.66, 26.99, 4.95, −0.50 and − 1.20, respectively. Comparison of diplotype effects ( Fig. 3 ) on red-flesh intensity revealed that genotypes without haplotype H16-F had significantly higher BLUP a * than genotypes with. Furthermore, genotypes with H16-A haplotype displayed significantly ( P |$<$| 0.05) higher BLUP a * than those without it. For BLUP a * , a dominant effect of H16-F was observed when compared with H16-A and H16-a. Indeed, non-additive genetic effects observed between H16 haplotypes involved dominance of H16-F haplotype at this locus. Using the same H16 haplotypes, a phenotypic comparison of different diplotypes within the hybrid populations was conducted for anthocyanin and flavan-3-ol contents ( Fig. 4 ). BLUP anthocyanin mean values of diplotypes A/a, a/a, A/F, F/F, F/a were 524.3, 300.8, −24.71, −74.08, −106.97, respectively. BLUP flavan-3-ol mean values for these diplotypes were − 13.8, 16.38, 2952.0, 1536.0, and 1984.2, respectively. H16-A and H16-a exhibited a significant (p |$<$| 0.05) positive effect on BLUP anthocyanin value. Moreover, genotypes with haplotype H16-A demonstrated higher BLUP anthocyanin values compared to those with only H16-a. In contrast, H16-F displayed a negative effect on BLUP anthocyanin. Conversely, H16-F exhibited a significant ( P |$<$| 0.05) positive effect on BLUP flavan-3-ol. For both BLUP anthocyanin and BLUP flavan-3-ol, a dominant effect of H16-F was observed when compared with H16-A and H16-a. The phenotypic comparison for H16 haplotypes was also carried out within each F1 families and confirmed the genetic model ( Fig. 5 ). Potential additive or epistatic interactions between H9 and H16 were not further investigated, as there were no accumulated diplotypes of H9-R6 homozygote associated with the H16-F haplotype ( Fig. 6 ).

Source of H16 favorable alleles for red-flesh color

H16 haplotype inheritance was traced back to the different founders of this pedigree. Interestingly, the wild red-flesh founder ( M. sieversii f. niedzwetzkyana ) appeared homozygous for H16-F. The red-flesh cultivar ‘Geneva’ resulted from a cross between M. sieversii f. niedzwetzkyana and an unknown white-flesh cultivar. ‘Geneva’ displayed H16-F and H16-A haplotypes, with the favorable H16-A haplotype inherited from this unknown white-flesh parent. The H16-a haplotype was traced back to two white-flesh parent denoted ‘WFF-1’ and ‘WFGP-2’, traced back to a common founder, and considered identical by descent (IBD, Fig. 3 ).

Colocalization of b * and phenolic QTLs

LG1-QTL for BLUP flavonol, LG15-QTL for BLUP dihydrochalcone, and LG17-QTL for BLUP hydroxycinnamic acid were colocalized with previously reported QTLs [ 5 , 30 , 31 ]. BLUP b * QTLs on LG8 and LG16 colocalized with Ma and Ma3 loci identified for fruit acidity [ 29 ]. Moreover, we found WRKY TFs (MD08G1067700, MD16G1063200, MD16G1066500) in LG8 and LG16 BLUP b * QTL regions ( Table S4 ). We hypothesized that these QTLs could be associated with an anthocyanin hyperchromic shift dependent on vacuolar acidity [ 25 ]. Further studies should be conducted to confirm colocalization between b * and pH loci and study the involvement of vacuolar acidity on color expression.

Putative candidate gene identified within the QTL regions.

ChromosomeQTL region (cM)Physical position (Mbp)Gene IDAnnotation
126.56230.51722.15323.366MD01G1117800ABC transporter, chalcone–flavonone isomerase
236.79648.54912.76317.489MD02G1171300, MD02G1179400ERF109, UDP-glycosyltransferase
821.03933.826.49712.025MD08G1121600FLS
960.42367.00933.01837.422MD09G1278400MdMYB10
1118.83926.888.21911.838MD11G1100300Cyanidin 3-O-glucoside 5-O-glucosyltransferase (acyl-glucose)
165.01213.122.0274.15MD16G1040800, MD16G1040900, MD16G1043500, MD16G1048500MYB62, bHLH75, ERF118, LAR
ChromosomeQTL region (cM)Physical position (Mbp)Gene IDAnnotation
126.56230.51722.15323.366MD01G1117800ABC transporter, chalcone–flavonone isomerase
236.79648.54912.76317.489MD02G1171300, MD02G1179400ERF109, UDP-glycosyltransferase
821.03933.826.49712.025MD08G1121600FLS
960.42367.00933.01837.422MD09G1278400MdMYB10
1118.83926.888.21911.838MD11G1100300Cyanidin 3-O-glucoside 5-O-glucosyltransferase (acyl-glucose)
165.01213.122.0274.15MD16G1040800, MD16G1040900, MD16G1043500, MD16G1048500MYB62, bHLH75, ERF118, LAR

Distribution of BLUP a* for RF1–5 offspring haplotypes for LG9-QTL (left) and the five F1 offspring haplotypes for LG16-QTL (right). The median (denoted by a horizontal bar in the box), the 25th percentile (denoted by the bottom edge of the box), the 75th percentile (denoted by the top edge of the box), the mean (denoted by a black dot), and the dots indicate single observations. Number of genotypes (n) are listed below. Level of significance based on two sample t-test is indicated for LG9-QTL haplotypes (**** = P$<$ 0.0001). Significantly different phenotypic means between segregating classes are identified by different letters (Tukey HSD, P$<$ 0.05). Visual examples of group phenotypic means are shown above.

Distribution of BLUP a * for RF1–5 offspring haplotypes for LG9-QTL (left) and the five F1 offspring haplotypes for LG16-QTL (right). The median (denoted by a horizontal bar in the box), the 25th percentile (denoted by the bottom edge of the box), the 75th percentile (denoted by the top edge of the box), the mean (denoted by a black dot), and the dots indicate single observations. Number of genotypes (n) are listed below. Level of significance based on two sample t -test is indicated for LG9-QTL haplotypes ( ****  =  P |$<$| 0.0001). Significantly different phenotypic means between segregating classes are identified by different letters (Tukey HSD, P |$<$| 0.05). Visual examples of group phenotypic means are shown above.

Distribution of BLUP anthocyanin and BLUP flavan-3-ol values for F1 offspring haplotypes for LG16-QTL. The median (denoted by a horizontal bar in the box), the 25th percentile (denoted by the bottom edge of the box), the 75th percentile (denoted by the top edge of the box), the mean (denoted by black dot) and the dots indicate single observations. Number of genotypes (n) are listed above. Significantly different phenotypic means between segregating classes are identified by different letters (non-parametric Dwass-Steel test P$<$ 0.05).

Distribution of BLUP anthocyanin and BLUP flavan-3-ol values for F1 offspring haplotypes for LG16-QTL. The median (denoted by a horizontal bar in the box), the 25th percentile (denoted by the bottom edge of the box), the 75th percentile (denoted by the top edge of the box), the mean (denoted by black dot) and the dots indicate single observations. Number of genotypes (n) are listed above. Significantly different phenotypic means between segregating classes are identified by different letters (non-parametric Dwass-Steel test P |$<$| 0.05).

Haplotypes at LG16-QTL for BLUP a*, BLUP anthocyanin, and BLUP flavan-3-ol in parental and ancestor cultivars, and in each population. Mean phenotype values of both BLUP of each segregating class detected in each population are shown. Significantly different phenotypic means between segregating classes are identified by different letters (tukey HSD for BLUP a* and non-parametric Dwass–Steel test for BLUP anthocyanin and BLUP flavan-3-ol, P$<$ 0.05). ‘n’ refers to the number of genotypes in each diplotype groups. ‘-’ indicated missing data.

Haplotypes at LG16-QTL for BLUP a * , BLUP anthocyanin, and BLUP flavan-3-ol in parental and ancestor cultivars, and in each population. Mean phenotype values of both BLUP of each segregating class detected in each population are shown. Significantly different phenotypic means between segregating classes are identified by different letters (tukey HSD for BLUP a * and non-parametric Dwass–Steel test for BLUP anthocyanin and BLUP flavan-3-ol, P |$<$| 0.05). ‘n’ refers to the number of genotypes in each diplotype groups. ‘-’ indicated missing data.

Distribution of BLUP a* for offspring haplotypes for LG9 and LG16 QTLs. The median (denoted by a horizontal bar in the box), the 25th percentile (denoted by the bottom edge of the box), the 75th percentile (denoted by the top edge of the box). Number of genotypes are listed above.

Distribution of BLUP a * for offspring haplotypes for LG9 and LG16 QTLs. The median (denoted by a horizontal bar in the box), the 25th percentile (denoted by the bottom edge of the box), the 75th percentile (denoted by the top edge of the box). Number of genotypes are listed above.

Colocalization of minor a * QTLs and putative candidate genes

Most BLUP a * QTLs were consistent with previously reported QTLs for red-flesh color [ 16 , 21 ]. LG1 and LG11 BLUP a * QTLs are reported here for the first time, confirming the accuracy and added value of quantitative color analysis for QTL detection. For instance, one QTL, on LG7, was only detected in 2022 at 25–57 cM with a PVE of 3.3%. This QTL region colocalized with MdMYBPA1 which promotes anthocyanin synthesis under low-temperature conditions in red-flesh apples [ 32 ]. The existence of a year-related QTL emphasized the influence of environmental conditions on color expression [ 33 ].

Minor BLUP a * QTLs were detected on LG1, LG2, LG8, and LG11. Apple genomic data [ 34 ] allowed screening for candidate genes associated with these minor QTL regions ( Table 3 —complete list available in Table S4 ). A chalcone isomerase (CHI) and a flavonol synthase (FLS), structural genes of the anthocyanin pathway, were found in the QTL interval of LG1-QTL and LG8-QTL, respectively. FLS catalyzes flavonol synthesis, which is consistent with the higher flavonol levels found in red-flesh fruits [ 35 ]. Indeed, LG8-QTL colocalized with a BLUP flavonol-related QTL. LG2-QTL colocalized with UDP-glycosyltransferase and ERF109 [ 36 ], key regulatory factors of sun-related anthocyanin synthesis in the skin of apple. Indeed, light is one of the most important environmental factors affecting the color of apple fruit and red-flesh color could also be positively regulated by light exposition [ 11 ].

All naturally synthesized anthocyanidins are glycosylated on the 3-position by a cytosolic glycosyltransferase to increase stability, solubility, and facilitate transport to the vacuole [ 10 ]. LG2-QTL and LG11-QTL colocalized with glycosyltransferase genes, suggesting that red-flesh color acquisition could also be determined by anthocyanin catabolism and not only primary synthesis. Indeed, glycosylation plays a key role in the accumulation of anthocyanins by stabilizing anthocyanins and serving as a signal for transport of anthocyanins to the vacuoles. Furthermore, an ABC transporter gene was found in the LG1-QTL region. ABC transporters are involved in the transfer of glycosylated anthocyanins to the vacuole [ 10 ]. Gene expression analysis could enhance our understanding of the complex interplay between anthocyanin synthesis and catabolism occurring during color acquisition throughout fruit development. Wang et al . [ 18 , 20 ] identified key regulatory factors of anthocyanin synthesis by comparing transcriptomes of red-flesh fruits and white-flesh fruits. Extending the comparative transcriptomic analysis of white and red flesh sectors from the same fruit could help us understand the complex interactions between flavonoid synthesis genes and the regulatory factors that orchestrate red-flesh pigmentation in apple.

Haplotype characterization of LG9 and LG16 QTLs

The LG9 and LG16 QTLs colocalized with previously reported QTLs [ 14 , 16 ]. LG9-QTL region contains MdMYB10, which R6-MdMYB10 allele is a prerequisite gene for red-flesh color development in apple. LG9-QTL haplotype has been successfully associated with R1-MdMYB10 and R6-MdMYB10. Interestingly, a third haplotype, termed R1’-MdMYB10, was identified in the RF1–2 family. This third allele of the MdMYB10 gene challenges the notion that the MYB10 allelic diversity is constrained to only two alleles. This observation aligns with similar findings related to red-skin color [ 37 ]. We did not detect genetic effect of R1’-MdMYB10 with R6-MdMYB10, suggesting that R1 and R1’ have the same genetic effect on red-flesh pigmentation ( Fig. S3 ). Furthermore, this diversity in MdMYB10 alleles is consistent with studies of other MYB10-related anthocyanin synthesis species, such as strawberries [ 22 ]. They identified three allelic variants at FaMYB10: FaMYB10.2 activated anthocyanin synthesis resulting in skin and flesh color variations while two independent mutations of FaMYB10 were responsible for white-skin phenotype. Moreover, red-flesh pigmentation was associated with the presence of a transposon insertion in the FaMYB10.2 promoter [ 22 ].

Our results indicate that R6-MdMYB10 homozygotes are associated with higher phenotypic values, pointing to an additive effect. The LG16-QTL colocalizes with a leucoanthocyanidin reductaste (LAR) structural gene. LAR catalyzes the conversion of leucocyanidins into flavan-3-ols. The top of LG16 is known to contain a ‘hot-spot’ of QTL for metabolites (mQTLs) associated with Ma locus and many phenolic QTLs [ 38 ]. Concomitantly with [ 38 ], we detected another QTL for hydroxycinnamic acids despite these metabolites being upstream of LAR substrate. Some MYB and bHLH types TFs have been identified in this region ( Table 3 ). They may be responsible for the QTL for hydroxycinnamic acid.

The presence of the LG16-QTL confirms the competition between anthocyanins/flavan-3-ols as the end product of a common biosynthetic pathway. The H16-F haplotype is associated with a high-flavan-3-ol/low-anthocyanin profile while, the H16-A and H16-a haplotypes are associated with low-flavan-3-ol/high-anthocyanin profile ( Fig. S4 ).

New insights into genetic mechanisms of red-flesh pigmentation

Our results provide new insights into the genetic mechanisms controling red-flesh development in apple. Indeed, the competition between anthocyanin and flavan-3-ol synthesis is a key factor in red-flesh color acquisition and is mostly driven by the LG16-QTL (PVE = 35.7/39%) in the presence of R6-MdMYB10. The fruits of the wild red-flesh founder ( M. sieversii f. niedzwetzkyana ) are too astringent and sour for a direct use as a dessert apple. Hybridization with white-flesh dessert apples initially aimed to bring the red-flesh locus into elite backgrounds, combining the new phenotype with the desirable organoleptic properties of dessert apples. In this process, favorable alleles for red-flesh color were inherited from the white-flesh background due to negative selection for astringency and bitterness (given by flavan-3-ols), which indirectly favored anthocyanin synthesis. Combination of LG9 and LG16 favorable alleles resulted in a red-flesh ideotype with high coloration and low astringency. However, we only evaluated soluble tannins in our samples. To extend these results, estimation and measurement of polymerized procyanidins by thyolisis [ 5 ] should provide a better understanding of the balance between anthocyanin and flavan-3-ol synthesis in red-flesh apple. Further studies could also consider the genotype × environment interactions that would help breeders to select ideotypes suited for most growing conditions.

In this study, we identified a total of 24 QTLs controling red-flesh color (a * and b * color data) and phenolic profiles (anthocyanins, flavan-3-ols, flavonols, hydroxycinnamic acids, and dihydrochalcone). Thanks to the development of a quantitative approach to characterize fruit flesh color, we detected two previously unidentified QTLs linked to red-flesh color on LG1 and LG11. We confirmed the existence of a major QTL (PVE = 35.7/39.2%) on LG16 controlling red-flesh color in apple [ 16 , 21 ] and characterized the genetic mechanisms related to anthocyanin/flavan-3-ol balance and red-flesh color enhancement. Homozygotes for R6-MdMYB10 alleles, which colocalized with MdMYB10, reached higher phenotypic values than heterozygotes. However, interactions between LG9 and LG16 QTLs were not studied given that there was no combination of H9-R6 homozygotes with the H16-F haplotype. However, the combination of R6-MdMYB10 homozygosity with favorable LG16-QTL haplotypes (H16-A and H16-a) determined a new ideotype that could be targeted for red-flesh breeding. These results highlight the necessity for breeders to consider white-flesh parents during selection, as positive or negative alleles for red-flesh color can be inherited from the nonred genetic background.

Plant materials

A total of 452 genotypes from five interconnected (common parent and/or grandparent) F 1 families were used in this study ( Fig. S5 ). Four families resulted from crosses between a type 1 red-flesh and a white-flesh parent (RF1–1 to RF1–4, plantation year: 2018), and one family resulted from a cross between two type 1 red-flesh parents (RF1–5, plantation year: 2017). Genotypes were selected at the seedling stage for red-leaf color (phenotypic marker of MdMYB10 [ 14 ]) and apple scab. Consequently, all hybrid genotypes contained at least one R6-MdMYB10 allele. Each genotype is represented by one tree. Fruit harvest was conducted over three years (2021, 2022, and 2023) from August to October in IFO orchard (L’Anguicherie, 49 140 Seiches-sur-le-Loir, France/GCS: 47°37′52.5”N 0°19′38.4”W). For each genotype harvested at maturity (brix values varying from 13 to 22; starch index between 6 and 8) four representative fruits were dedicated to image analysis for estimation of the red-flesh intensity and distribution and four fruits were sampled for the determination of phenolic compounds. Fruits that were positioned in the middle of the tree, at similar light exposure, same developmental stage, and similar diameter were picked preferentially to limit intra- and inter-tree bias.

Phenotypic data

Images of transversal sections of four fruits per genotype were acquired using an RGB flatbed scanner Canon LIDE 400. An image analysis pipeline was used to estimate color descriptors from RGB images [ 25 ]. Fruit sampling, metabolite extraction, detection, and quantification were performed by UPLC-UV as indicated in [ 25 ]. Ten phenolic compounds were quantified using calibration with authentic standards and contents were expressed in μg per gram of dry weight. Then, concentrations per polyphenol classes were calculated as follows: hydroxycinnamic acids (sum of chlorogenic acid and 4- p -coumaroylquinic acid contents), flavan-3-ol monomers and oligomers/proanthocyanidins (catechin, epicatechin, procyanidin B1, procyanidin B2, procyanidin C1), anthocyanins (cyanidin 3-galactoside – the most abundant anthocyanin in red-flesh apple, with a proportion of over 80%), flavonols (quercetin 3-galactoside), and dihydrochalcones (phloridzin).

Statistical analysis

Best linear unbiased prediction (BLUP) was estimated for each trait. BLUP is a standard method for estimating random effects of a mixed linear model [ 39 ] of the form:

where y is the vector of observations (phenotypic scores), |$\beta$| and u are vectors of fixed (year effect) and random effects (genotypic values), respectively, X and Z are the associated design matrices, and e is a random residual vector. The random effects are estimated by BLUP [ 39 ]. Because of our experimental design, not all environmental effects could be considered (tree and genotype effects were confounded), and BLUPs of across-year phenotypic values per genotype approximated the true genotypic values.

For a * parameter, BLUPs were estimated from 2021–2022–2023 data. For b * parameter and each phenolic class, BLUPs were calculated from 2021 and 2022 data. Each BLUP was denoted by ‘BLUP trait name’ and used for QTL detection.

Broad-sense heritability of each measured trait was estimated by intra-class analysis [ 40 ] with the following formula: h 2 = |${\sigma}_g^2$| /( ⁠|${\sigma}_g^2$| + |${\sigma}_r^2$|⁠ ) where |${\sigma}_g^2$| and |${\sigma}_r^2$| were the individual genetic and residual variances, respectively.

Principal component analyses (PCA) were carried out to investigate the relation between BLUP for colors descriptors and BLUP for phenolic profiles with the R package ‘FactoMineR’. Pairwise correlation plot for BLUP values was generated with ‘GGally’ package, a ggplot2 extension ( Fig. S1 ). The phenolic compounds correlated with flesh color variation were then considered for further genetic analysis.

Genotypic data

Hybrids and their parents and ancestors were genotyped using the Illumina Infinium 20 K SNP array for Apple [ 41 ]. The raw SNP data was initially processed into the GenomeStudio software v2.0 and SNP data curation was performed as described by Vanderzande et al . [ 42 ]. After filtering null alleles and alleles with reduced binding affinity across our populations with ASSIsT [ 43 ], 8827 SNP markers were considered for further analysis. Their physical position on the Malus genome [ 34 ] was taken from integrated genetic linkage (iGL) map for Illumina Infinium 20 K SNP array [ 44 ]. A total of 4220 informative SNP were finally retained. SNP markers were well distributed over the 17 chromosomes. Founders were added in our pedigree from public genotyping data on GDR [ 45 ]. Thus, we were able to trace marker segregation from our genotypes to the wild red-flesh accession M. sieversii f. niedzwetzkyana .

Haplotype determination

The R package ‘PediHaplotyper’ v.1.0 was used to construct haplotypes [ 46 ], resulting in 1104 haploblocks. Maximum size of each haploblock was limited to 1 cM. Identical haplotypes were described as IBD if they could be traced back to a common ancestor, whereas identical haplotypes that could not be traced back to a common ancestor were considered identical-by-state (IBS). Missing SNP data was imputed whenever possible by examining both progenies and ancestors [ 47 ]. Haplotypes that could not be resolved were excluded from further analysis.

QTL analyses were performed using the FlexQTL™ software, which implements PBA-QTL analysis via Markov Chain Monte Carlo (MCMC) simulation ( www.flexqtl.nl ) [ 48 ]. Parameters for the analyses are reported in Supplementary Table S5. Analyses reached adequate MCMC convergence. Two replicate runs with different starting seed numbers were conducted to ensure reproducibility of QTL detection [ 47 , 49 ]. The significance and stability of a putative QTL were assessed using Bayes Factor (BF; 2lnBF10) and posterior intensity values. Evidence for a QTL was categorized as positive, strong, or decisive based on BF ranges: 2–5, 5–10, and above 10, respectively [ 49 ]. QTL intervals were defined as consecutive 2-cM chromosome segments (bins) that had a BF above 5 and the mode within a given QTL region was considered the most probable QTL position [ 49 ]. The proportion of PVE explained by a QTL was estimated by dividing the reported variance explained by the whole PVE [ 29 ]. Colocalization between phenolic QTL and color QTL were then targeted to unravel genetic mechanisms of red-flesh color development.

Positive/negative alleles were defined via analyses of SNP haplotypes within QTL intervals. Comparison of diplotypes (diploid combinations of two haplotypes) were used to infer haplotype effects. To determine if mean a * BLUP was significantly different for presence versus absence of a given QTL haplotype, one-way analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) were calculated. To determine whether BLUPs associated with phenolic profile (anthocyanin and flavan-3-ol content) were significantly different between the functional diplotypes, nonparametric Dwass-Steel tests were carried out for each compound [ 47 ]. Nonparametric Dwass-Steel test were also applied for phenotypic comparison between QTL haplotypes within each F1 family to confirm model consistency. Tidyverse R collection was used to perform data management and generate plots. For graphical display, colorblindness-friendly colors were provided by ‘viridis’ package. Statistical analysis were performed combining R package ‘stats’, ‘rstatix’, and ‘biostats‘.

Candidate gene search in the apple genome

To investigate candidate gene colocalization in BLUP a * QTL regions ( Table S4 ), genes and TFs involved in anthocyanin synthesis were searched among QTL region ( Table 3 ) using the ‘GGDH13.v1.1’ apple genome [ 34 ] as reference. Genetic positions were defined as the boundaries of the two inner haploblocks surrounding the QTL region.

The authors thank the PTM PHYTO platform (SFR QUASAV) for the instruments used for determination of phenolic content. The authors would like to thank Maryline Cournol for her help in DNA extraction and Caroline Denancé for her help with DNA extraction, SNP curation, and pedigree reconstruction. Finally, the authors thank the IFO team for their support and contribution to this study. This material is based upon work supported by the ANRT (Association nationale de la recherche et de la technologie) with a CIFRE fellowship granted to Pierre Bouillon (convention N° 2021/0182), supported by IFO and IRHS.

P. Bouillon performed analysis, analyzed the results, and wrote the manuscript. S. Hanteville and P. Bouillon carried out fruit harvest, sampling, and image analysis. H. Muranty helped in pedigree reconstruction. H. Muranty, A-L. Fanciullino, E. Belin, F. Bernard, and J-M. Celton provided feedbacks on the analysis and contributed to reviewing and refining the manuscript. J-M Celton and F. Bernard supervised the project.

The data underlying this article cannot be shared publicly due to privacy of pedigree and genotyping data. The data will be shared on reasonable request to the corresponding author.

No competing interest is declared.

Supplementary data is available at Horticulture Research online.

Migicovsky Z , Gardner KM , Richards C . et al.  Genomic consequences of apple improvement . Hortic Res . 2021 ; 8 : 9

Google Scholar

Wang N , Jiang S , Zhang Z . et al.  Malus sieversii: the origin, flavonoid synthesis mechanism, and breeding of red-skinned and red-fleshed apples . Hortic Res . 2018a ; 5 : 70

Allan AC , Hellens RP , Laing WA . Myb transcription factors that colour our fruit . Trends Plant Sci . 2008 ; 13 : 99 – 102

Zhang Y , Butelli E , Martin C . Engineering anthocyanin biosynthesis in plants . Curr Opin Plant Biol . 2014 ; 19 : 81 – 90

Verdu CF , Guyot S , Childebrand N . et al.  Qtl analysis and candidate gene mapping for the polyphenol content in cider apple . PLoS One . 2014 ; 9 : e107103

Lin Q , Chen J , Liu X . et al.  A metabolic perspective of selection for fruit quality related to apple domestication and improvement . Genome Biol . 2023 ; 24 : 95

Farneti B , Masuero D , Costa F . et al.  Is there room for improving the nutraceutical composition of apple? J Agric Food Chem . 2015 ; 63 : 2750 – 9

Bars-Cortina D , Macià A , Iglesias I . et al.  Phytochemical profiles of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties . J Agric Food Chem . 2017 ; 65 : 1684 – 96

Ceci AT , Bassi M , Guerra W . et al.  Metabolomic characterization of commercial, old, and red-fleshed apple varieties . Metabolites . 2021 ; 11 : 378

Buhrman K , Aravena-Calvo J , Ross Zaulich C . et al.  Anthocyanic vacuolar inclusions: from biosynthesis to storage and possible applications . Front Chem . 2022 ; 10 : 913324

Chen Z , Yu L , Liu W . et al.  Research progress of fruit color development in apple (malus domestica borkh.) . Plant Physiol Biochem . 2021 ; 162 : 267 – 79

Lloyd A , Brockman A , Aguirre L . et al.  Advances in the myb-bhlh-wd repeat (mbw) pigment regulatory model: addition of a wrky factor and co-option of an anthocyanin myb for betalain regulation . Plant Cell Physiol . 2017 ; 58 : 1431 – 41

Chagné D , Lin-Wang K , Espley RV . et al.  An ancient duplication of apple myb transcription factors is responsible for novel red fruit-flesh phenotypes . Plant Physiol . 2012b ; 161 : 225 – 39

Chagné D , Carlisle CM , Blond C . et al.  Mapping a candidate gene (mdmyb10) for red flesh and foliage colour in apple . BMC Genomics . 2007 ; 8 : 212

Espley RV , Brendolise C , Chagne D . et al.  Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples . Plant Cell . 2009 ; 21 : 168 – 83

Yang C , Sha G , Wei T . et al.  Linkage map and qtl mapping of red flesh locus in apple using a r1r1×r6r6 population . Hortic Plant J . 2021 ; 7 : 393 – 400

Kumar S , Garrick DJ , Bink MC . et al.  Novel genomic approaches unravel genetic architecture of complex traits in apple . BMC Genomics . 2013 ; 14 : 393

Wang N , Zheng Y , Duan N . et al.  Comparative transcriptomes analysis of red- and white-fleshed apples in an f1 population of malus sieversii f. niedzwetzkyana crossed with m. domestica ‘Fuji’ . PLoS One . 2015 ; 10 : e0133468

Li H , Duan S , Sun W . et al.  Identification, through transcriptome analysis, of transcription factors that regulate anthocyanin biosynthesis in different parts of red-fleshed apple ‘may’ fruit . Hortic Plant J . 2022 ; 8 : 11 – 21

Wang N , Liu W , Zhang T . et al.  Transcriptomic analysis of red-fleshed apples reveals the novel role of mdwrky11 in flavonoid and anthocyanin biosynthesis . J Agric Food Chem . 2018b ; 66 : 7076 – 86

Kumar S , Deng CH , Molloy C . et al.  Extreme-phenotype gwas unravels a complex nexus between apple (malus domestica) red-flesh colour and internal flesh browning . Fruit Res . 2022 ; 2 : 1 – 14

Castillejo C , Waurich V , Wagner H . et al.  Allelic variation of myb10 is the major force controlling natural variation in skin and flesh color in strawberry (fragaria spp.) fruit . Plant Cell . 2020 ; 32 : 3723 – 49

Tian Y , Thrimawithana A , Ding T . et al.  Transposon insertions regulate genome-wide allele-specific expression and underpin flower colour variations in apple (malus spp.) . Plant Biotechnol J . 2022 ; 20 : 1285 – 97

Wang W , Moss SMA , Zeng L . et al.  The red flesh of kiwifruit is differentially controlled by specific activation-repression systems . New Phytol . 2022 ; 235 : 630 – 45

Bouillon P , Fanciullino A-L , Belin E . et al.  Image analysis and polyphenol profiling unveil red-flesh apple phenotype complexity . Plant Methods . 2024 ; 20 : 71

van Nocker S , Berry G , Najdowski J . et al.  Genetic diversity of red-fleshed apples (malus) . Euphytica . 2011 ; 185 : 281 – 93

Underhill AN , Hirsch CD , Clark MD . Evaluating and mapping grape color using image-based phenotyping . Plant Phenomics . 2020

Kostick SA , Teh SL , Norelli JL . et al.  Fire blight qtl analysis in a multi-family apple population identifies a reduced-susceptibility allele in ‘honeycrisp’ . Horticulture Research . 2021 ; 8 : 28

Verma S , Evans K , Guan Y . et al.  Two large-effect qtls, ma and ma3, determine genetic potential for acidity in apple fruit: breeding insights from a multi-family study . Tree Genet Genomes . 2019 ; 10 : 1 – 17

Chagné D , Krieger C , Rassam M . et al.  Qtl and candidate gene mapping for polyphenolic composition in apple fruit . BMC Plant Biol . 2012a ; 12 : 12

McClure KA , Gong Y , Song J . et al.  Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols . Horticulture Research . 2019 ; 6 : 107

Wang N , Qu C , Jiang S . et al.  The proanthocyanidin-specific transcription factor mdmybpa1 initiates anthocyanin synthesis under low-temperature conditions in red-fleshed apples . Plant J . 2018c ; 96 : 39 – 55

Espley RV , Jaakola L . The role of environmental stress in fruit pigmentation . Plant Cell Environ . 2023 ; 46 : 3663 – 79

Daccord N , Celton J-M , Linsmith G . et al.  High-quality de novo assembly of the apple genome and methylome dynamics of early fruit development . Nat Genet . 2017 ; 49 : 1099 – 106

Wang N , Xu H , Jiang S . et al.  MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple ( Malus sieversii f . niedzwetzkyana ) . Plant J . 2017 ; 90 : 276 – 92

Ma H , Yang T , Li Y . et al.  The long noncoding rna mdlnc499 bridges mdwrky1 and mderf109 function to regulate early-stage light-induced anthocyanin accumulation in apple fruit . Plant Cell . 2021 ; 33 : 3309 – 30

Zhang L , Hu J , Han X . et al.  A high-quality apple genome assembly reveals the association of a retrotransposon and red fruit colour . Nat Commun . 2019 ; 10 : 1494

Khan SA , Chibon P-Y , de Vos RC . et al.  Genetic analysis of metabolites in apple fruits indicates an mqtl hotspot for phenolic compounds on linkage group 16 . J Exp Bot . 2012 ; 63 : 2895 – 908

Piepho HP , Möhring J , Melchinger AE . et al.  Blup for phenotypic selection in plant breeding and variety testing . Euphytica . 2007 ; 161 : 209 – 28

Xu S . Quantitative Genetics . Springer International Publishing ; 2022

Google Preview

Bianco L , Cestaro A , Sargent DJ . et al.  Development and validation of a 20k single nucleotide polymorphism (snp) whole genome genotyping array for apple (malus × domestica borkh) . PLoS One . 2014 ; 9 : e110377

Vanderzande S , Howard NP , Cai L . et al.  High-quality, genome-wide snp genotypic data for pedigreed germplasm of the diploid outbreeding species apple, peach, and sweet cherry through a common workflow . PLoS One . 2019 ; 14 : e0210928

Di Guardo M , Micheletti D , Bianco L . et al.  Assist: an automatic snp scoring tool for in- and outbreeding species . Bioinformatics . 2015 ; 31 : 3873 – 4

Howard NP , Troggio M , Durel C-E . et al.  Integration of infinium and axiom snp array data in the outcrossing species malus × domestica and causes for seemingly incompatible calls . BMC Genomics . 2021 ; 22 : 246

Jung S , Lee T , Cheng C-H . et al.  15 years of gdr: new data and functionality in the genome database for rosaceae . Nucleic Acids Res . 2018 ; 47 : D1137 – 45

Voorrips RE , Bink MCAM , Kruisselbrink JW . et al.  Pedihaplotyper: software for consistent assignment of marker haplotypes in pedigrees . Mol Breed . 2016 ; 36 : 119

Powell AA , Kostick SA , Howard NP . et al.  Elucidation and characterization of qtls for russet formation on apple fruit in ‘honeycrisp’-derived breeding germplasm . Tree Genet Genomes . 2022 ; 19 : 5

Bink MCAM , Jansen J , Madduri M . et al.  Bayesian qtl analyses using pedigreed families of an outcrossing species, with application to fruit firmness in apple . Theor Appl Genet . 2014 ; 127 : 1073 – 90

Kostick SA , Luby JJ . Apple fruit size qtls on chromosomes 8 and 16 characterized in ‘honeycrisp’-derived germplasm . Agronomy . 2022 ; 12 : 1279

Supplementary data

Month: Total Views:
June 2024 20
July 2024 107
August 2024 53

Email alerts

Citing articles via.

  • International Horticulture Research Conference
  • Advertising & Corporate Services

Affiliations

  • Online ISSN 2052-7276
  • Print ISSN 2662-6810
  • Copyright © 2024 Nanjing Agricultural University
  • About Oxford Academic
  • Publish journals with us
  • University press partners
  • What we publish
  • New features  
  • Open access
  • Institutional account management
  • Rights and permissions
  • Get help with access
  • Accessibility
  • Advertising
  • Media enquiries
  • Oxford University Press
  • Oxford Languages
  • University of Oxford

Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide

  • Copyright © 2024 Oxford University Press
  • Cookie settings
  • Cookie policy
  • Privacy policy
  • Legal notice

This Feature Is Available To Subscribers Only

Sign In or Create an Account

This PDF is available to Subscribers Only

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Wright State University - Research Logo

Performance Analysis of Quantitative Bone Measurement with Spiral CT

  • Wright State University

Research output : Other contribution

Original languageAmerican English
StatePublished - Jan 1 2009

Disciplines

  • Biomedical Engineering and Bioengineering
  • Engineering
  • Industrial Engineering
  • Operations Research, Systems Engineering and Industrial Engineering

Other files and links

  • Link to repository

T1 - Performance Analysis of Quantitative Bone Measurement with Spiral CT

AU - Hangartner, Thomas N.

AU - Gupta, S.

AU - Short, David F.

PY - 2009/1/1

Y1 - 2009/1/1

UR - https://corescholar.libraries.wright.edu/bie/67

M3 - Other contribution

IMAGES

  1. Quantitative Research: What It Is, Practices & Methods

    analysis quantitative research

  2. Qualitative V/S Quantitative Research Method: Which One Is Better?

    analysis quantitative research

  3. Quantitative Analysis

    analysis quantitative research

  4. Types of Quantitative Research

    analysis quantitative research

  5. The Steps of Quantitative Research

    analysis quantitative research

  6. Tools for data analysis in quantitative research

    analysis quantitative research

COMMENTS

  1. Quantitative Research

    Quantitative Research. Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions.This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected.

  2. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  3. Quantitative Data Analysis: A Comprehensive Guide

    Below are the steps to prepare a data before quantitative research analysis: Step 1: Data Collection. Before beginning the analysis process, you need data. Data can be collected through rigorous quantitative research, which includes methods such as interviews, focus groups, surveys, and questionnaires. Step 2: Data Cleaning.

  4. What is Quantitative Research? Definition, Methods, Types, and Examples

    Quantitative research is the process of collecting and analyzing numerical data to describe, predict, or control variables of interest. This type of research helps in testing the causal relationships between variables, making predictions, and generalizing results to wider populations. The purpose of quantitative research is to test a predefined ...

  5. What Is Quantitative Research? An Overview and Guidelines

    The necessity, importance, relevance, and urgency of quantitative research are articulated, establishing a strong foundation for the subsequent discussion, which delineates the scope, objectivity, goals, data, and methods that distinguish quantitative research, alongside a balanced inspection of its strengths and shortcomings, particularly in ...

  6. Quantitative Data Analysis Methods & Techniques 101

    The two "branches" of quantitative analysis. As I mentioned, quantitative analysis is powered by statistical analysis methods.There are two main "branches" of statistical methods that are used - descriptive statistics and inferential statistics.In your research, you might only use descriptive statistics, or you might use a mix of both, depending on what you're trying to figure out.

  7. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

  8. What is Quantitative Research? Definition, Examples, Key ...

    Quantitative research is a type of research that focuses on collecting and analyzing numerical data to answer research questions. There are two main methods used to conduct quantitative research: 1. Primary Method. There are several methods of primary quantitative research, each with its own strengths and limitations.

  9. What Is Quantitative Research?

    Revised on 10 October 2022. Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and ...

  10. Quantitative Methods

    Quantitative method is the collection and analysis of numerical data to answer scientific research questions. Quantitative method is used to summarize, average, find patterns, make predictions, and test causal associations as well as generalizing results to wider populations.

  11. A Really Simple Guide to Quantitative Data Analysis

    It is important to know w hat kind of data you are planning to collect or analyse as this w ill. affect your analysis method. A 12 step approach to quantitative data analysis. Step 1: Start with ...

  12. (PDF) Quantitative Analysis: the guide for beginners

    quantitative (numbers) and qualitative (words or images) data. The combination of. quantitative and qualitative research methods is called mixed methods. For example, first, numerical data are ...

  13. A Practical Guide to Writing Quantitative and Qualitative Research

    A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. ... In quantitative research, hypotheses predict the expected relationships among variables.15 Relationships among variables that can be predicted include 1) ...

  14. InfoGuides: Quantative Analysis & Statistics: Write a Paper

    Reporting Quantitative Research in Psychology: How to meet APA Style Journal Article Reporting Standards by Harris Cooper This updated edition offers practical guidance for understanding and implementing APA Style Journal Article Reporting Standards (JARS) and Meta‑Analysis Reporting Standards (MARS) for quantitative research. These standards provide the essential information researchers ...

  15. Quantitative Analysis (QA): What It Is and How It's Used in Finance

    Quantitative analysis refers to economic, business or financial analysis that aims to understand or predict behavior or events through the use of mathematical measurements and calculations ...

  16. Quantitative Data: Definition, Examples, Types, Methods, & Analysis

    What is quantitative data? Quantitative data is information that can be measured and expressed numerically. It is essential for making data-driven decisions, as it provides a concrete foundation for analysis and evaluation.. In various fields, such as market research, quantitative data helps businesses understand consumer behavior, market trends, and overall performance.

  17. Quantitative Analysis

    Quantitative analysis is the use of mathematical and statistical techniques to assess the performance of a business. Before the advent of quantitative analysis, many company directors based their decisions on experience and gut. Business owners can now use quantitative methods to predict trends, determine the allocation of resources, and manage ...

  18. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  19. Part II: Data Analysis Methods in Quantitative Research

    Data Analysis Methods in Quantitative Research. We started this module with levels of measurement as a way to categorize our data. Data analysis is directed toward answering the original research question and achieving the study purpose (or aim). Now, we are going to delve into two main statistical analyses to describe our data and make ...

  20. Qualitative vs. Quantitative Research

    When collecting and analyzing data, quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings. Both are important for gaining different kinds of knowledge. Quantitative research. Quantitative research is expressed in numbers and graphs. It is used to test or confirm theories and assumptions.

  21. Introduction to Quantitative Data Analysis in the Behavioral and Social

    This book strives to be an introduction to quantitative data analysis for students who have little or no previous training either in statistics or in data analysis. It does not attempt to cover all types of data analysis situations, but works to impart the proper mindset in performing a data analysis.

  22. Your Ultimate Guide to Quantitative Research

    Quantitative vs qualitative research. While the quantitative research definition focuses on numerical data, qualitative research is defined as data that supplies non-numerical information. Quantitative research focuses on the thoughts, feelings, and values of a participant, to understand why people act in the way they do.

  23. Quantitative Research: Definition, Methods, and Examples

    Quantitative Research Definition: Quantitative research is a systematic and objective approach to collecting, analyzing, and interpreting numerical data. It measures and quantifies variables, employing statistical methods to uncover patterns, relationships, and trends. Quantitative research gets utilized across a wide range of fields, including ...

  24. What Is Quantitative Research? Types, Characteristics & Methods

    Quantitative research is a method that uses numbers and statistics to test theories about customer attitudes and behaviors. It helps researchers gather and analyze data systematically to gain valuable insights and draw evidence-based conclusions about customer preferences and trends.

  25. Quantitative Data Analysis

    Quantitative data analysis with the application of statistical software consists of the following stages [1]: Preparing and checking the data. Input of data into computer. Selecting the most appropriate tables and diagrams to use according to your research objectives. Selecting the most appropriate statistics to describe your data.

  26. Qualitative vs Quantitative Research: What's the Difference?

    Qualitative research aims to produce rich and detailed descriptions of the phenomenon being studied, and to uncover new insights and meanings. Quantitative data is information about quantities, and therefore numbers, and qualitative data is descriptive, and regards phenomenon which can be observed but not measured, such as language.

  27. Qualitative vs. Quantitative Data: 7 Key Differences

    Thematic analysis: Organize your codes into themes and sub-themes, looking for the meaning—and relationships—within each one. Content analysis: Quantify the number of times certain words or concepts appear in your data. If this sounds suspiciously like quantitative research to you, it is. Sort of.

  28. Catalyzing teacher moves in small-group problem solving: a quantitative

    This report validates a novel quantitative methodology for analyzing moment-to-moment interactions in classrooms called the Poisson Process Methodology (PPM). PPM differs from moment-to-moment qualitative and quantitative analyzes typically used in education by using time-series data to quantify the degree to which the presence of facilitator ...

  29. Tracing the color: quantitative trait loci analysis reveals new

    LG1 and LG11 BLUP a * QTLs are reported here for the first time, confirming the accuracy and added value of quantitative color analysis for QTL detection. For instance, one QTL, on LG7, was only detected in 2022 at 25-57 cM with a PVE of 3.3%. ... Supplementary data is available at Horticulture Research online. References. 1. Migicovsky. Z,

  30. Performance Analysis of Quantitative Bone Measurement with Spiral CT

    Research output: Other contribution. Hangartner, TN, Gupta, S & Short, DF 2009, Performance Analysis of Quantitative Bone Measurement with Spiral CT.. ... T1 - Performance Analysis of Quantitative Bone Measurement with Spiral CT. AU - Hangartner, Thomas N. AU - Gupta, S. AU - Short, David F. PY - 2009/1/1.