Library Home

Mathematics for Elementary Teachers

(18 reviews)

a problem solving approach to mathematics pdf

Michelle Manes, Honolulu, HI

Copyright Year: 2017

Publisher: University of Hawaii Manoa

Language: English

Formats Available

Conditions of use.

Attribution-ShareAlike

Learn more about reviews.

a problem solving approach to mathematics pdf

Reviewed by Kevin Voogt, Assistant Professor, Grace College on 4/20/23

There seem to be subjects missing that are typical of the common core mathematics for elementary teachers texts (e.g., Ratios/Proportions, clear Partitive/Measurement division ideas, percentages, certain ideas in Geometry, Measurement). read more

Comprehensiveness rating: 4 see less

There seem to be subjects missing that are typical of the common core mathematics for elementary teachers texts (e.g., Ratios/Proportions, clear Partitive/Measurement division ideas, percentages, certain ideas in Geometry, Measurement).

Content Accuracy rating: 5

I did not find mathematical errors in the text during my review.

Relevance/Longevity rating: 3

I think there is need for quite a few updates to the text in regards to what is covered in elementary mathematics through the common core. The topics listed in my review of the Comprehensiveness above are just a start. I also see a need to add more activities to each section where prospective elementary teachers could do more exploration of the mathematics rather than what seems to be a more traditional approach of having the text explain it followed by problem sets alone.

Clarity rating: 5

The wording was quite clear and had nice explanations throughout.

Consistency rating: 5

It seems consistent throughout - with recurrent use of the same technical terms as needed.

Modularity rating: 4

There were a few issues with being able to assign the texts at different points within the course, as is the case for many math texts, in that many of the sections rely heavily on prior knowledge. If reorganization were to occur, there would be some need to re-structure how certain sections are taught.

Organization/Structure/Flow rating: 4

The text lacks much of the wonderful mathematical connections that could be made between ideas. While some connections are made, they seem a little outdated at times. I also think it would make more sense to have the properties of operations within their corresponding sections on operations rather than after all 4 operations are introduced.

Interface rating: 5

I did not see any issues with the interface. It was pretty user-friendly.

Grammatical Errors rating: 5

I did not notice any errors during my review.

Cultural Relevance rating: 5

I did not see anything insensitive or offensive in the text.

The text is just a small sampling of the many methods that could be used in teaching these mathematical ideas. I would have liked to see more activities for elementary teachers built into the lessons in each chapter as a means for learning and exploring ideas to facilitate more discussion as this text is used. There also are so many more connections that could be made between mathematical ideas that were lost a bit, especially with the general organization. On the whole, it is a nice resource and I could see it as useful for students studying for their certification exams to get some perspectives on the mathematical ideas they might encounter.

Reviewed by Sandra Zirkes, Teaching Professor, Bowling Green State University on 4/14/23

The text covers whole numbers, fractions, decimals, and operations well, and it provides some topics in geometry and algebraic thinking. However, the topics of ratio, proportion, and percent, as well as a more thorough coverage of geometry and... read more

The text covers whole numbers, fractions, decimals, and operations well, and it provides some topics in geometry and algebraic thinking. However, the topics of ratio, proportion, and percent, as well as a more thorough coverage of geometry and measurement are missing.

All information in the text is mathematically accurate and the writing and diagrams are error-free.

Relevance/Longevity rating: 4

While all of the information in the text is accurate and thought-provoking, some specific approaches are outdated with respect to the current standards and pedagogy. Approaching the concept of place value through the "Dots and Boxes" method, without reference to base ten blocks that are overwhelmingly used in the elementary math classroom, limits the coverage of this important topic. Similarly, approaching fractions using the "pies and kids" scenario is not consistent with the standards which emphasize the understanding of all fractions as iterations of unit fractions.

The text is written using clear and understandable prose that is both mathematically accurate and accessible to college level pre-service teachers.

The text has a clear organization and focus and uses consistent approaches and terminology throughout.

Much of the text is easily divisible into smaller subsections for student use. With respect to reorganization and realignment for a particular course, while some topics are revisited at appropriate points in the text, if those original topics were not covered in the course, revisiting the topic may not provide enough basis for the new topic. For example, the understanding of decimals is highly reliant on a student's understanding of the Dots and Boxes approach to place value earlier in the text.

Organization/Structure/Flow rating: 5

The topics in the text are organized in a logical way that is consistent with the structure of a typical mathematics education course.

Interface rating: 4

Navigating the text itself was seamless and intuitive. However, the videos that I viewed had poor visual quality and there was no audio.

The text is well written with no grammatical errors.

There is no apparent cultural insensitivity in the text.

This text has a problem solving focus and emphasizes deep thinking and reasoning about mathematics. Its approaches are clear and understandable. While its approaches are mathematically correct and thought-provoking, it is missing some key topics such as ratio, proportion, percent, and a more thorough coverage of geometry and measurement, as well as some standards-based approaches such as base ten blocks and understanding fractions as iterations of unit fractions.

Reviewed by Fred Coon, Assistant Professor, Anderson University on 2/16/23

The text covers all major points to help develop future teachers. read more

Comprehensiveness rating: 5 see less

The text covers all major points to help develop future teachers.

Text appears to be accurate.

The content is consist with concepts that elementary teachers should know. The methods are small in diversity.

Topics where well explained.

Text appears to use understandable and consistent terms.

Modularity rating: 5

Units appear to be mostly independent and can be used as stand alone units.

The topics are presented in a manner that build on each other but can be rearrange if desired.

Interface was useful and aided in navigating text.

I found no errors.

The text has no culturally insensitive or offensive items that I noticed.

I would like to have seen more diversity in methods discussed.

Reviewed by Perpetual Opoku Agyemang, Professor of Mathematics, Holyoke Community College on 6/17/21

The content in this text is built to help its readers, especially, pre-service elementary education majors learn to think like a mathematician in some very specific ways. The content addresses the subject framework in a complete yet concise... read more

The content in this text is built to help its readers, especially, pre-service elementary education majors learn to think like a mathematician in some very specific ways. The content addresses the subject framework in a complete yet concise manner. Although it does not provide an effective index/or glossary, LCD was not extensively tackled using factor tree, multiples or tables to express it, I still give props to the author since there are a lot of pictorial examples and a question bank for most of the various concepts. Furthermore, Dots and Boxes game on chapter 1 was very engaging and fun.

This text is very accurate and informative using a variety of felicitous examples to suit a diverse student population.

Conventional concepts are presented in a current and applied manner which allows for easier association with similar organized and retained information. This text could use some updated fraction problems and examples involving mixed numbers. Some of the YouTube videos have no sound at all.

Clarity rating: 4

Content material was presented in an easy to understand prose. Introduction of concepts and new terms were usually done by association or relevant previous knowledge. Some of the concepts like Multiplying Fractions, have YouTube videos embedded in the introductions.

Terminologies and framework are consistent throughout the text. The use of different notations were consistent throughout the various chapters and subunits.

This text has easily divisible content as stand alone subunits. However, numbering these chapters and subunits would have gone a long way to help its readers.

The topics in this text are organized from basic to complex concepts in a logical, clear fashion.

This text has an awesome interface (Online, PDF and XML). Moreover, it is untainted by distractions that may confuse its reader. Hyperlinks should have been included in the content.

I did not spot any grammatical errors in this text.

This content material contains no recognizable cultural insensitivity. It could use more examples involving modern affairs that are inclusive of diverse backgrounds.

I truly love the concise format of this text and how many different examples it uses to explain the concepts. The Geometry of Arts and Science and Tangrams were so informative with fun activities. It's easy to tell when one example ends and another begins, although index/or glossary and a system of links from the table of contents would be greatly appreciated. I did not see Points on a Coordinate Plane. Additionally, the number of exercises per section is too small. Of course this can be remedied by adding more. As with any textbook, the reader will need to supplement certain sections and clarify particular terms and concepts to best fit their situation. Pre-service elementary education majors could transition to this book fairly easily and successfully teach K-6 students in the United States in alignment with current Common Core Math Standards.

Reviewed by April Slack, Math Instructor, Aiken Technical College on 5/13/21

This text covers elementary mathematics strands including place value, numbers and operations, fractions, patterns, algebraic thinking, decimals, and geometry. Measurement and Data and Statistics strands are not included in this particular text. ... read more

This text covers elementary mathematics strands including place value, numbers and operations, fractions, patterns, algebraic thinking, decimals, and geometry. Measurement and Data and Statistics strands are not included in this particular text. The last chapter supplies the audience with problem-based learning approaches that include some measurement, but not in the detail of previous chapters of the book. It does incorporate problem solving strategies and pedagogical techniques teachers may use in the classroom. Examples with solutions and clarifying notes are provided throughout the text. The text does address Common Core Standards as well as the eight mathematical process standards. The textbook also provide teachers with a conceptual understanding of elementary mathematics along with appropriate mathematical terminology. The text does not offer an index or glossary.

The mathematics content provided in this text is accurate and provides thorough examples of teaching elementary mathematics for pre-service teachers. I found the text to build conceptual understanding and procedural fluency rather than just focus on basic algorithms to solve math problems. This is especially important for pre-service teachers, as they need to truly understand the "why" behind the math tricks that are often taught in early grades. The embedded links throughout the text are all in working order, as well.

The problem-solving approach to mathematics is especially relevant for elementary pre-service teachers; the intended audience. The book does expand beyond elementary mathematics, however, this is deemed extremely useful for all levels of mathematics teachers. Knowing the mathematical concepts beyond elementary strands allows teachers to know where there students are going and the mathematical purpose of content standards at each grade level. Many of the pedagogical techniques presented in the text are aligned with current research and instructional strategies for the elementary classroom.

This text provides explanations and defines mathematical terminology and has accessible prose. Beginning with the problem solving chapter before the specific content strands allows teachers to apply and consider strategies throughout the text. Often times, textbooks save problem solving for the end, but this text addresses strategies upfront and spirals nicely throughout the text. Some of the examples and visual representations are intended for an audience with mathematical background knowledge and strengths. A pre-service teacher may need help with content review prior to understanding the selection of particular problems highlighted in the text.

The text is well-organized and consistent with terminology throughout. The text is also consistent with provided examples that are used by mathematics teachers in everyday classrooms. There are multiple examples throughout each of the content chapters for pre-service teachers to reference and use in their own experiences.

This book is an easy read and may be easily broken up for weekly reading assignments and reflections. It seems as if mathematics teachers had a hand in writing this book. Bulleted and numbered lists are used throughout the text. The text also presents examples in clear, colored blocks. Visual models are clear and concise.

The book is well-organized with headings, subheadings, and the use of italics and boldface make this book extremely student friendly. The topics and content presented in this text are clear and in a logical order. Bulleted and numbered lists are reader friendly and easily understood. I found having the problem solving chapter appear first in the text stresses the importance and relevance of helping students become natural problem solvers. Often times texts and even worksheets save problem solving until the end, which poses a problem with students in the classroom.

This book is very easily navigated. The contents tab and drop down menu allows for the reader to quickly navigate to particular chapters and specific content. The previous and next buttons located at the bottom of the text allows readers to toggle between chapters very quickly. All embedded links work as they should and visual models are clear and understandable. There are no distractors present when trying to navigate the text. There is no index / glossary offered with this text.

The text is free from grammatical errors.

Cultural Relevance rating: 4

This text is not culturally offensive in any way. The final chapter of the text is dedicated to problem based learning and is centered around Voyaging on Hōkūle`a. The text provides embedded links to culturally relevant videos and models that help illustrate the cultural practices of Polynesians.

This textbook has a solid foundation and is well-organized for it's intended audience, the elementary mathematics pre-service teacher. This text will help build conceptual understanding of mathematics that will lead to procedural fluency for teachers. The text also provides clear examples of instructional strategies to be used in today's classrooms. Methods courses for pre-service teachers will find this text extremely useful and easy to incorporate in elementary mathematics methods instruction.

Reviewed by Kane Jessen, Math Instructor, Community College of Aurora on 8/13/20

This textbook is intended to cover the mathematics topics necessary to prepare pre-service elementary education majors to successfully teach K-6 students in the United States in alignment with current Common Core Math Standards. The textbook is a... read more

This textbook is intended to cover the mathematics topics necessary to prepare pre-service elementary education majors to successfully teach K-6 students in the United States in alignment with current Common Core Math Standards. The textbook is a mostly comprehensive collection of K-6 Common Core elementary math topics ranging from non-numerical problem solving through summative PBL assessments incorporating algebra, geometry and authentic problem solving. However, several topics related to K-6 CCSS Standards are not covered or minimally covered. CCSS topics with minimal coverage include set theory, logic, integers, probability, graphing and data analysis. At the beginning of the book, there is an effective and accessible table of contents with links included. However, sections and subsections are labeled only with names and page numbers. The text does not contain an index, glossary or appendices. Chapter summaries and links to previous concepts/problems are not included but would support student learning if included. More visuals and historical explorations would increase comprehensiveness.

Content was found to be accurate, error-free and unbiased.

Relevance/Longevity rating: 5

The language and examples of this text are written with a constructivist and meta-pedagogical voice that is both academic and accessible. The author immediately addresses the importance of CCSS and consistently utilizes the “Exploding Dots” curriculum. The “Exploding Dots” curriculum is a brave and differentiated approach to holistically teaching multi-base mathematics to K-12 students. “Exploding Dots” has been a core focus of K-12 Global Math Project and was pioneered by James Tanton . As future teachers, students can expect to teach “Exploding Dots” or similar CCSS curriculum sometime during their teaching career.

The language of the text is well-written, accessible and clear. Some sections and examples could be expanded for clarity/depth. Prior definitions/review concepts are not consistently linked.

The text is internally consistent in terms of its own terminology, framework and graphics. The “Exploding Dots” infusion helps maintain continuity throughout the text but is not present in all modules.

This text follows the common sequence that many “Mathematics for Elementary Teachers” textbooks commonly follow. The text is organized into eight modules. The text initially builds upon itself without being overly self-referential. The text’s sections, subsections, definitions, axioms and problem banks are all well delineated but lack sections/subsection numbers/identifiers and links to previous concepts/definitions

This textbook has a solid flow and follows a common sequence shared by most for profit “Mathematics for Elementary Teachers” texts. The text is well organized and builds upon itself.

Minimal issues involving interface were observed. Observed interface issues include, one broken video link and unnumbered sections. Definitions and review topics are not linked or referenced with page numbers/sections, however, this creates minimal usability issues. The text contains adequate procedural visuals and also cultural and historical visuals that enhance the student learning experience.

This text is largely free from grammatical errors. Grammatical errors that were observed were minor and non-persistent.

The text is not culturally insensitive or offensive in any way. It consistently uses examples that are inclusive of a variety of races, ethnicities, and backgrounds. Textbook examples often include references to Hawaiin culture. These references are easily understandable and could be readily adapted for students in other places. In an effort to increase relevance, further additions to the text could be made to provide a more equitable and historical focus on women, minorities and problem based learning cross-sectional explorations similar to the Hōkūleʻa section.

This textbook has a solid structure and great flow, I thoroughly enjoyed reviewing this textbook. I am genuinely excited to incorporate Michelle Manes ‘Mathematics for Elementary Teachers’ into my upcoming semester’s curriculum. With subsequent editions and revisions, this textbook will become a wonderful text for students majoring in primary education, especially those who are either lacking in basic math skills or math confidence.

Reviewed by Reina Ojiri, Assistant Professor, Leeward Community College on 7/27/20

The book begins with a reference to the Common Core State Standards (CCSS) for Mathematics and the eight “Mathematical Practices". Though not all states have adopted and/or are currently using the Common Core Standards, with its incorporation at... read more

Comprehensiveness rating: 2 see less

The book begins with a reference to the Common Core State Standards (CCSS) for Mathematics and the eight “Mathematical Practices". Though not all states have adopted and/or are currently using the Common Core Standards, with its incorporation at the beginning of the text I initially thought that the Common Core standards would be revisited consistently throughout the text.

Though the "Think Pair Share" sections are great additions for discussion to the book they do not include common misconceptions or tips for instructors to use to help guide these discussion prompts. The focus on just one type of discussion "Think Pair Share" also does not give future teachers a broader experience with different cooperative learning strategies in the classroom. There are many strategies in addition to “Think Pair Share” that are also great and seeing the same strategy over and over did not provide variation or keep me engaged as I read through the text.

There are a few key concepts that are not included in the text including Measurement & Data and Statistics & Probability.

The text also does not include an effective index and/or glossary. I have found that students do use the index and/or glossary that is typically in the back of the book to help them find information in the text quickly.

Content Accuracy rating: 3

The content is error-free however some of the images included on the PDF version are blurry and hard to read. There does not seem to be consistency between the different readable versions of the text.

There also seems to be a bias for the dots and boxes strategy throughout the text and the content lacks current practices of teaching concepts.

Just like any text, this textbook needs to be updated to match current best practices and research in math education. Since this text is Attribution-ShareAlike which allows “others to remix, adapt, and build upon your work even for commercial purposes, as long as they credit you and license their new creations under the identical terms” it does seem that updates and instructor/course-specific content will be relatively easy to implement as needed.

Clarity rating: 3

This text is written in a way unique way that makes it easier for students to read through and follow. It is very student friendly however might not be as useful as an instructor text since the instructor needs to fill-in-the-blanks on their own.

Consistency rating: 3

The text is written with consistent terminology however the framework for each chapter is not consistent. Some chapters include Explorations and additional sections while others end consistently with a problem bank.

Modularity rating: 3

The text is divided into smaller reading sections however the titles of each section are not easily recognized by students. Though I imagine the titles were meant to be creative for each section, having something more straight forward to make it easier for students to navigate is more important than creativity especially for future teachers who might be teaching these concepts for the first time.

Organization/Structure/Flow rating: 3

It would be good to organize the material consistently throughout the text (e.g.each section should end with a problem bank). The variation in the different sections can be confusing to both the instructor and student when trying to find something in the text.

I also noticed that the online version does not include page numbers while the PDF version does. This is not helpful when referring students to particular sections of the book. The PDF version also has many completely blank pages. I am not sure if this was meant to be on purpose (for printing purposes) but these pages can be very distracting to the reader.

Interface rating: 2

Navigation throughout the text is fine however, there are noticeable differences between the online and PDF versions of the text. The images in the PDF versions are noticeably blurry and lower quality than those in the online version. In some instances, it seems as though images were screenshot and copied and pasted which could account for the image quality.

Some images, in particular, should not have been included at all and are unreadable, for example, the Hokulea on page 441.

I did not notice grammatical errors.

The connection to the Hawaiian culture was a nice touch.

I would use this text as a reference but would not adopt this book as the main text for my class.

Reviewed by Thomas Starmack, Professor, Bloomsburg University of Pennsylvania on 3/26/20

The book is somewhat dated and does not include current research based best practices like concrete, representational, then abstract. Like most authors, they make assumptions that students have the ability to understand abstract and start the... read more

The book is somewhat dated and does not include current research based best practices like concrete, representational, then abstract. Like most authors, they make assumptions that students have the ability to understand abstract and start the lesson there, which is contradictory to how the brain works and what current research says about effective math instruction and learning.

I agree the content is accurate, but in many areas the learner must have a very strong understanding of mathematical concepts, structures, and applications. There lacks current best practice and current NCTM recommendations to approaching the teaching of mathematical content.

Relevance/Longevity rating: 1

Although mathematical concepts at the elementary level remain the same, the approach to engaging students in learning and the methods of instruction have evolved greatly. The book lacks many of the newer approaches and is outdated. The arrangement of the concepts is okay. I would recommend that the big ideas of teaching math are in the beginning and providing an overview of what is mathematics and best approaches to teaching/learning mathematics. Then scaffold the specific concepts. Fractions is one of the most complex and abstract, and this book starts there as a first topic.

Once again, the book is okay in terms of math learning but dated on best practice approaches. The book does not use jargon per say, but does not provide the best approaches for students to learn how to effectively teach mathematics.

Consistency rating: 4

Yes the book is consistent throughout.

The text is divisible, just not relevant to today nor provides current approaches. The order of the content is not in line with a methods of teaching course I would follow.

Organization/Structure/Flow rating: 2

I think the topics are clear but dated and not in the order as described above.

The text provides a variety of interfaces, none of which are confusing for the student who has a very strong math background. The text does mislead students to think starting with abstract is how to instruct elementary students, which is contradictory to brain research and current best practices.

Grammatical Errors rating: 4

I did not notice any grammar errors.

Cultural Relevance rating: 3

I think the text is culturally appropriate. Not certain about the final chapter as it focuses on one population. Having a chapter or theme woven throughout the text that provides students with a stronger understanding that although mathematics is a universal language, there are cultural differences to teaching and learning as evidenced in the 1999 TIMSS report.

The text is outdated. The text is an okay resource but I would not be able to use as the main guide for learning in a college level methods of teaching elementary mathematics course.

Reviewed by Jamie Price, Assistant Professor, East Tennessee State University on 3/20/20

This book introduces the reader to the standards for mathematical practice (SMP) from the Common Core standards in the introduction. I appreciated this as these standards cover all grades and are a unifying theme of the Common Core standards, yet... read more

This book introduces the reader to the standards for mathematical practice (SMP) from the Common Core standards in the introduction. I appreciated this as these standards cover all grades and are a unifying theme of the Common Core standards, yet many times overlooked. In addition, many states, including mine, that are not following Common Core directly have adopted the SMPs. The book does not cover two of the mathematical strands, namely measurement and statistics/data. Among the strands that are covered, however, the author does a thorough job of explaining the content, using a unified theme throughout, such as dots and boxes introduced in place value that appear again in number operations. I particularly liked the final chapter of the book and its connection to Hawaiian culture. The author could easily incorporate ideas related to teaching and learning measurement into this chapter in order to make the book more comprehensive.

The content was very accurate. I did not come across any mathematical errors or biases. The author did a good job of incorporating "think, pair, share" elements throughout each chapter as a model for future teachers. To further guide future teachers, I would have liked to see the author include information in each chapter about common misconceptions students have when learning the related material and ideas on how to address those misconceptions. In my experience, I find that pre-service teachers are unaware of these misconceptions and it is helpful to make them aware of them so that they can anticipate them in their own classrooms.

The content presented in this book is up-to-date and will remain relevant for a long time. Due to the fact that this book focuses more on content rather than methods, I do not foresee a need for many updates moving forward.

The book is written in a very clear and concise way that is approachable to future and current elementary teachers. The author presents key words in bold throughout the book to draw attention to them. I liked the way that the author included videos as well as written explanations of ideas, such as in the Number and Operations chapter, section titled Addition: Dots and Boxes. The author explains, in words, how to use this method to add multi-digit numbers and follows the written example with a video explanation. This helps to reach a variety of learners and learning styles. The author also addresses common "jargon" associated with particular mathematical concepts, such as proper and improper fractions (section titled What is a Fraction?), and discusses how this jargon can be misleading for students.

Each chapter in the book includes an introduction, multiple opportunities for think-pair-share discussions, and several problem sets to practice. I appreciated the consistency in the Dots and Boxes method introduced in the Place Value chapter and then carried into the Number and Operations chapter.

The book uses a modular approach to present the material. Each module contains numerous sections that help to break up the content into smaller chunks so that the content does not seem overwhelming. The modules are set up in an order that makes sense for the mathematics, but a reader could begin reading at any module and still make sense of the content.

The organization of the topics makes sense according to the mathematics presented and is logical.

I did not find anything distracting or confusing in relation to the interface of the text. The book was easy to navigate, with a clearly defined table of contents. I was able to easily click through the various modules and sections within each module. The book uses figures well to provide engagement to the reader as well as to further clarify content. The use of videos embedded within the modules helps to strengthen understanding of the content. It did take me a minute to find the navigation link that allowed me to move to the next section in a module (right arrow at bottom right corner of the page), but once I found it I was able to navigate seamlessly to each subsequent section.

I did not find any grammatical errors in the text.

In my opinion, this was one of the biggest strengths of this text. The author did a nice job of incorporating Hawaiian culture into the text. For example, the author includes an image in the Place Value chapter (Number Systems section) that references the use of tally marks on a sign at Hanakapiai Beach. In addition, a full chapter was devoted to Voyaging on Hōkūle`a. I particularly liked how the author connected this idea to beginning teaching of elementary mathematics and encouraged future teachers to think about ways to see mathematics outside of traditional mathematical settings.

I am glad that I came across this resource. I primarily teach math methods courses for elementary pre-service teachers, but I found many aspects of this text that I can incorporate into my classes to help students think more deeply about the mathematics that they will teach. I appreciated the author's attempt to challenge students in their thinking about elementary mathematics. Initially, I was surprised to find that there was no "answer key" provided for the many problem sets that were included throughout the text. After reading the quote presented on the introductory page to the Problem Solving chapter, I realized that this may have been an intentional decision made by the author to encourage readers to go beyond "a trail someone else has laid." I find that many pre-service elementary teachers want to "just know the answer" when it comes to mathematics; a no answer key approach will encourage discussion and justification, two elements important to ensuring equity in the teaching and learning of mathematics.

Reviewed by Shay Kidd, Assistant Professor- Mathematics Education, University of Montana - Western on 12/30/19

The content that elementary teachers need to have that is not covered in this book is graphing, probability, statistics, exponents, visual displays of data. The coverage of operations is very specific in the examples and does not cover the wide... read more

The content that elementary teachers need to have that is not covered in this book is graphing, probability, statistics, exponents, visual displays of data. The coverage of operations is very specific in the examples and does not cover the wide range that should be presented in this type of text.

Content Accuracy rating: 4

While the core topics presented are correct, the number of problems that are provided without any solutions is alarming. The majority of problems that are provided are meant for the reader to perform but do not provide any type of answer key for checking the work. In this way, the book seems to assume the reader to have a solid knowledge of the topics already and this book discusses a few different approaches to these topics.

The specific content presented is up-to-date and usable.

The book's prose seem to be more of a teaching guide than a textbook. This is nice for the conversational aspect that a reader may want in their learning, but should be explained more or possibly a change of title for the book. Something more like "Exploring the concepts of Elementary Mathematics" would provide a more reading friendly approach the book offers.

The author has a consistent voice of teaching and presenting the material.

Modularity rating: 2

The break-up of the text with boxes is difficult to follow the purpose of each box. While some of the box styles are clear, such as the think, pair, share or problem boxes, others seem to break up the line of discussion. A problem box may be discussed more directly immediately following the box and the presentation of the problem. Most of the problem boxes are not discussed again in the main text. This cased issues for wanting to read with a specific purpose. When the reader wants to understand a problem more, there is generally not more discussion, but unclear about when that would be provided or not. Other times boxes were used without any "box type" provided and these were just to break up the flow of the text.

Place value was a major topic to start the book and had good coverage, then operations and fractions were discussed, then a return to place value with decimals. It would seem that a connection of place value and decimals would work better to follow the other place value discussion.

Interface rating: 3

There are several pages that have large blank parts or are totally blank. This may be due to the PDF version that I chose. When I did use the internet-connected version, there seems to be a dependence on youtube to help do some of the teaching.

There are a few minor issues that would be resolved with a good proofread.

The book does seem to be written with the Hawaiian culture in mind. This may be difficult for other cultures to connect to or understand but does not present any insensitivities.

The book's title suggests a full discussion of the topics that elementary education pre-service teachers would need to know and teach, but this book is very lacking in the topics required for this. I selected this book to review because I teach classes that would use the textbook, but I would not use this textbook as is. There are a few topics that I plan to add to my own instruction, but the book as a whole needs additional help to be able to stand alone. This really appears to be a teaching guide based on the constant think-pair-share setup. This also is a specific teaching and method that seems to require the students to already have much of the content mastered. It does not teach all the content that is required to the level of the discussion had.

Reviewed by Ryan Nivens, Associate Professor, East Tennessee State University on 10/25/19

The book covers all the expected mathematical strands except for measurement and data/stats. There are some obvious connections to the strands of mathematical practice from the Common Core standards. While the abstract specifically lists MP1, MP2,... read more

The book covers all the expected mathematical strands except for measurement and data/stats. There are some obvious connections to the strands of mathematical practice from the Common Core standards. While the abstract specifically lists MP1, MP2, and MP3, the introduction clearly lists all 8. The chapter "Voyaging on Hōkūle`a" contains activities that will require use of measurement and units, but there is no explanation on how measurement topics should be taught or approached. However, this chapter does provide a good project-based learning set of materials, and is an exceptional resource for navigation. The book also includes a chapter on Problem Solving, which is important for those students who must complete the EdTPA and address the 3rd subject specific emphasis area. All embedded links to Youtube videos or Vimeo videos are working and play within the textbook pages.

I find the mathematics to be entirely accurate. There are many teaching strategies, such as "think pair share" that are found throughout the chapters. This is particularly helpful for future teachers.

This book should last a very long time in terms of relevance.

This book is very clear, with mathematical words in bold and proper definitions provided. The text also addresses common math classroom jargon. For an excellent example of this, see the heading "What is a Fraction" in the chapter on Fractions. Toward the bottom is a sub-heading "Jargon: Improper Fractions" that has students consider the usefulness of proper and improper fractions.

This book is consistently laid out, with multiple examples, problems to try, and diagrams to support the transfer of information.

This book is entirely modular. You can pick it up, and easily start in any chapter and not be lost. The heading, subheading, use of italics and boldface make it easy to locate information. As a mathematics education book, this is quite nice.

A mathematician wrote this, the layout is logical without question.

The book is extremely easy to navigate, with a logical structure to the table of contents that you can easily click through. A drop down menu in the upper left corner allows you to view the outline of the book while still viewing a page, and you can collapse/expand chapters within the menu.

The many figures that are present throughout the textbook are perfectly displayed and fit the reading material.

There is nothing I find distracting in the layout and interface.

I could not find any errors.

An entire chapter is dedicated to Voyaging on Hōkūle`a, with exceptional videos and diagrams to illustrate the cultural practices of the early Polynesians.

I was excited to find this book in the Open Educational Resources library. As a professor who frequently teaches methods courses in mathematics for elementary teachers, I feel that this book may be a terrific book to use to replace previous texts that I've adopted. I would like to see a chapter on Measurement to make the Voyaging on Hōkūle`a chapter more useful. It is obvious from the first page you open to that this book was well planned and thought out. I'm impressed.

Reviewed by Monica Rose Gilmore, Graduate Student, CU Boulder on 7/1/19

This textbook goes into depth about different mathematical concepts that are important for elementary school teachers to understand in teaching mathematics. However, the text is missing a focus on statistics and probability, which are key areas of... read more

Comprehensiveness rating: 3 see less

This textbook goes into depth about different mathematical concepts that are important for elementary school teachers to understand in teaching mathematics. However, the text is missing a focus on statistics and probability, which are key areas of focus in elementary math classrooms. The text is also missing an index or glossary but does define new terms as they are introduced.

The content, mathematical diagrams and depictions are accurate and error-free. Each chapter also accurately shows various ways to understand mathematical concepts. However, the diagrams are geared towards an audience that already has some understanding of advanced mathematics.

The content is organized in a way that necessary updates would be straightforward to implement. More specifically, much of the content reflects current mathematical practices and activities endorsed by up-to-date research in mathematics education.

The text is written in accessible prose and provides context for jargon and technical terminology. Additionally, the text clearly separates different terms for different strategies and concepts. For example, in the Problem Solving Strategy section, the interface is divided into different strategies for the reader to explore. This is helpful in keeping new concepts and strategies organized for the reader.

The text is written with consistent terminology. More specifically, the text consistently gives examples of what concepts are called by mathematicians and teachers. This is helpful for pre-service teachers that might be teaching mathematical concepts and strategies for the first time.

The text is easily divided into smaller reading sections. These sections include not only explanations of mathematical concepts, but also theorems, activities and diagrams which can be referenced by the teacher at any point. Also, the text gives teachers ideas for activities and additional problems to try with students.

Though the topics in the texts are presented in a logical, clear fashion, it might be beneficial for pre-service or elementary teachers to see how to specifically scaffold the different concepts within those topics for elementary students at different grade levels. Additionally, the text could also demonstrate how students typically confuse topics so teachers and pre-service teachers are prepared to navigate new concepts for the class.

The interface is easy to navigate since the content clearly outlines chapters and the topics within them. Sections such as notation and vocabulary, think pair shares and theorems are clearly outlined, organized and conceptually scaffolded. However, it might be helpful to have an index so the reader does not have to click within each topic to find the concept they are exploring.

This text is free from grammatical errors.

This text is not culturally insensitive or offensive and includes examples from the Hawaiian culture. Though the text is mainly made up of mathematical explanations, there are a variety of people's names in different problems that could be attributed to a variety of cultures. Additionally, the text reflects Polya's advice (1945) to try adapt the problem until it makes sense. Though the text includes mainly mathematical explanations, it does call for adapting problems which could potentially be applied to a variety of students of different backgrounds.

Reviewed by Glenna Gustafson, Professor, Radford University on 5/22/19

This is book is fairly comprehensive and I feel could be used by most foundational courses in elementary mathematics. The structure and writing provide a good foundation for students learning the "why" behind the mathematics and becoming... read more

This is book is fairly comprehensive and I feel could be used by most foundational courses in elementary mathematics. The structure and writing provide a good foundation for students learning the "why" behind the mathematics and becoming mathematical thinkers. There were some areas that could possibly use more development. In geometry for example there was no discussion of perimeter, area, and volume. Estimation, measurement of weight, time, and probability also appears to be missing. The text is well organized and written so that the chapters do not have to be completed in the order in which they are presented. While there is not index or glossary, the author uses colored text boxes to explain specific content or terms.

The content of the text is accurate and represented in a variety of formats to support learning, Not only does it provide solutions to problems, but also the mathematical thinking behind those solutions.

The text is very relevant for K-6 elementary pre-service teachers. It would be beneficial to know the specific grade levels that the author considers as "elementary" since this does vary by location. The content is "standard" for most elementary math courses and would not need to be updated often and the consistent layout and formation would make changes easy to make.

The text is written in a conversational tone. The simplicity and straight-forwardness of the text should appeal to those students that have sometimes been overwhelmed by writing in more traditional math texts.

The text is organized consistently from chapter to chapter. The table of contents and chunking of content in the chapters is logical and clear, Each chapter includes graphics as well as sections for: Think-Pair-Share; Definitions; Theorems (when appropriate); and, Problems. This consistent structure makes navigation easy.

The table of contents and chunking of content in the chapters is logical and clear. This also makes it easy to not necessary to move sequentially through the text, but to have the option of reviewing or using only needed topics. Subtitles and graphic captioning are appropriate for the content.

The text is easy to read and the organization within each chapters makes navigation easy.

This text is easy to navigate. The inclusion of graphics, charts, photos, and videos support learning. There are several pages where graphics in the Geometry chapter are skewed in the PDF version, but this does not seem to be a problem in the online version, Not all of the video links work within the PDF version.

There were no obvious grammatical errors. Several of the errors that were found were typos and/or word omissions.

The text is culturally inclusive. One thing that should be noted is that it seems male names are over-represented in the Problem sections. A reference to Hawaiian culture and life is evident. The Hōkūle`a voyage found in the last chapter is a good example of problem based learning and the integration of math with other subject areas.

This would be a wonderful text to use as a supplement or compliment to an elementary math methods course. It is not as overwhelming as other math texts, and would provide pre-service teachers with a good foundational review of math concepts, including vocabulary and some pedagogy.

Reviewed by Karise Mace, Mathematics Instructor, Kuztown University on 5/16/19, updated 11/9/20

This book is fairly comprehensive for a one-semester course, although it does not include much detail about several topics. The section on number systems barely touches on Roman numerals and only mentions Mayan and Babylonian counting systems.... read more

This book is fairly comprehensive for a one-semester course, although it does not include much detail about several topics. The section on number systems barely touches on Roman numerals and only mentions Mayan and Babylonian counting systems. The sections on addition, subtraction, and division would be more robust if the author included other algorithms for these operations. The chapter on Geometry does not address perimeter, area, surface area and volume. The book does not include an index or glossary.

While the book is not error free, it is unbiased. Most of the errors seem to be typographical and/or related to web links or LaTeX. In the section on number systems, the author incorrectly explains how one million would be represented using Roman numerals and incorrectly claims that the Mayans did not use a symbol for zero. Further, the Mayan number system was not a true vigesimal system, as the text indicates.

This text uses a constructivist approach to help students build their understanding of the mathematics included in the book. It is well organized and written so that the chapters do not have to be completed in the order in which they are presented. Because of this, the text should be easy to update. When concepts that are presented earlier in the text are used in later chapters, the author includes a brief but thorough review that would allow students to understand the later chapter even if they had not read and completed the problems in the earlier chapter. The "dots and boxes" approach is timely, as it uses the idea of the "exploding dots" that are part of the Global Math Project (https://www.globalmathproject.org).

The textbook is clearly written and enjoyable to read...even for the math-phobic student. The tone is conversational and is even funny at times. The author defines important mathematical terminology in a way that is both mathematically accurate and accessible to students. The chapter on problem solving is fantastic and really gives students insight into how to think and problem solve like a mathematician. The pies per child model for fractions is not the most effective model for helping students understand fractions and this part of the text would be improved if the author replaced this type of modeling with pattern block modeling.

Overall, the text is consistent in its chapter structure and terminology use. However, there is inconsistent notation when using "dots and boxes."

The text is well-organized but can be reorganized in order to suit an instructor's preference. However, it would be best to complete the chapter on problem solving first, as it sets the stage for the rest of the book. Most of the chapters are structured more like an activity book with lots of great problems and thought provoking questions that will help students think deeply about the mathematical concepts being presented. With the exception of the chapter on problem solving, there is not a whole lot of text for students to read.

Although the topics presented could be reorganized to meet student needs, the order in which they are presented is logical and clear.

With only a few exceptions, the images it the text are clear. In the section titled "Careful Use of Language in Mathematics: =" some of the scale images need to be modified so that the items on the scale appear to actually sit on the pans. The same issue occurs in the section titled "Structural and Procedural Algebra." Some of the images in the sections titled "Platonic Solids" and "Symmetry" spill off of the page. The image that appears on page 89 and then again on page 144 would be more clear if a different font was used to label the line segments.

No grammatical errors were noted. However, there were a few typographical errors that could cause confusion for students as on page 219.

The text was culturally sensitive and nothing offensive was noted. As the focus of the text is purely mathematical, there are not many cultural references at all, unless they are references to historical cultures. The author does use names for hypothetical students that are diverse and represent a variety of ethnicities. The last chapter is an integrated unit that focuses on the Hawaiian culture. Unfortunately, the links and web addresses in this chapter do not work and/or are no longer active.

The book includes three sections at the end of the problem solving chapter in which the author articulately explains the language that mathematicians use to succinctly and precisely explain their problem solving and solutions. These sections will help students who may not think of themselves as mathematicians learn to think like mathematicians. So many mathematics textbooks are full of exercises but no true problems. On the other hand, this text is full of wonderful problem solving and critical thinking problems that are embedded in the sections as well as in the problem banks. The author also includes many "Think/Pair/Share" exercises and questions that will facilitate mathematical thinking and conversation among students. The constructivist approach used by the author will help students build deep understanding about the mathematics covered in the text. While there is some room for revision and improvement, this is a very good text to use with elementary education majors, and I definitely plan to use this book the next time I teach them.

Reviewed by Desley Plaisance, Associate Professor, Nicholls State University on 4/29/19

This textbook seems to be appropriate for the first course typically taught for elementary teachers which usually includes topics of problem solving, place value, number and operations. Most books are able to be used for a second course which... read more

This textbook seems to be appropriate for the first course typically taught for elementary teachers which usually includes topics of problem solving, place value, number and operations. Most books are able to be used for a second course which focuses on geometry. This book could not be used for the second course.

Content seems to be accurate.

Topics are somewhat static for a course like this, so the textbook will not become obsolete within a short period of time.

Appears to be clear.

The flow from topic to topic is consistent in presentation.

Divided into clear sections.

Topics are presented logically and in a similar order to most books of this type.

Easy to navigate with clear images and other items such as tables.

Book is written in simple language and appears to be free of grammatical errors.

Appears to be culturally diverse.

This book could definitely be used for a first course of elementary math for teachers with the teacher providing resources. As with many open books, the print and layout is very simple without cluttering pages with unnecessary items.

Reviewed by Lisa Cooper, Assistant Professor, LSUS on 4/26/19

This text covers many concepts appropriately; however, a few concepts are missing, such as; data analysis and statistics. For more than ten years, data-driven instruction has been a major focus in education along with many other uses. This text... read more

This text covers many concepts appropriately; however, a few concepts are missing, such as; data analysis and statistics. For more than ten years, data-driven instruction has been a major focus in education along with many other uses. This text has a table of contents but not an index and/or glossary; however, does define words in chapters when needed.

The content is well organized and accurate. Multiple representations and diverse examples are provided throughout the text which supports an unbiased approach to those entering elementary education.

The text is quite relevant to the classroom today, incorporating such resources as YouTube, varied strategies to promote differentiated instruction, scaffolding between concepts, and problem-solving opportunities. Some states may find issues with Common Core standards being addressed; however, mathematical practices could be interchanged with the "standards."

The text is written free from educational jargon; it is straightforward and easy to understand.

The text is consistent in its structure; color is not distracting, problems, strategies, diagrams, charts, and definitions are provided throughout.

The text is appealing with the page layout; it's not too busy or distracting. Colors are attractive and text is broken down into appropriate amounts.

The text has a well-organized flow with the layout of each topic/chapter.

The text has charts, pictures, diagrams, real-world examples throughout; several different versions of the text are offered too.

No grammatical errors were observed in my review of the text.

The text provides a variety of backgrounds, races, and ethnicities while providing learning experiences and pedagogical approaches to support student engagement and learning.

Reviewed by Demetrice Smith-Mutegi, Instructor/Coordinator, Marian University on 3/6/19

This text covers place value, numbers and operations, fractions, patterns, algebraic thinking, decimals, and geometry. However, elementary teachers are expected to also know and understand statistics and probability. This text does not address... read more

This text covers place value, numbers and operations, fractions, patterns, algebraic thinking, decimals, and geometry. However, elementary teachers are expected to also know and understand statistics and probability. This text does not address this mathematical concept.

The text makes non-traditional, yet, accurate representations of mathematical concepts. In some sections, different solutions are presented and explained. This eliminates bias and provides a diverse representation of ideas when solving math problems.

The text is representative of common core problem-solving standards, however, it does require mathematical knowledge beyond elementary school. The problem-solving nature of the text is very relevant to elementary pre-service and in-service teachers (the audience for the book).

The text language is clear and accessible. There is a section on terminology, which is very helpful. Additional diagrams would help to improve the clarity in some cases.

I was expecting to see videos embedded throughout, after seeing them in the first section. It would be great to have a consistent format throughout the text, however, I understand that it is not always feasible to do so. There were other obvious and clear patterns presented, color-coded sections (think/pair/share), problems, examples.

The chapters and subchapters can be easily accessed, breaking the material into smaller sections.

The topics were presented in a logical, clear fashion, however, not all of the chapters would end with a problem bank. In some cases, there were additional sections after the problem bank. It would be great if each section included key objectives or goals of the section.

The text comes in pdf, XML, and an online web version. The search feature on the online version was a valuable addition.

I did not observe any obvious grammatical errors.

Cultural awareness was very obvious in this text. While it was more relevant to Hawaiian culture, it also included cultural awareness of other cultures and backgrounds.

Overall, this text assumes that the student has successfully completed mathematics through basic calculus. There should be more support in this area, as some elementary math students are not prepared to complete problems with this focus.

This a great "discussion" text.

Reviewed by Kandy Noles Stevens, Assistant Professor of Education, Southwest Minnesota State University on 12/28/18

This text covers the areas applicable to elementary mathematics extremely well (with the exception of omitting probability and data analysis) and provides graphically visual boxes within the text to define terms and instructional strategies. ... read more

This text covers the areas applicable to elementary mathematics extremely well (with the exception of omitting probability and data analysis) and provides graphically visual boxes within the text to define terms and instructional strategies. Additionally, the text provides thinking routines that support understanding more than just the concept, but also, the how's and why's of conceptual understanding.

The content is accurate and organized in a way to supports student learning for those training to become elementary teachers of mathematics.

The content of the book is relevant to today's elementary classroom in that it provides future elementary educators with the content knowledge, but also pedagogical approaches that would support student learning. Additionally, the text is organized in a way that is consistent and provides scaffolding support for those who might struggle with any one of the concepts. For Minnesota standards the only item of note is that there is not a section devoted to probability or data analysis, but the latter is touched upon in other chapters. There are three mentions of the Common Core standards in the text. Minnesota is not an adopter of the CC mathematics standards, but the references to the CCSS are in regards to the practices of mathematics and not on standards specifically.

While a great text for training future math teachers, this book does not read as a "typical" mathematics textbook. Students who have struggled in the past with mathematics might find the authors' writing style to be approachable and accessible for all levels of mathematics competence and confidence.

The text is consistent in its terminology and the structure of the framework is uniform throughout, relying on supporting student learning through exercises, think-pair-share activities, and continuous dialog and reflection.

A majority of the chapters begin with a section that introduces the strand of elementary mathematics covered. Not all chapters have this introduction which may pose challenging to interrupt the mathematical progression of some established courses.

The text is very well organized and has an easy-to-read format and flow.

The text is graphically rich with succinct advanced organizers, diagrams, and photos to support learning.

The text is written with professional level writing and is free of grammatical errors.

A variety of races, ethnicities, and backgrounds are present in the exercises used to support student learning throughout. The end of the text involves a Hōkūle`a voyage as a part of a problem-based learning (integrated curriculum) experience. This was something that really made this text stand out in that it gave future elementary teachers an example of using mathematical concepts in authentic (and exciting) learning experiences. This Polynesian voyage would provide many students with an introduction to life culturally different from their own.

I have been a STEM educator for more than two decades and I come from a long line of mathematics educators. While wrapping up my reading of this text, I happened to have my father (a 46 year veteran mathematics educator) here visiting. I shared the text with him and several times I heard him utter, "I like the way this problem is set up". We both found the book to be very knowledgeable for mathematical conceptual understandings, but even more so for introducing ideas for instructional strategies and classroom discourse to help future teachers become equipped with speaking the "language of mathematics" to guide their future students.

Table of Contents

I. Problem Solving

  • Introduction
  • Problem or Exercise?
  • Problem Solving Strategies
  • Beware of Patterns!
  • Problem Bank
  • Careful Use of Language in Mathematics
  • Explaning Your Work
  • The Last Step

II. Place Value

  • Dots and Boxes
  • Other Rules
  • Binary Numbers
  • Other Bases
  • Number Systems
  • Even Numbers
  • Exploration

III. Number and Operations

  • Addition: Dots and Boxes
  • Subtration: Dots and Boxes
  • Multiplication: Dots and Boxes
  • Division: Dots and Boxes
  • Number Line Model
  • Area Model for Multiplication
  • Properties of Operations
  • Division Explorations

IV. Fractions

  • What is a Fraction?
  • The Key Fraction Rule
  • Adding and Subtracting Fractions
  • What is a Fraction? Revisited
  • Multiplying Fractions
  • Dividing Fractions: Meaning
  • Dividing Fractions: Invert and Multiply
  • Dividing Fractions: Problems
  • Fractions involving zero
  • Egyptian Fractions
  • Algebra Connections
  • What is a Fraction? Part 3

V. Patterns and Algebraic Thinking

  • Borders on a Square
  • Careful Use of Language in Mathematics: =
  • Growing Patterns
  • Matching Game
  • Structural and Procedural Algebra

VI. Place Value and Decimals

  • Review of Dots & Boxes Model
  • Division and Decimals
  • More x -mals
  • Terminating or Repeating?
  • Operations on Decimals
  • Orders of Magnitude

VII. Geometry

  • Triangles and Quadrilaterals
  • Platonic Solids
  • Painted Cubes
  • Geometry in Art and Science

VIII. Voyaging on Hokule?a

  • Worldwide Voyage

Ancillary Material

About the book.

This book will help you to understand elementary mathematics more deeply, gain facility with creating and using mathematical notation, develop a habit of looking for reasons and creating mathematical explanations, and become more comfortable exploring unfamiliar mathematical situations. The primary goal of this book is to help you learn to think like a mathematician in some very specific ways. You will: • Make sense of problems and persevere in solving them. You will develop and demonstrate this skill by working on difficult problems, making incremental progress, and revising solutions to problems as you learn more. • Reason abstractly and quantitatively. You will demonstrate this skill by learning to represent situations using mathematical notation (abstraction) as well as creating and testing examples (making situations more concrete). • Construct viable arguments and critique the reasoning of others. You will be expected to create both written and verbal explanations for your solutions to problems. The most important questions in this class are “Why?” and “How do you know you're right?” Practice asking these questions of yourself, of your professor, and of your fellow students. Throughout the book, you will learn how to learn mathematics on you own by reading, working on problems, and making sense of new ideas on your own and in collaboration with other students in the class.

About the Contributors

Michelle Manes, Associate Professor, Department of Mathematics, University of Hawaii

Contribute to this Page

a problem solving approach to mathematics pdf

  • Education & Teaching
  • Schools & Teaching

Amazon prime logo

Enjoy fast, free delivery, exclusive deals, and award-winning movies & TV shows with Prime Try Prime and start saving today with fast, free delivery

Amazon Prime includes:

Fast, FREE Delivery is available to Prime members. To join, select "Try Amazon Prime and start saving today with Fast, FREE Delivery" below the Add to Cart button.

  • Cardmembers earn 5% Back at Amazon.com with a Prime Credit Card.
  • Unlimited Free Two-Day Delivery
  • Streaming of thousands of movies and TV shows with limited ads on Prime Video.
  • A Kindle book to borrow for free each month - with no due dates
  • Listen to over 2 million songs and hundreds of playlists
  • Unlimited photo storage with anywhere access

Important:  Your credit card will NOT be charged when you start your free trial or if you cancel during the trial period. If you're happy with Amazon Prime, do nothing. At the end of the free trial, your membership will automatically upgrade to a monthly membership.

Buy new: .savingPriceOverride { color:#CC0C39!important; font-weight: 300!important; } .reinventMobileHeaderPrice { font-weight: 400; } #apex_offerDisplay_mobile_feature_div .reinventPriceSavingsPercentageMargin, #apex_offerDisplay_mobile_feature_div .reinventPricePriceToPayMargin { margin-right: 4px; } -71% $61.89 $ 61 . 89 FREE delivery Monday, June 3 Ships from: Amazon Sold by: Books4theLOW

Return this item for free.

Free returns are available for the shipping address you chose. You can return the item for any reason in new and unused condition: no shipping charges

  • Go to your orders and start the return
  • Select the return method

Save with Used - Good .savingPriceOverride { color:#CC0C39!important; font-weight: 300!important; } .reinventMobileHeaderPrice { font-weight: 400; } #apex_offerDisplay_mobile_feature_div .reinventPriceSavingsPercentageMargin, #apex_offerDisplay_mobile_feature_div .reinventPricePriceToPayMargin { margin-right: 4px; } $12.95 $ 12 . 95 FREE delivery June 3 - 5 on orders shipped by Amazon over $35 Ships from: Amazon Sold by: ZBK Wholesale

Kindle app logo image

Download the free Kindle app and start reading Kindle books instantly on your smartphone, tablet, or computer - no Kindle device required .

Read instantly on your browser with Kindle for Web.

Using your mobile phone camera - scan the code below and download the Kindle app.

QR code to download the Kindle App

Follow the authors

Rick Billstein

Image Unavailable

A Problem Solving Approach to Mathematics for Elementary School Teachers

  • To view this video download Flash Player

a problem solving approach to mathematics pdf

A Problem Solving Approach to Mathematics for Elementary School Teachers 12th Edition

There is a newer edition of this item:.

Problem Solving Approach to Mathematics for Elementary School Teachers, A

Purchase options and add-ons

The Gold Standard for the New Standards

A Problem Solving Approach to Mathematics for Elementary School Teachers has always reflected the content and processes set forth in today’s new state mathematics standards and the Common Core State Standards (CCSS). In the Twelfth Edition , the authors have further tightened the connections to the CCSS and made them more explicit. This text not only helps students learn the math by promoting active learning and developing skills and concepts―it also provides an invaluable reference to future teachers by including professional development features and discussions of today’s standards.

  • ISBN-10 0321987292
  • ISBN-13 978-0321987297
  • Edition 12th
  • Publisher Pearson
  • Publication date December 31, 2014
  • Language English
  • Dimensions 8.85 x 1.95 x 11.2 inches
  • Print length 984 pages
  • See all details

Amazon First Reads | Editors' picks at exclusive prices

Frequently bought together

A Problem Solving Approach to Mathematics for Elementary School Teachers

Customers who bought this item also bought

Essential Elements for Recorder Classroom Method - Student Book 1: Book Only

Editorial Reviews

About the author, product details.

  • Publisher ‏ : ‎ Pearson; 12th edition (December 31, 2014)
  • Language ‏ : ‎ English
  • Hardcover ‏ : ‎ 984 pages
  • ISBN-10 ‏ : ‎ 0321987292
  • ISBN-13 ‏ : ‎ 978-0321987297
  • Item Weight ‏ : ‎ 4.43 pounds
  • Dimensions ‏ : ‎ 8.85 x 1.95 x 11.2 inches
  • #313 in Mathematics Study & Teaching (Books)
  • #433 in Elementary Education
  • #758 in Math Teaching Materials

About the authors

Rick billstein.

Discover more of the author’s books, see similar authors, read author blogs and more

Shlomo Libeskind

Johnny W. Lott

Johnny W. Lott

Customer reviews.

Customer Reviews, including Product Star Ratings help customers to learn more about the product and decide whether it is the right product for them.

To calculate the overall star rating and percentage breakdown by star, we don’t use a simple average. Instead, our system considers things like how recent a review is and if the reviewer bought the item on Amazon. It also analyzed reviews to verify trustworthiness.

  • Sort reviews by Top reviews Most recent Top reviews

Top reviews from the United States

There was a problem filtering reviews right now. please try again later..

a problem solving approach to mathematics pdf

  • Amazon Newsletter
  • About Amazon
  • Accessibility
  • Sustainability
  • Press Center
  • Investor Relations
  • Amazon Devices
  • Amazon Science
  • Sell on Amazon
  • Sell apps on Amazon
  • Supply to Amazon
  • Protect & Build Your Brand
  • Become an Affiliate
  • Become a Delivery Driver
  • Start a Package Delivery Business
  • Advertise Your Products
  • Self-Publish with Us
  • Become an Amazon Hub Partner
  • › See More Ways to Make Money
  • Amazon Visa
  • Amazon Store Card
  • Amazon Secured Card
  • Amazon Business Card
  • Shop with Points
  • Credit Card Marketplace
  • Reload Your Balance
  • Amazon Currency Converter
  • Your Account
  • Your Orders
  • Shipping Rates & Policies
  • Amazon Prime
  • Returns & Replacements
  • Manage Your Content and Devices
  • Recalls and Product Safety Alerts
  • Conditions of Use
  • Privacy Notice
  • Consumer Health Data Privacy Disclosure
  • Your Ads Privacy Choices

We will keep fighting for all libraries - stand with us!

Internet Archive Audio

a problem solving approach to mathematics pdf

  • This Just In
  • Grateful Dead
  • Old Time Radio
  • 78 RPMs and Cylinder Recordings
  • Audio Books & Poetry
  • Computers, Technology and Science
  • Music, Arts & Culture
  • News & Public Affairs
  • Spirituality & Religion
  • Radio News Archive

a problem solving approach to mathematics pdf

  • Flickr Commons
  • Occupy Wall Street Flickr
  • NASA Images
  • Solar System Collection
  • Ames Research Center

a problem solving approach to mathematics pdf

  • All Software
  • Old School Emulation
  • MS-DOS Games
  • Historical Software
  • Classic PC Games
  • Software Library
  • Kodi Archive and Support File
  • Vintage Software
  • CD-ROM Software
  • CD-ROM Software Library
  • Software Sites
  • Tucows Software Library
  • Shareware CD-ROMs
  • Software Capsules Compilation
  • CD-ROM Images
  • ZX Spectrum
  • DOOM Level CD

a problem solving approach to mathematics pdf

  • Smithsonian Libraries
  • FEDLINK (US)
  • Lincoln Collection
  • American Libraries
  • Canadian Libraries
  • Universal Library
  • Project Gutenberg
  • Children's Library
  • Biodiversity Heritage Library
  • Books by Language
  • Additional Collections

a problem solving approach to mathematics pdf

  • Prelinger Archives
  • Democracy Now!
  • Occupy Wall Street
  • TV NSA Clip Library
  • Animation & Cartoons
  • Arts & Music
  • Computers & Technology
  • Cultural & Academic Films
  • Ephemeral Films
  • Sports Videos
  • Videogame Videos
  • Youth Media

Search the history of over 866 billion web pages on the Internet.

Mobile Apps

  • Wayback Machine (iOS)
  • Wayback Machine (Android)

Browser Extensions

Archive-it subscription.

  • Explore the Collections
  • Build Collections

Save Page Now

Capture a web page as it appears now for use as a trusted citation in the future.

Please enter a valid web address

  • Donate Donate icon An illustration of a heart shape

A problem solving approach to mathematics for elementary school teachers

Bookreader item preview, share or embed this item, flag this item for.

  • Graphic Violence
  • Explicit Sexual Content
  • Hate Speech
  • Misinformation/Disinformation
  • Marketing/Phishing/Advertising
  • Misleading/Inaccurate/Missing Metadata

[WorldCat (this item)]

plus-circle Add Review comment Reviews

Download options.

No suitable files to display here.

IN COLLECTIONS

Uploaded by station40.cebu on January 10, 2023

SIMILAR ITEMS (based on metadata)

Problem solving in mathematics education: tracing its foundations and current research-practice trends

  • Original Paper
  • Open access
  • Published: 30 April 2024

Cite this article

You have full access to this open access article

a problem solving approach to mathematics pdf

  • Manuel Santos-Trigo   ORCID: orcid.org/0000-0002-7144-2098 1  

665 Accesses

1 Altmetric

Explore all metrics

In tracing recent research trends and directions in mathematical problem-solving, it is argued that advances in mathematics practices occur and take place around two intertwined activities, mathematics problem formulation and ways to approach and solve those problems. In this context, a problematizing principle emerges as central activity to organize mathematics curriculum proposals and ways to structure problem-solving learning environments. Subjects’ use of concrete, abstract, symbolic, or digital tools not only influences the ways to pose and pursue mathematical problems; but also shapes the type of representation, exploration, and reasoning they engage to work and solve problems. Problem-solving foundations that privilege learners’ development of habits of mathematical practices that involve an inquiry method to formulate conjectures, to look for different ways to represent and approach problems, and to support and communicate results shed light on directions of current research trends and the relevance of rethinking curriculum proposals and extending problem-solving environments in terms of teachers/students’ consistent use of digital tools and online developments.

Similar content being viewed by others

a problem solving approach to mathematics pdf

Reflections on Problem-Solving

a problem solving approach to mathematics pdf

Designing opportunities to learn mathematics theory-building practices

a problem solving approach to mathematics pdf

Forging New Opportunities for Problem Solving in Australian Mathematics Classrooms through the First National Mathematics Curriculum

Avoid common mistakes on your manuscript.

1 Introduction and rationale

Mathematical problem solving has been a prominent theme and research area in the mathematics education agenda during the last four decades. Problem-solving perspectives have influenced and shaped mathematics curriculum proposals and ways to support learning environments worldwide (Törner et al., 2007 ; Toh et al., 2023 ). Various disciplinary communities have identified and contributed to connect problem-solving approaches with the students’ learning, construction, and application of mathematical knowledge. The mathematics community recognizes that the formulation and resolution of problems are central activities in the development of the discipline (Halmos, 1980 , Polya, 1945 ). Indeed, the identification and presentation of lists of unsolved mathematical problems have been a tradition that has inspired the mathematics community to approach mathematical problems and to generate mathematical knowledge (Hilbert, 1902 ; Devlin, 2002 ). Thus, mathematical problems, results, and solution attempts provide information regarding what areas and contents were studied at different times during the development of the discipline (Santos-Trigo, 2020a , b ). Cai et al. ( 2023 ) stated that “ …[E]ngaging learners in the activity of problem posing reflects a potentially strong link to the discipline of mathematics” (p. 5). Thurston ( 1994 ) recognized that understanding and applying a mathematical concept implies analysing, coordinating, and integrating diverse meanings (geometric, visual, intuitive, and formal definition) associated with such concept and ways to carry out corresponding procedures and operations in problematic situations.

The centrality of problem-solving in mathematicians’ own work and in their teaching, is incontrovertible. Problem-solving is also a central topic for mathematics educators, who have developed conceptual frameworks to formulate general ideas about problem-solving (as opposed to the specific ideas needed for solving specific problems) (Fried, 2014 ; p.17).

That is, the mathematics education community is interested in analysing and documenting the students’ cognitive and social behaviours to understand and develop mathematical knowledge and problem-solving competencies. “…the idea of understanding how mathematicians treat and solve problems, and then implementing this understanding in instruction design, was pivotal in mathematics education research and practice” (Koichu, 2014 ). In addition, other disciplines such as psychology, cognitive science or artificial intelligence have provided tools and methods to delve into learners’ ways to understand mathematical concepts and to work on problem situations. Thus, members of various communities have often worked in collaboration to identify and relate relevant aspects of mathematical practices with the design and implementation of learning scenarios that foster and enhance students’ mathematical thinking and the development of problem-solving competencies.

2 Methods and procedures

Research focus, themes, and inquiry methods in the mathematical problem-solving agenda have varied and been influenced and shaped by theoretical and methodological developments of mathematics education as a discipline (English & Kirshner, 2016 ; Liljedahl & Cai, 2021 ). Further, research designs and methods used in cognitive, social, and computational fields have influenced the ways in which mathematical problem-solving research are framed. An overarching question to capture shifts and foundations in problem-solving developments was: How has mathematical problem-solving research agenda varied and evolved in terms of ways to frame, pose, and pursue research questions? In addressing this question, it was important to identify and contrast the structure and organization around some published problem-solving reviews (Lester, 1994 ; Törner et al., 2007 ; Rott et al., 2021 ; Liljedahl & Cai, 2021 ; Toh et al., 2023 ) to shed light on a possible route to connect seminal developments in the field with current research trends and perspectives in mathematical problem-solving developments. The goal was to identify common problem-solving principles that have provided a rational and foundations to support recent problem-solving approaches for learners to construct mathematical knowledge and to develop problem-solving competencies. The criteria to select the set of published peer-reviewed studies, to consider in this review, involved choosing articles published in indexed journals (ZDM-Mathematics Education, Educational Studies in Mathematics, Mathematical Thinking and Learning, Journal of Mathematical Behavior, and Journal for Research in Mathematics Education); contributions that appear in International Handbooks in Mathematics Education; and chapters published in recent mathematical problem-solving books. The initial search included 205 publications whose number was reduced to 55, all published in English, based on reviewing their abstracts and conclusions. Around 100 of the initial selection appeared in the references of an ongoing weekly mathematical problem-solving doctoral seminar that has been implemented during the last six years in our department. In addition, some well-known authors in the field were asked to identify their most representative publications to include in the review list. Here, some suggestions were received, but at the end the list of contributions, that appears in the references section, was chosen based on my vision and experience in the field. The goal was to identify main issues or dimensions to frame and analyse recent research trends and perspectives in mathematical problem-solving developments. Thus, seminal reviews in the field (Schoenfeld, 1992 ; Lester, 1994 ; Törner et al., 2007 ) provided directions on ways to structure and select the questions used to analyse the selected contributions. Table  1 shows chosen issues that resemble features of an adjusted framework that Lester ( 1994 ) proposed to organize, summarize, and analyse problem-solving developments in terms of research emphasis (themes and research questions), methodologies (research designs and methods), and achieved results that the problem-solving community addressed during the 1970–1994 period. Furthermore, relevant shifts in the mathematical problem-solving agenda could be identified and explained in terms of what the global mathematics education and other disciplines pursue at different periods.

It is important to mention that the content and structure of this paper involve a narrative synthesis of selected articles that includes contributions related to mathematical problem-solving foundations and those that address recent developments published in the last 9 years that involve the use of digital technologies. Table  1 shows themes, issues, and overarching questions that were used to delve into problem-solving developments.

To contextualize the current state of art in the field, it is important to revisit problem-solving principles and tenets that provide foundations and a rationale to centre and support the design and implementation of learning environments around problem-solving activities (Santos-Trigo, 2020a , b ). The identification of mathematical problem-solving foundations also implies acknowledging what terms, concepts, and language or discourse that the problem-solving community has used to refer to and frame problem-solving approaches. For example, routine and nonroutine tasks, heuristic and metacognitive strategies, students’ beliefs, mathematical thinking and practices, resources, orientations, etc. are common terms used to explain, foster, and characterize students’ problem-solving behaviours and performances. Recently, the consistent use of digital technologies in educational tasks has extended the problem-solving language to include terms such as subjects’ tool appropriation, dynamic models, dragging or moving orderly objects, tracing loci, visual or empirical solution, ChatGPT prompts, etc.

3 On mathematical problem-solving foundations and the problematizing principle

There might be different ways to interpret and implement a problem-solving approach for students to understand concepts and to solve problems (Törner, Schoenfeld, & Reiss, 2007 ; Toh et al., 2023 ); nevertheless, there are common principles or tenets that distinguish and support a problem-solving teaching/learning environment. A salient feature in any problem-solving approach to learn mathematics is a conceptualization of the discipline that privileges and enhance the students’ development of mathematical practices or reasoning habits of mathematical thinking (Cuoco, et, al., 1996 ; Dick & Hollebrands, 2011 ; Schoenfeld, 2022 ). In this context, students need to conceptualize and think of their own learning as a set of dilemmas that are represented, explored, and solved in terms of mathematical resources and strategies (Santos-Trigo, 2023 ; Hiebert et al., 1996 ).

Furthermore, students’ problem-solving experiences and behaviours reflect and become a way of thinking that is consistent with mathematics practices and is manifested in terms of the activities they engage throughout all problem-solving phases. Thus, they privilege the development of mathematics habits such as to always look for different ways to model and explore mathematical problems, to formulate conjectures, and to search for arguments to support them, share problem solutions, defend their ideas, and to develop a proper language to communicate results. In terms of connecting ways of developing mathematical knowledge and the design of learning environments to develop mathematical thinking and problem-solving competencies, Polya ( 1945 ) identifies an inquiry approach for students to understand, make sense, and apply mathematical concepts. He illustrated the importance for students to pose and pursue different questions around four intertwined problem-solving phases: Understanding and making sense of the problem statement (what is the problem about? What data are provided? What is asked to find? etc.), the design of a solution plan (how the problem can be approached? ), the implementation of such plan (how the plan can be achieved? ), and the looking-back phase that involves reviewing the solution process (data used, checking the involved operations, consistency of units, and partial and global solution), generalizing the solution methods and posing new problems. Indeed, the looking-back phase involves the formulation of new or related problems (Toh et al., 2023 ). “For Pólya, mathematics was about inquiry; it was about sense making; it was about understanding how and why mathematical ideas fit together the ways they do” (cited in Schoenfeld, 2020 , p. 1167).

Likewise, the Nobel laureate I. I. Rabi mentioned that, when he came home from school, “while other mothers asked their kids ‘ Did you learn anything today ?’ [my mother] would say, ‘ Izzy, did you ask a good question today ?’” (Berger, 2014 , p.67).

Thus, the problematizing principle is key for students to engage in mathematical problem-solving activities, and it gets activated by an inquiry or inquisitive method that is expressed in terms of questions that students pose and pursue to delve into concepts meaning, representations, explorations, operations, and to work on mathematical tasks (Santos-Trigo, 2020a , b ).

4 The importance of mathematical tasks and the role of tools in problem-solving perspectives

In a problem-solving approach, learners develop a way of thinking to work on different types of tasks that involve a variety of context and aims (Cai & Hwang, 2023 ). A task might require students to formulate a problem from given information, to estimate how much water a family spend in one year, to prove a geometry theorem, to model genetic sequences or to understand the interplay between climate and geography. In this process, students identify mathematical resources, concepts, and strategies to model and explore partial and global solutions, and ways to extend solution methods and results. Furthermore, mathematical tasks or problems are essential for students to engage in mathematical practice and to develop problem-solving competencies. Task statements should be situated in different contexts including realistic, authentic, or mathematical domains, and prompts or questions to solve or respond or even provide information or data for students to formulate and solve their own problems (problem posing). Current events or problematic situations such as climate change, immigration, or pandemics not only are part of individuals concerns; but also, a challenge for teachers and students to model and analyze those complex problems through mathematics and others disciplines knowledge (English, 2023 ). Santos-Trigo ( 2019 ) proposed a framework to transform exercises or routine textbook problems into a series of nonroutine tasks in which students have an opportunity to dynamically model, explore, and extend, the initial problem. Here, the use of technology becomes important to explore the behavior of some elements within the model to find objects’ mathematical relationships. That is, students work on tasks in such a way that even routine problems become a starting point for them to engage in mathematical reflection to extend the initial nature of the task (Santos-Trigo & Reyes-Martínez, 2019 ). Recently, the emergence of tools such as the ChatGPT has confirmed the importance for learners to problematize situations, including complex problems, in terms of providing prompts or inputs that the tool processes and answers. Here, students analyze the tool’ responses and assess its pertinence to work and solve the task. Indeed, a way to use ChatGPT involves that students understand or make sense of the problem statement and pose questions (inputs or prompts) to ask the tool for concept information or ways to approach or solve the task. Then, students analyze the relevance, viability, and consistency of the tool’s answer and introduce new inputs to continue with the solution process or to look for another way to approach the task. Based on the ChatGPT output or task solution, students could always ask whether the tool can provide other ways to solve the task.

5 Main problem-solving research themes and results

In this section the focus will be on identifying certain problem-solving developments that have permeated recent directions of the field. One relates to the importance of extending research designs to analyse and characterize learners’ problem-solving process to work on different types of tasks. Another development involves ways in which theoretical advances in mathematics education have shaped the mathematical problem-solving research agenda and the extent to which regional or national educational systems or traditions influence the developments of conceptual frameworks in the field and ways to implement problem-solving activities within the corresponding system. Finally, research results in the field have provided directions to design and implement curriculum proposals around the world and these proposals have evolved in terms of both content structure and classroom dynamics including the use of digital technologies. Santos-Trigo ( 2023 ) stated that the teachers and students’ systematic use of digital technologies not only expands their ways of reasoning and solving mathematical problems; but also opens new research areas that aim to analyse the integration of several digital tools in curriculum proposals and learning scenarios. The focus of this review will be on presenting problem-solving directions and results in the last 9 years; however, it became relevant to identify and review what principles and tenets provided bases or foundations to support and define current research trends and directions in the field. That is, accumulated research that has contributed to advance and expand the problem-solving research agenda included shifts in the tools used to delve into learners’ problem approaches, the development of conceptual frameworks to explain and characterize students’ mathematical thinking, the tools used to work on mathematical tasks (from paper and pencil, ruler and compass or semiotic tools to digital apps), and in the design of curriculum proposals and the implementation of problem-solving learning scenarios.

5.1 Relevant shifts in problem-solving developments and results

Questions used to analyse important developments in the field include: What research designs and tools are used to foster and analyse learners’ problem-solving performances? How have conceptual frameworks evolved to pose and frame research questions in the field? How have accumulated research results in the field been used to support curriculum proposals and their implementation?

5.1.1 Methodological and research paradigms

Research designs in problem-solving studies have gradually moved from quantitative or statistical paradigms to qualitative perspectives that involve data collection from different sources such as task-based interviews, fieldnotes from observations, students’ written reports, etc. to analyse students’ problem-solving approaches and performances. Trustworthiness of results included triangulating and interpreting data sources from students’ videotapes transcriptions, outside observer notes, class observations, etc. (Stake, 2000 ). Hence, the work of Krutestkii ( 1976 ) was seminal in providing tools to delve into the students’ thinking while solving mathematical tasks. His research program aimed to study the nature and structure of children’ mathematical abilities. His methodological approach involved the use of student’s task-based interviews, teachers, and mathematicians’ questionaries to explore the nature of mathematical abilities, the analysis of eminent mathematicians and physicists regarding their nature and emergence of their talents and case studies of gifted children in mathematics. A major contribution of his research was the variety of mathematical tasks used to explore and analyse the mathematical abilities of school children. Recently, the mathematical problem-posing agenda has been revisited to advance conceptual frameworks to enhance the students’ formulation of problems to learn concepts and to develop problem-solving competencies (Cai et al., 2023 ). In general, the initial qualitative research tendency privileged case studies where individual students were asked to work on mathematical tasks to document their problem-solving performances. Later, research designs include the students’ participation in small groups and the analysis of students’ collaboration with the entire group (Brady et al., 2023 ). Bricolage frameworks that share tenets and information from different fields have become a powerful tool for researchers to understand complex people’ problem-solving proficiency (Lester, 2005 ; English, 2023 ).

5.1.2 Theoretical developments in mathematics education

In mathematics education, the constructivism perspective became relevant to orient and support research programs. Specifically, the recognition that students construct mathematical concepts and ideas through active participation as a part of a learning community that fosters and values what they bring into the classroom (eliciting students’ understanding) and sharing and discussing with peers their ways to work on mathematical activities. Further, it was recognized that students’ learning of mathematics takes place within a sociocultural environment (situated learning) that promotes the students’ interaction in small groups, pairs, and whole group discussions. Thus, problem-solving environments transited from teachers being a main figure to organize learning activities and to model problem-solving behaviours to being centred on students’ active participation to work on a variety of mathematical tasks as a part of a learning community (Lester & Cai, 2016 ). English ( 2023 ) proposed A STEM-based problem-solving framework that addresses the importance of a multidisciplinary approach and experiences to work on complex problems. Here, students develop a system of inquiry that integrates critical thinking, mathematical modelling, and a creative and innovative approach to deal with problematic situations situated in contexts beyond school problems. The STEM-based problem-solving framework enhances and favours the students’ development of multidisciplinary thinking to formulate and approach challenging problematic situations. To this end, they need to problematize information to characterize local and global problems and to collaboratively work on feasible approaches and solutions. It integrates 21st century skills that include an inquiry problem-solving approach to develop and exhibit critical thinking, creativity, and innovative solutions.

5.1.3 Countries or regional education traditions and their influence on the problem-solving agenda

The emergence of problem-solving frameworks takes place within an educational and socio-cultural context that provides conditions for their development and dissemination, but also limitations in their applications inside the mathematics education community. Brady et al. ( 2023 ) pointed out that:

…shifts in the theoretical frameworks of mathematics education researchers favored a widening of the view on problem solving from information-processing theories toward sociocultural theories that encouraged a conception of problem-solving as situated cognition unfolding within a community of practice (p. 34).

In addition, regional or national educational systems and research traditions also shape the problem-solving research and practice agenda. For example, in France, problem-solving approaches and research are framed in terms of two relevant theoretical and practical frameworks: Theory of Didactic Situation and the Anthropological Theory of Didactics (Artigue & Houdement, 2007 ). While, in the Netherlands, problem-solving approaches are situated within the theory of Realistic Mathematics that encourages and supports the students’ construction of meaning of concepts and methods in terms of modelling real-life and mathematical situations (Doorman et al., 2007 ). Ding et al. ( 2022 ) stated that the Chinese educational system refers to problem solving as an instructional goal and an approach to learn mathematics. Here, students deal with different types of problem-solving activities that include finding multiple solutions to one problem, one solution to multiple problems, and one problem multiple changes. Thus, ‘teaching with variation’ is emphasized in Chinese instruction in terms of “variations in solutions, presentations, and conditions/conclusions” (p. 482). Cai and Rott ( 2023 ) proposed a general problem-posing process model that distinguishes four problem-posing phases: Orientation (understanding the situation and what is required or is asked to pose); Connection that involves finding out or generating ideas and strategies to pose problems in different ways such as varying the given situation, or posing new problems; Generation refers to making the posed problem visible for others to understand it; and Reflection involves reflecting on her/his own process to pose the problem including ways to improve problem statements. The challenge in this model is to make explicit how the use of digital technologies can contribute to providing conditions for students to engage in all phases around problem- posing process.

5.1.4 Curriculum proposals and problem-solving teaching/learning scenarios

In the USA, the Common Core State Mathematics Standards curriculum proposal (CCSMS) identifies problem solving as a process standard that supports core mathematical practices that involve reasoning and proof, communication, representation, and connections. Thus, making sense of problems and persevering in solving them, reasoning abstractly and quantitatively, constructing viable arguments and critiquing the reasoning of others, modelling with mathematics, etc. are essential activities for students to develop mathematics proficiency and problem-solving approaches (Schoenfeld, 2023 ). In Singapore, the curriculum proposal identifies problem solving as the centre of its curriculum framework that relates its development with the study of concepts, skills, processes, attitudes, and metacognition (Lee et al., 2019 ). Recently, educational systems have begun to reform curriculum proposals to relate what the use of digital technologies demands in terms of selecting and structuring mathematical contents and ways to extend instructional settings (Engelbrecht & Borba, 2023 ). Indeed, Engelbrecht et al. ( 2023 ) identify what they call a classroom in movement or a distributed classroom - that transforms traditional cubic spaces to study the discipline into a movable setting that might combine remote and face-to-face students work.

It is argued that previous results in mathematical problem-solving research not only have contributed to recognize what is relevant and what common tenets distinguish and support problem-solving approaches; but also have provided bases to identify and pursue current problem-solving developments and directions. Hence, the consistent and coordinated use of several digital technologies and online developments (teaching and learning platforms) has opened new routes for learners to represent, explore, and work on mathematical problems; and to engage them in mathematical discussions beyond formal class settings. How does the students’ use of digital technologies expand the ways they reason and solve mathematical problems? What changes in classroom environments and physical settings are needed to recognize and include students’ face-to-face and remote work? (Engelbrecht et al., 2023 ).

In the next sections, the goal is to characterize the extent to which the consistent use of digital technologies and online developments provides affordances to restructure mathematical curriculum proposals and classrooms or learning settings and to enhance and expand students’ mathematical reasoning.

6 Current mathematical problem-solving trends and developments: the use of digital technologies

Although the use of technologies has been a recurrent theme in research studies, curriculum proposals, and teaching practices in mathematics education; during the COVID-pandemic lockdown, all teachers and students relied on digital technologies to work on mathematical tasks. At different phases, they developed and implemented not only novel paths to present, discuss, and approach teaching/learning activities; but also, ways to monitor and assess students’ problem-solving performances. When schools returned to teachers and students’ face-to-face activities, some questions emerged: What adjustments or changes in school practices are needed to consider and integrate those learning experiences that students developed during the social confinement? What digital tools should teachers and students use to work on mathematical tasks? How should teaching/learning practices reconcile students remote and face-to-face work? To address these questions, recent studies that involve ways to integrate technology in educational practices were reviewed, and their main themes and findings are organized and problematized to shed light on what the use of digital technologies contributes to frame and support learning environments.

6.1 The use of technology to reconceptualize students mathematical learning

There are different studies that document the importance and ways in which the students’ use of tools such as CAS or Excel offers an opportunity for them to think of concepts and problems in terms of different representations to transit from intuitive, visual, or graphic to formal or analytical reasoning (Arcavi et al., 2017 ). Others digital technologies, such as a Dynamic Geometry System Footnote 1 DGS, provide affordances for students to dynamically represent and explore mathematical problems. In students’ use of digital technologies, the problematizing principle becomes relevant to transform the tool into an instrument to work on mathematical tasks. Santos-Trigo ( 2019 ) provides examples where students rely on GeoGebra affordances to reconstruct figures that are given in problem statements; to transform routine problem into an investigation task; to model and explore tasks that involve variational reasoning; and to construct dynamic configurations to formulate and support mathematical relations. In this process, students not only exhibit diverse problem-solving strategies; but also, identify and integrate and use different concepts and resources that are studied in algebra, geometry, and calculus. That is, the use of technology provides an opportunity for students to integrate and connect knowledge from diverse areas or domains. For instance, Sinclair and Ferrara ( 2023 ) used the multi-touch application (TouchCounts) for children to work on mathematical challenging tasks.

6.2 The use of digital technologies to design a didactic route

There is indication, that the use of digital technologies offers different paths for students to learn mathematics (Leung & Bolite-Frant, 2015 ; Leung & Baccaglini-Frank, 2017 ). For instance, in the construction of a dynamic model of a problem, they are required to think of concepts and information embedded in the problem in terms of geometric representation or meaning. Thus, focusing on ways for students to represent and explore concepts geometrically could be the departure point to understand concepts and to solve mathematical problems. In addition, students can explore problems’ dynamic models (dragging schemes) in terms of visual, empirical, and graphic representations to initially identify relations that become relevant to approach and solve the problems. Thus, tool affordances become relevant for students to detect patterns, to formulate conjectures and to transit from empirical to formal argumentation to support problem solutions (Pittalis & Drijvers, 2023 ). Engelbrecht and Borba ( 2023 ) recognized that the prominent use of digital technologies in school mathematics has produced pedagogical shifts in teaching and learning practices to “encourage more active students learning, foster greater engagement, and provide more flexible access to learning’ (p. 1). Multiple use technologies such as internet, communication apps (ZOOM, Teams, Google Meet, etc.) become essential tools for teachers and students to present, communicate, and share information or to collaborate with peers. While tools used to represent, explore, and delve into concepts and to work and solve mathematical problems (Dynamic Geometry Systems, Wolframalpha, etc.) expand the students’ ways of reasoning and solving problems. Both types of technologies are not only important for teachers and students to continue working on school tasks beyond formal settings, but they also provide students with an opportunity to consult online resources such as Wikipedia or KhanAcademy to review or extend their concepts understanding, to analyse solved problems, and to contrast their teachers’ explanation of themes or concepts with those provided in learning platforms.

6.3 Students’ access to mathematics learning

Nowadays, cell phones are essential tools for people or students to interact or to approach diverse tasks and an educational challenge is how teachers/students can use them to work on mathematical tasks. During the COVID-19 social confinement, students relied on communication apps not only to interact with their teachers during class lectures; but also, to keep discussing tasks with peers beyond formal class meetings. That is, students realized that with the use of technology they could expand their learning space to include sharing and discussing ideas and problem solutions with peers beyond class sessions, consulting online learning platforms or material to review or extend their concepts understanding, and to watch videos to contrast experts’ concepts explanations and those provided by their teachers. In this perspective, the use of digital technologies increases the students’ access to different resources and the ways to work on mathematical tasks. Thus, available digital developments seem to extend the students collaborative work in addition to class activities. Furthermore, the flipped classroom model seems to offer certain advantages for students to learn the discipline and this model needs to be analysed in terms of what curriculum changes and ways to assess or monitor students learning are needed in its design and implementation (Cevikbas & Kaiser, 2022 ).

6.4 Changes in curriculum and mathematical assessment

It is recognized that the continuous development and availability of digital technologies is not only altering the ways in which individuals interact and face daily activities; but is also transforming educational practices and settings. Likewise, people’s concerns about multiple events or global problems such climate change, immigration, educational access, renewable resources, or racial conflicts or wars are themes that permeate the educational arena. Thus, curriculum reforms should address ways to connect students’ education with the analysis of these complex problems. English ( 2023 ) stated that:

The ill-defined problems of today, coupled with unexpected disruptions across all walks of life, demand advanced problem-solving by all citizens. The need to update outmoded forms of problem solving, which fail to take into account increasing global challenges, has never been greater (p.5).

In this perspective, mathematics curriculum needs to be structured around essential contents and habits of mathematical thinking for students to understand and make sense of real-world events that lead them to formulate, represent, and deal with a variety of problem situations. “Educators now increasingly seek to emphasise the practical applications of mathematics, such as modelling real-life scenarios and understanding statistical data (Engelbrecht & Borba, 2023 , p. 7). For instance, during the pandemic it was important to problematize the available data to follow, analyze and predict its spread behavior and to propose health measures to reduce people contagion. Thus, exponential functions, graphics, and their interpretations, data analysis, etc. were important mathematics content to understand the pandemic phenomena. Drijvers and Sinclair ( 2023 ) recognized that features of computational thinking share common grounds with mathematical thinking in terms of problem-solving activities that privilege model construction, the use of algorithms, abstraction processes and generalization of results. Thus, “a further integration of computational thinking in the mathematics curriculum is desirable”. In terms of ways to assess and monitor students’ learning, the idea is that with the use of a digital tool (digital wall or log), students could organize, structure, register, and monitor their individual and group work and learning experiences. That is, they could periodically report and share what difficulties they face to understand concepts or to work on a task, what questions they posed, what sources consult, etc. The information that appears in the digital wall is shared within the group and the teacher and students can provide feedback or propose new ideas or solutions (Santos-Trigo et al., 2022 ).

6.5 The integration of technologies and the emergence of conceptual frameworks

Institutions worldwide, in general, are integrating the use of different technologies in their educational practices, and they face the challenge to reconcile previous pandemic models and post confinement learning scenarios. “A pedagogical reason for using technology is to empower learners with extended or amplified abilities to acquire knowledge…technology can empower their cognitive abilities to reason in novice ways (Leung, 2011 , p. 327). Drijvers and Sinclair ( 2023 ) proposed a five-dimensional framework to delve into the rationale and purposes for the mathematics education community to integrate the use of digital technologies in mathematical teaching environments and students learning. The five interrelated categories address issues regarding how teachers and students’ use of digital technology contributes to reconceptualize and improve mathematics learning; to understand and explain how students’ mathematics learning develops; to design environments for mathematics learning; to foster and provide equitable access to mathematics learning; and to change mathematics curricula and teaching and assessment practices (Drijvers & Sinclair, 2023 ). Schoenfeld ( 2022 ) stated that “The challenge is to create robust learning environments that support every student in developing not only the knowledge and practices that underlie effective mathematical thinking, but that help them develop the sense of agency to engage in sense making” (p. 764). Højsted et al. ( 2022 ) argue about the importance of adjusting theoretical frameworks to explicitly integrate the use of digital technologies such as DGS and Computer Algebra Systems (CAS) in teaching practices. They referred to the Danish “Competencies and Mathematical Learning framework” (KOM) that gets articulated through tenets associated with the Theory of Instrumental Orchestration (TIO) and the notion of Justification Mediation (JM). In general terms, the idea is that learners get explicitly involved in a tool’ appropriation process that transforms the artifact into an instrument to understand concepts and to solve mathematical problems. That is, learners’ tool appropriation involves the development of cognitive schemata to rely on technology affordances to work on mathematical tasks. Koichu et al. ( 2022 ) pointed out that the incorporation of problem-solving approaches in instruction should be seen as a specific case of implementing innovation. To this end, they proposed a framework of problem-solving implementation chain that involves “a sequence of actions and interactions beginning with the development of a PS resource by researchers, which teachers then engage with in professional development (PD), and finally, teachers and students make use of in classrooms” (p. 4). In this case, problem-solving resources include the design of problematic situations (tasks) to engage students in mathematical discussions to make sense of problem statements or to ask them to pose a task.

7 Reflections and concluding remarks

Throughout different periods, the research and practice mathematical problem-solving agenda has contributed significantly to understand not only essentials in mathematical practices; but also, the development of conceptual frameworks to explain and document subjects’ cognitive, social, and affective behaviours to understand mathematical concepts and to develop problem-solving competencies. Leikin and Guberman ( 2023 ) pointed out that “…problem-solving is an effective didactical tool that allows pupils to mobilize their existing knowledge, construct new mathematical connections between known concepts and properties, and construct new knowledge in the process of overcoming challenges embedded in the problems” (p. 325). The study of people cognitive functioning to develop multidisciplinary knowledge and to solve problems involves documenting ways in which individuals make decisions regarding ways to organize their subject or disciplinary learning (how to interact with teachers or experts and peers; what material to consult, what tools to use, how to monitor their own learning, etc.) and to engage in disciplinary practices to achieve their learning goals. Both strategic and tactic decisions shape teachers and students’ ways to work on mathematical tasks. Kahneman ( 2011 ) shed light on how human beings make decisions to deal with questions and problematic situations. He argues that individuals rely on two systems to make decisions and engage in thinking processes; system one (fast thinking) that involves automatic, emotional, instinctive reasoning and system two (slow thinking) that includes logical, deliberative, effortful, or conscious reasoning. In educational tasks, the idea is that teachers and students develop experiences based on the construction and activation of system two. Thus, how teachers/students decide what tools or digital developments to use to work on mathematical problems becomes a relevant issue to address in the mathematics education agenda. Recent and consistent developments and the availability of digital technologies open novel paths for teachers and students to represent, explore, and approach mathematical tasks and, provide different tools to extend students and teachers’ mathematical discussions beyond classroom settings. In this perspective, it becomes important to discuss what changes the systematic use of digital technologies bring to the mathematics contents and to the ways to frame mathematical instruction. For example, the use of a Dynamic Geometry System to model and explore calculus, geometry or algebra classic problems dynamically not only offer students an opportunity to connect foundational concepts such as rate of change or the perpendicular bisector concept to geometrically study variational phenomena or conic sections; but also, to engage them in problem-posing activities (Santos-Trigo et al., 2021 ). Thus, teachers need to experience themselves different ways to use digital technologies to work on mathematical tasks and to identify instructional paths for students to internalize the use of digital apps as an instrument to understand concepts and to pose and formulate mathematical problems. Specifically, curriculum proposal should be structured around the development of foundational concepts and problem-solving strategies to formulate and pursue complex problems such as those involving climate changes, wealth distribution, immigration, pollution, mobility, connectivity, etc. To formulate and approach these problems, students need to develop a multidisciplinary thinking and rely on different tools to represent, explore, and share and continuously report partial solutions. To this end, they are encouraged to work with peers and groups as a part of learning community that fosters and values collective problem solutions. Finding multiple paths to solve problems becomes important for students to develop creative and innovative problem solutions (Leikin & Guberman, 2023 ). In this perspective, learning environments should provide conditions for students to transform digital applications in problem-solving tools to work on problematic situations. Online students’ assignments become an important component to structure and organize students and teachers’ face-to-face interactions. Likewise, the use of technology can also provide a tool for students to register and monitor their work and learning experiences. A digital wall or a problem-solving digital notebook (Santos-Trigo et al., 2022 ) could be introduced for students to register and monitor their learning experiences. Here, Students are asked to record on a weekly basis their work, questions, comments, and ideas that include: Questions they pose to understand concepts and problem statements; online resources and platforms they consult to contextualize problems and review and extend their understanding of involved concepts; concepts and strategies used to solve problems through different approaches; the Identification of other problems that can be solved with the methods that were used to solve the problem; digital technologies and online resources used to work on and solve the problem; dynamic models used to solve the problem and strategies used to identify and explore mathematical relations (dragging objects, measuring object attributes, tracing loci, using sliders, etc.; the formulation of new related problems including possible extensions for the initial problem; discussion of solutions of some new problems; and short recorded video presentation of their work and problem solutions. That is, the digital wall becomes an space for learners to share their work and to contrast and reflect on their peers work including extending their problem-solving approaches based on their teachers feedback and peers’ ideas or solutions.

The term Dynamic Geometry System is used, instead of Dynamic Geometry Environment or Dynamic Geometry Software, to emphasize that the app or tool interface encompasses a system of affordances that combines the construction of dynamic models, the use of Computer Algebra Systems and the use spreadsheet programs.

Arcavi, A., Drijvers, P., & Stacy, K. (2017). The learning and teaching of algebra. Ideas, insights, and activities . NY: Routledge. ISBN 9780415743723.

Artigue, M., & Houdement, C. (2007). Problem solving in France: Didactic and curricular perspectives. ZDM Int J Math Educ , 39 (5–6), 365–382. https://doi.org/10.1007/s11858-007-0048-x .

Article   Google Scholar  

Berger, W. (2014). A more beautiful question . Bloomsbury Publishing. Kindle Edition.

Brady, C., Ramírez, P., & Lesh, R. (2023). Problem posing and modeling: Confronting the dilemma of rigor or relevance. In T. L. Toh et al. (Eds.), Problem Posing and Problem Solving in Mathematics Education, pp: 33–50, Singapore: Springer. https://doi.org/10.1007/978-981-99-7205-0_3 .

Cai, J., & Hwang, S. (2023). Making mathematics challenging through problem posing in classroom. In R. Leikin (Ed.), Mathematical Challenges For All , Research in Mathematics Education, Springer: Switzerland, pp. 115–145, https://doi.org/10.1007/978-3-031-18868-8_7 .

Cai, J., & Rott, B. (2023). On understanding mathematical problem-posing processes. ZDM – Mathematics Education , 56 , 61–71. https://doi.org/10.1007/s11858-023-01536-w .

Cai, J., Hwang, S., & Melville, M. (2023). Mathematical problem-posing research: Thirty years of advances building on the publication of on mathematical problem solving. In J. Cai et al. (Eds.), Research Studies on Learning and Teaching of Mathematics, Research in Mathematics Education, Springer: Switzerland, pp: 1–25. https://doi.org/10.1007/978-3-031-35459-5_1 .

Cevikbas, M., & Kaiser, G. (2022). Can flipped classroom pedagogy offer promising perspectives for mathematics education on pan- demic-related issues? A systematic literature review. ZDM – Math- ematics Education . https://doi.org/10.1007/s11858-022-01388-w .

Cuoco, A., Goldenberg, E. P., & Mark, J. (1996). Habits of mind: An organizing principle for mathematics curricula. Journal of Mathematical Behavior , 15 , 375–402.

Devlin, K. (2002). The millennium problems. The seven greatest unsolved mathematical puzzles of our time . Granta.

Dick, T. P., & Hollebrands, K. F. (2011). Focus in high school mathematics: Technology to support reasoning and sense making . National Council of Teachers of Mathematics, NCTM: Reston Va. ISBN 978-0-87353-641-7.

Ding, M., Wu, Y., Liu, Q., & Cai, J. (2022). Mathematics learning in Chinese contexts. ZDM -Mathematics Education , 54 , 577–496. https://doi.org/10.1007/s11858-022-01385-z .

Doorman, M., Drijvers, P., Dekker, T., Van den Heuvel- Panhuizen, M., de Lange, J., & Wijers, M. (2007). Problem solving as a challenge for mathematics education in the Netherlands. ZDM Int J Math Educ , 39 (5–6), 405–418. https://doi.org/10.1007/s11858-007-0043-2 .

Drijvers, P., & Sinclair, N. (2023). The role of digital technologies in mathematics education: Purposes and perspectives. ZDM-Mathematics Education . https://doi.org/10.1007/s11858-023-01535-x .

Engelbrecht, J., & Borba, M. C. (2023). Recent developments in using digital technology in mathematics education. ZDM -Mathematics Education . https://doi.org/10.1007/s11858-023-01530-2 .

Engelbrecht, J., Borba, M. C., & Kaiser, G. (2023). Will we ever teach mathematics again in the way we used to before the pandemic? ZDM– Mathematics Education , 55 , 1–16. https://doi.org/10.1007/s11858-022-01460-5 .

English, L. D. (2023). Ways of thinking in STEM-based problem solving. ZDM -Mathematics Education . https://doi.org/10.1007/s11858-023-01474-7 .

English, L. D., & Kirshner, D. (Eds.). (2016). Handbook of international research in mathematics education . NY. ISBN: 978-0-203-44894-6 (ebk). https://www.routledge.com/Handbook-of-International-Research-in-Mathematics-Education/English-Kirshner/p/book/9780415832045

Fried, M. N. (2014). Mathematics & mathematics education: Searching for common ground. In M.N. Fried, T. Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for 3 Common Ground , Advances in Mathematics Education, pp: 3–22. https://doi.org/10.1007/978-94-007-7473-5_1 . NY: Springer.

Halmos, P. (1980). The heart of mathematics. American Mathematical Monthly , 87 (7), 519–524.

Hiebert, J., Carpenter, T. P., Fennema, E., Fuson, K., Human, P., Murray, H., et al. (1996). Problem solving as a basis for reform in curriculum and instruction: The case of mathematics. Educational Researcher , 25 (4), 12–21.

Hilbert, D. (1902). Mathematical problems. Bulletin of the American Mathematical Society , 8 , 437–479.

Højsted, I. H., Geranius, E., & Jankvist, U. T. (2022). Teachers’ facilitation of students’ mathematical reasoning in a dynamic geometry environment: An analysis through three lenses. In U. T. Jankvist, & E. Geraniou (Eds.), Mathematical competencies in the Digital era (pp. 271–292). Springer. https://doi.org/10.1007/978-3-031-10141-0_15 .

Kahneman, D. (2011). Thinking, fast and slow . Farrar, Straus and Giroux.

Koichu, B. (2014). Problem solving in mathematics and in mathematics education. In M.N. Fried, T. Dreyfus (Eds.), Mathematics & Mathematics Education: Searching for 113 Common Ground , Advances in Mathematics Education, pp: 113–135. Dordrecht: Springer. https://doi.org/10.1007/978-94-007-7473-5_8 .

Koichu, B., Cooper, J., & Widder, M. (2022). Implementation of problem solving in school: From intended to experienced. Implementation and Replication Studies in Mathematics Education , 2 (1), 76–106. https://doi.org/10.1163/26670127-bja10004 .

Krutestkii, V. A. (1976). The psychology of mathematical abilities in school children . University of Chicago Press, Chicago. ISBN: 0-226-45492-4.

Lee, N. H., Ng, W. L., & Lim, L. G. P. (2019). The intended school mathematics curriculum. In T. L. Toh et al. (Eds.), Mathematics Education in Singapore , Mathematics Education – An Asian Perspective, pp: 35–53. https://doi.org/10.1007/978-981-13-3573-0_3 .

Leikin, R., & Guberman, R. (2023). Creativity and challenge: Task complexity as a function of insight and multiplicity of solutions. R. Leikin (Ed.), Mathematical Challenges For All , Research in Mathematics Education, pp: 325–342. https://doi.org/10.1007/978-3-031-18868-8_17 .

Lester, F. K. Jr. (1994). Musing about mathematical problem-solving research: 1970–1994. Journal for Research in Mathematics Education , 25 (6), 660–675.

Lester, F. K. Jr. (2005). On the theoretical, conceptual, and philosophical foundation for research in mathematics education. Zdm Mathematics Education , 37 (6), 457–467. https://doi.org/10.1007/BF02655854 .

Lester, F. K. Jr., & Cai, J. (2016). Can mathematical problem solving be taught? Preliminary answers from 30 years of research. In P. Felmer, et al. (Eds.), Posing and solving Mathematical problems, Research in Mathematics Education (pp. 117–135). Springer. https://doi.org/10.1007/978-3-319-28023-3_8 .

Leung, A. (2011). An epistemic model of task design in dynamic geometry environment. Zdm , 43 , 325–336. https://doi.org/10.1007/s11858-011-0329-2 .

Leung, A., & Baccaglini-Frank, A. (Eds.). (2017). (Eds.). Digital Technologies in Designing Mathematics Education Tasks, Mathematics Education in the Digital Era 8, https://doi.org/10.1007/978-3-319-43423-0_1 .

Leung, A., & Bolite-Frant, J. (2015). Designing mathematics tasks: The role of tools. In A. Watson, & M. Ohtani (Eds.), Task design in mathematics education (pp. 191–225). New ICMI Study Series. https://doi.org/10.1007/978-3-319-09629-2_6 .

Liljedahl, P., & Cai, J. (2021). Empirical research on problem solving and problem pos- ing: A look at the state of the art. ZDM — Mathematics Education , 53 (4), 723–735. https://doi.org/10.1007/s11858-021-01291-w .

Pittalis, M., & Drijvers, P. (2023). Embodied instrumentation in a dynamic geometry environment: Eleven-year‐old students’ dragging schemes. Educational Studies in Mathematics , 113 , 181–205. https://doi.org/10.1007/s10649-023-10222-3 .

Pólya, G. (1945).; 2nd edition, 1957). How to solve it . Princeton University Press.

Rott, B., Specht, B., & Knipping, C. (2021). A descritive phase model of problem-solving processes. ZDM -Mathematics Education , 53 , 737–752. https://doi.org/10.1007/s11858-021-01244-3 .

Santos-Trigo, M. (2019). Mathematical Problem Solving and the use of digital technologies. In P. Liljedahl and M. Santos-Trigo (Eds.). Mathematical Problem Solving. ICME 13 Monographs , ISBN 978-3-030-10471-9, ISBN 978-3-030-10472-6 (eBook), Springer Nature Switzerland AG. Pp. 63–89 https://doi.org/10.1007/978-3-030-10472-6_4 .

Santos-Trigo, M. (2020a). Problem-solving in mathematics education. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 686–693). Springer. https://doi.org/10.1007/978-3-030-15789-0 .

Santos-Trigo, M. (2020b). Prospective and practicing teachers and the use of digital technologies in mathematical problem-solving approaches. In S. Llinares and O. Chapman (Eds.), International handbook of mathematics teacher education , vol 2, pp: 163–195. Boston: Brill Sense, ISBN 978-90-04-41896-7.

Santos-Trigo, M. (Ed.). (2023). Trends and developments of mathematical problem-solving research to update and support the use of digital technologies in post-confinement learning spaces. InT. L. Toh (Eds.), Problem Posing and Problem Solving in Mathematics Education , pp: 7–32. Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7205-0_2 .

Santos-Trigo, M., & Reyes-Martínez, I. (2019). High school prospective teachers’ problem-solving reasoning that involves the coordinated use of digital technologies. International Journal of Mathematical Education in Science and Technology , 50 (2), 182–201. https://doi.org/10.1080/0020739X.2018.1489075 .

Santos-Trigo, M., Barrera-Mora, F., & Camacho-Machín, M. (2021). Teachers’ use of technology affordances to contextualize and dynamically enrich and extend mathematical problem-solving strategies. Mathematics , 9 (8), 793. https://doi.org/10.3390/math9080793 .

Santos-Trigo, M., Reyes-Martínez, I., & Gómez-Arciga, A. (2022). A conceptual framework to structure remote learning scenarios: A digital wall as a reflective tool for students to develop mathematics problem-solving competencies. Int J Learning Technology , 27–52. https://doi.org/10.1504/IJLT.2022.123686 .

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grows (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). Macmillan.

Schoenfeld, A. H. (2020). Mathematical practices, in theory and practice. ZDM Mathematics Education, 52, pp: 1163–1175. https://doi.org/10.1007/s11858-020-01162-w .

Schoenfeld, A. H. (2022). Why are learning and teaching mathematics so difficult? In M. Danesi (Ed.), Handbook of cognitive mathematics (pp. 1–35). Switzerland. https://doi.org/10.1007/978-3-030-44982-7_10-1%23DOI .

Schoenfeld, A. H. (2023). A theory of teaching. In A. K. Praetorius, & C. Y. Charalambous (Eds.), Theorizing teaching (pp. 159–187). Springer. https://doi.org/10.1007/978-3-031-25613-4_6 .

Sinclair, N., & Ferrara, F. (2023). Towards a Socio-material Reframing of Mathematically Challenging Tasks. In R. Leikin (Ed.), Mathematical Challenges For All , Research in Mathematics Education, pp: 307–323. https://doi.org/10.1007/978-3-031-18868-8_16 .

Stake, R. E. (2000). Case studies. In N. K. Denzin, & Y. S. Lincoln (Eds.), Handbook of qualitative research (pp. 435–454). Sage.

Thurston, P. W. (1994). On proof and progress in mathematics. Bull Amer Math Soc , 30 (2), 161–177.

Toh, T. L., Santos-Trigo, M., Chua, P. H., Abdullah, N. A., & Zhang, D. (Eds.). (2023). Problem posing and problem solving in mathematics education: Internationa research and practice trends . Springer Nature Singpore. https://doi.org/10.1007/978-981-99-7205-0 .

Törner, G., Schoenfeld, A. H., & Reiss, K. M. (Eds.). (2007). Problem solving around the world: Summing up the state of the art [Special Issue]. ZDM — Mathematics Education , 39 (5–6). https://doi.org/10.1007/s11858-007-0053-0 .

Download references

Author information

Authors and affiliations.

Centre for Research and Advanced Studies, Mathematics Education Department, Mexico City, Mexico

Manuel Santos-Trigo

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Manuel Santos-Trigo .

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Santos-Trigo, M. Problem solving in mathematics education: tracing its foundations and current research-practice trends. ZDM Mathematics Education (2024). https://doi.org/10.1007/s11858-024-01578-8

Download citation

Accepted : 18 April 2024

Published : 30 April 2024

DOI : https://doi.org/10.1007/s11858-024-01578-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Mathematical problem solving
  • Conceptual frameworks
  • Digital and semiotic tools-
  • Mathematical reasoning
  • Mathematics education developments
  • Digital technologies
  • Find a journal
  • Publish with us
  • Track your research

Logo for FHSU Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

5 Teaching Mathematics Through Problem Solving

Janet Stramel

Problem Solving

In his book “How to Solve It,” George Pólya (1945) said, “One of the most important tasks of the teacher is to help his students. This task is not quite easy; it demands time, practice, devotion, and sound principles. The student should acquire as much experience of independent work as possible. But if he is left alone with his problem without any help, he may make no progress at all. If the teacher helps too much, nothing is left to the student. The teacher should help, but not too much and not too little, so that the student shall have a reasonable share of the work.” (page 1)

What is a problem  in mathematics? A problem is “any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method” (Hiebert, et. al., 1997). Problem solving in mathematics is one of the most important topics to teach; learning to problem solve helps students develop a sense of solving real-life problems and apply mathematics to real world situations. It is also used for a deeper understanding of mathematical concepts. Learning “math facts” is not enough; students must also learn how to use these facts to develop their thinking skills.

According to NCTM (2010), the term “problem solving” refers to mathematical tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. When you first hear “problem solving,” what do you think about? Story problems or word problems? Story problems may be limited to and not “problematic” enough. For example, you may ask students to find the area of a rectangle, given the length and width. This type of problem is an exercise in computation and can be completed mindlessly without understanding the concept of area. Worthwhile problems  includes problems that are truly problematic and have the potential to provide contexts for students’ mathematical development.

There are three ways to solve problems: teaching for problem solving, teaching about problem solving, and teaching through problem solving.

Teaching for problem solving begins with learning a skill. For example, students are learning how to multiply a two-digit number by a one-digit number, and the story problems you select are multiplication problems. Be sure when you are teaching for problem solving, you select or develop tasks that can promote the development of mathematical understanding.

Teaching about problem solving begins with suggested strategies to solve a problem. For example, “draw a picture,” “make a table,” etc. You may see posters in teachers’ classrooms of the “Problem Solving Method” such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no evidence that students’ problem-solving abilities are improved when teaching about problem solving. Students will see a word problem as a separate endeavor and focus on the steps to follow rather than the mathematics. In addition, students will tend to use trial and error instead of focusing on sense making.

Teaching through problem solving  focuses students’ attention on ideas and sense making and develops mathematical practices. Teaching through problem solving also develops a student’s confidence and builds on their strengths. It allows for collaboration among students and engages students in their own learning.

Consider the following worthwhile-problem criteria developed by Lappan and Phillips (1998):

  • The problem has important, useful mathematics embedded in it.
  • The problem requires high-level thinking and problem solving.
  • The problem contributes to the conceptual development of students.
  • The problem creates an opportunity for the teacher to assess what his or her students are learning and where they are experiencing difficulty.
  • The problem can be approached by students in multiple ways using different solution strategies.
  • The problem has various solutions or allows different decisions or positions to be taken and defended.
  • The problem encourages student engagement and discourse.
  • The problem connects to other important mathematical ideas.
  • The problem promotes the skillful use of mathematics.
  • The problem provides an opportunity to practice important skills.

Of course, not every problem will include all of the above. Sometimes, you will choose a problem because your students need an opportunity to practice a certain skill.

Key features of a good mathematics problem includes:

  • It must begin where the students are mathematically.
  • The feature of the problem must be the mathematics that students are to learn.
  • It must require justifications and explanations for both answers and methods of solving.

Needlepoint of cats

Problem solving is not a  neat and orderly process. Think about needlework. On the front side, it is neat and perfect and pretty.

Back of a needlepoint

But look at the b ack.

It is messy and full of knots and loops. Problem solving in mathematics is also like this and we need to help our students be “messy” with problem solving; they need to go through those knots and loops and learn how to solve problems with the teacher’s guidance.

When you teach through problem solving , your students are focused on ideas and sense-making and they develop confidence in mathematics!

Mathematics Tasks and Activities that Promote Teaching through Problem Solving

Teacher teaching a math lesson

Choosing the Right Task

Selecting activities and/or tasks is the most significant decision teachers make that will affect students’ learning. Consider the following questions:

  • Teachers must do the activity first. What is problematic about the activity? What will you need to do BEFORE the activity and AFTER the activity? Additionally, think how your students would do the activity.
  • What mathematical ideas will the activity develop? Are there connections to other related mathematics topics, or other content areas?
  • Can the activity accomplish your learning objective/goals?

a problem solving approach to mathematics pdf

Low Floor High Ceiling Tasks

By definition, a “ low floor/high ceiling task ” is a mathematical activity where everyone in the group can begin and then work on at their own level of engagement. Low Floor High Ceiling Tasks are activities that everyone can begin and work on based on their own level, and have many possibilities for students to do more challenging mathematics. One gauge of knowing whether an activity is a Low Floor High Ceiling Task is when the work on the problems becomes more important than the answer itself, and leads to rich mathematical discourse [Hover: ways of representing, thinking, talking, agreeing, and disagreeing; the way ideas are exchanged and what the ideas entail; and as being shaped by the tasks in which students engage as well as by the nature of the learning environment].

The strengths of using Low Floor High Ceiling Tasks:

  • Allows students to show what they can do, not what they can’t.
  • Provides differentiation to all students.
  • Promotes a positive classroom environment.
  • Advances a growth mindset in students
  • Aligns with the Standards for Mathematical Practice

Examples of some Low Floor High Ceiling Tasks can be found at the following sites:

  • YouCubed – under grades choose Low Floor High Ceiling
  • NRICH Creating a Low Threshold High Ceiling Classroom
  • Inside Mathematics Problems of the Month

Math in 3-Acts

Math in 3-Acts was developed by Dan Meyer to spark an interest in and engage students in thought-provoking mathematical inquiry. Math in 3-Acts is a whole-group mathematics task consisting of three distinct parts:

Act One is about noticing and wondering. The teacher shares with students an image, video, or other situation that is engaging and perplexing. Students then generate questions about the situation.

In Act Two , the teacher offers some information for the students to use as they find the solutions to the problem.

Act Three is the “reveal.” Students share their thinking as well as their solutions.

“Math in 3 Acts” is a fun way to engage your students, there is a low entry point that gives students confidence, there are multiple paths to a solution, and it encourages students to work in groups to solve the problem. Some examples of Math in 3-Acts can be found at the following websites:

  • Dan Meyer’s Three-Act Math Tasks
  • Graham Fletcher3-Act Tasks ]
  • Math in 3-Acts: Real World Math Problems to Make Math Contextual, Visual and Concrete

Number Talks

Number talks are brief, 5-15 minute discussions that focus on student solutions for a mental math computation problem. Students share their different mental math processes aloud while the teacher records their thinking visually on a chart or board. In addition, students learn from each other’s strategies as they question, critique, or build on the strategies that are shared.. To use a “number talk,” you would include the following steps:

  • The teacher presents a problem for students to solve mentally.
  • Provide adequate “ wait time .”
  • The teacher calls on a students and asks, “What were you thinking?” and “Explain your thinking.”
  • For each student who volunteers to share their strategy, write their thinking on the board. Make sure to accurately record their thinking; do not correct their responses.
  • Invite students to question each other about their strategies, compare and contrast the strategies, and ask for clarification about strategies that are confusing.

“Number Talks” can be used as an introduction, a warm up to a lesson, or an extension. Some examples of Number Talks can be found at the following websites:

  • Inside Mathematics Number Talks
  • Number Talks Build Numerical Reasoning

Light bulb

Saying “This is Easy”

“This is easy.” Three little words that can have a big impact on students. What may be “easy” for one person, may be more “difficult” for someone else. And saying “this is easy” defeats the purpose of a growth mindset classroom, where students are comfortable making mistakes.

When the teacher says, “this is easy,” students may think,

  • “Everyone else understands and I don’t. I can’t do this!”
  • Students may just give up and surrender the mathematics to their classmates.
  • Students may shut down.

Instead, you and your students could say the following:

  • “I think I can do this.”
  • “I have an idea I want to try.”
  • “I’ve seen this kind of problem before.”

Tracy Zager wrote a short article, “This is easy”: The Little Phrase That Causes Big Problems” that can give you more information. Read Tracy Zager’s article here.

Using “Worksheets”

Do you want your students to memorize concepts, or do you want them to understand and apply the mathematics for different situations?

What is a “worksheet” in mathematics? It is a paper and pencil assignment when no other materials are used. A worksheet does not allow your students to use hands-on materials/manipulatives [Hover: physical objects that are used as teaching tools to engage students in the hands-on learning of mathematics]; and worksheets are many times “naked number” with no context. And a worksheet should not be used to enhance a hands-on activity.

Students need time to explore and manipulate materials in order to learn the mathematics concept. Worksheets are just a test of rote memory. Students need to develop those higher-order thinking skills, and worksheets will not allow them to do that.

One productive belief from the NCTM publication, Principles to Action (2014), states, “Students at all grade levels can benefit from the use of physical and virtual manipulative materials to provide visual models of a range of mathematical ideas.”

You may need an “activity sheet,” a “graphic organizer,” etc. as you plan your mathematics activities/lessons, but be sure to include hands-on manipulatives. Using manipulatives can

  • Provide your students a bridge between the concrete and abstract
  • Serve as models that support students’ thinking
  • Provide another representation
  • Support student engagement
  • Give students ownership of their own learning.

Adapted from “ The Top 5 Reasons for Using Manipulatives in the Classroom ”.

any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ solution method

should be intriguing and contain a level of challenge that invites speculation and hard work, and directs students to investigate important mathematical ideas and ways of thinking toward the learning

involves teaching a skill so that a student can later solve a story problem

when we teach students how to problem solve

teaching mathematics content through real contexts, problems, situations, and models

a mathematical activity where everyone in the group can begin and then work on at their own level of engagement

20 seconds to 2 minutes for students to make sense of questions

Mathematics Methods for Early Childhood Copyright © 2021 by Janet Stramel is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

THEORIES AND PRINCIPLES OF PROBLEM SOLVING IN MATHEMATICS

Profile image of FUSEINI NAYI ALHASSAN

2023, Article

Doing mathematics means that students are engaged in learning mathematics through reasoning and problem solving (NCTM, 2014). Prospective mathematics teachers need to learn about how to engage students in solving and talking about tasks that can be tackled in different ways by different students. Mathematically, proficient students are able to make sense of a situation, select solution paths, consider alternative strategies and monitor their progress (CCSSO, 2010). Before we can be effective in teaching mathematics, we need to have a good knowledge about what we are supposed to be teaching and how students learn mathematics. We are familiar with why we teach mathematics at the basic and high schools.

Related Papers

Imani Goffney

a problem solving approach to mathematics pdf

Alice Krueger

Lisa Etheridge

Janine Remillard

Avances de Investigación en Educación Matemática

Jaguthsing Dindyal

Mathematics teachers use typical problems from past examination papers and textbook exercises to develop procedural skills. In this paper, we discuss other uses of typical problems. We focus on the affordances that an experienced teacher, John, perceives in typical problems and how he uses them to enhance student learning by harnessing the idea of teaching with variations or bianshi. Drawing on data from a larger qualitative design-based research on investigating teacher noticing, we present snapshots of John’s classroom practices to show what he noticed about the variations afforded by typical problems and how he used these problems with students to promote both procedural skills and conceptual understanding. Findings suggest the value of supporting teachers in harnessing variations of typical problems, which has implications for teacher education and professional development.

Nicole Rigelman

Dr Gervasius H. Stephanus

Gervasius Stephanus

Quality mathematics education relies on effective pedagogy which offers students appropriate and rich opportunities to develop their mathematical proficiency (MP) and intellectual autonomy in learning mathematics. This qualitative case study aimed to explore and analyse selected effective mathematics teachers' proficiency in the area of geometry in five secondary schools in five different Namibia educational regions. The sample was purposefully selected and comprised five mathematics teachers, identified locally as being effective practitioners by their peers, Education Ministry officials and the staff of the University of Namibia (UNAM). The schools where the selected teachers taught were all high performing Namibian schools in terms of students' mathematics performance in the annual national examinations. The general picture of students' poor performance in mathematics in Namibia is no different to other sub-Saharan countries and it is the teachers who unfortunately bear the brunt of the criticism. There are, however, beacons of excellence in Namibia and these often go unnoticed and are seldom written about. It is the purpose of this study to focus on these high achievers and analyse the practices of these teachers so that the rest of Namibia can learn from their practices and experience what is possible in the Namibian context. The mathematical content and context focus of this study was geometry. This qualitative study adopted a multiple case study approach and was framed within an interpretive paradigm. The data were collected through individual questionnaires, classroom lesson observations and in-depth open-ended and semi-structured interviews with the participating teachers. These interviews took the form of post lesson reflective and stimulated recall analysis sessions. An adapted framework based on the Kilpatrick, Swafford and Findell's (2001) five strands of teaching for MP was developed as a conceptual and analytical lens to analyse the selected teachers' practice. The developed coding and the descriptive narrative vignettes of their teaching enabled a qualitative analysis of what teachers said contributed to their effectiveness and how they developed MP in students. An enactivist theoretical lens was used to complement the Kilpatrick et al.'s (2001) analytical framework. This enabled a deeper analysis of teacher teaching practice in terms of their embodied mathematical knowledge, actions and interactions with students. procedural fluency (PF) and productive disposition (PD), were addressed regularly by all five participating teachers. Evidence of addressing either the development of students' strategic competence (SC) or adaptive reasoning (AR) appeared rarely. Of particular interest in this study was that the strand of PD was the glue that held the other four strands of MP together. PD was manifested in many different ways in varying degrees. PD was characterised by a high level of content knowledge, rich personal experience, sustained commitment, effective and careful preparation for lessons, high expectations of themselves and learners, collegiality, passion for mathematics and an excellent work ethic. In addition, the teachers' geometry teaching practices were characterised by making use of real-world connections, manipulatives and representations, encouraging a collaborative approach and working together to show that geometry constituted a bridge between the concrete and abstract. The findings of the study have led me, the author, to suggest a ten (10) principles framework and seven (7) key interrelated factors for effective teaching, as a practical guide for teachers. This study argues that the instructional practices enacted by the participating teachers, who were perceived to be effective, aligned well with practices informed by the five strands of the Kilpatrick et al.'s (2001) model and the four concepts of autopoesis, co-emergence, structural determinism and embodiment of the enactivist approach. The study concludes with recommendations for effective pedagogical practices in the teaching of geometry, and opportunities for further research

Rudy Arzuaga

European Journal of Education Studies

Nchelem George

Innovative instructional strategies utilization effects on the senior secondary students’ algebra achievement in Rivers State was investigated in this study. The design adopted for the study was the pretest-posttest quasi – experimental design type. The sample of 76 schools used for the study were purposively selected while 398 students were selected randomly from intact classes and used for the study. The research was guided by two research questions and two hypotheses. Algebra Achievement Test (AAT) with 0.80 reliability coefficient was the instrument used for data collection. The statistical tools used for data analysis were mean, standard deviation and analysis of covariance. Findings indicated significant difference in the achievement mean scores of students based on strategy but not based on gender. Therefore, utilizing innovative instructional strategies by Mathematics teachers shall ensure effective and equitable teaching and learning of algebra in the secondary schools. Art...

Telashay Farr

Mathematics Anxiety (MA) and Mathematics Teaching Self-Efficacy (MTSE) have been reported as factors related to teachers’ mathematics instruction. This study investigated MA and MTSE in in-service elementary teachers’ virtual mathematics instruction. A comparative case study design was used to understand the relationship between MA, MTSE, and their virtual mathematics instructional practices. Two in-service elementary teachers from an urban public charter school district in a large metropolitan city in the Midwest participated. I employed qualitative methods to examine the results from the Abbreviated Mathematics Anxiety Rating Scale (AMAS), an adapted version of a researcher-developed instrument called the Mathematics Teaching and Mathematics Self-Efficacy Scale (MTMSE), interviews, teacher classroom observations, post-observation interviews, and a fraction simulation task to learn how teachers approached virtual mathematics instruction. Results indicated the in-service elementary ...

RELATED PAPERS

Ursula Sexton

Joseph Roicki

Mickey Yang

Emily Yanisko

Madihah Khalid

Teacher Education and Practice

Trina Davis

Teacher Education Quarterly

Michael Carey

Amy Parrott

Elham Kazemi

Helia Margarida Aparicio Pintao Oliveira

Justine Schwarz

Diana Everman

James Paul Susada

Douglas H Clements

John Poggio

مجلة دراسات فی المناهج وطرق التدریس

Amira Khater

Judi Conroy

International Journal of Science and Mathematics Education

reyhan sitrava

Issues in Teacher Education

Erin Ottmar

Janet Stramel

Nanette Seago

Jhon Anthony Estomo

Márcia Cyrino

Barbara Means

Publisher ijmra.us UGC Approved

International Journal of Scientific Research and Management

Australian Mathematics Teacher

Vince Geiger

Yukiko Asami-Johansson

Magistra Iadertina

András Ambrus

Journal of Mathematics Teacher Education

Susan Swars Auslander

Action Research and Innovation in Science Education

tikva ovadiya

aleksandra veselovsky

Focus on Exceptional Children

Joseph C A L V I N Gagnon

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

COMMENTS

  1. A problem solving approach to mathematics for elementary school

    A problem solving approach to mathematics for elementary school teachers by Billstein, Rick. Publication date 2010 Topics ... Pdf_module_version 0.0.14 Ppi 360 Rcs_key 24143 Republisher_date 20210608122549 Republisher_operator [email protected] ...

  2. PDF Problem solving in mathematics

    Therefore, high-quality assessment of problem solving in public tests and assessments1 is essential in order to ensure the effective learning and teaching of problem solving throughout primary and secondary education. Although the focus here is on the assessment of problem solving in mathematics, many of the ideas will be directly transferable ...

  3. A problem solving approach to mathematics for elementary school

    A problem solving approach to mathematics for elementary school teachers by Billstein, Rick; Libeskind, Shlomo; Lott, Johnny W., 1944-Publication date 1996 Topics Mathematics, Problem solving Publisher Reading, Mass. : Harlow : Addison-Wesley Collection printdisabled; internetarchivebooks; americana Contributor

  4. PDF A Problem Solving Approach to Mathematics for Elementary School

    Section 1-1 Mathematics and Problem Solving Students will be able to understand and explain •The four-step problem solving process. •How to solve problems using various problem solving strategies.

  5. (PDF) A Problem Solving Approach to Mathematics for Elementary School

    Download Free PDF. A Problem Solving Approach to Mathematics for Elementary School Teachers ... A Problem Solving Approach to Mathematics for Elementary School Teachers. Paul Ernest. 1982, The American Mathematical Monthly. See Full PDF Download PDF. See Full PDF Download PDF. Related Papers. 2012-11-27 Sarama, Clements 2009, Teaching math in ...

  6. Problem Solving Approach to Mathematics for Elementary School ...

    Pearson+ subscription. /mo. -month term, pay monthly or pay. Buy now. Instant access. ISBN-13: 9780136880141. Problem Solving Approach to Mathematics for Elementary School Teachers, A. Published 2020.

  7. Mathematics for Elementary Teachers

    The problem-solving approach to mathematics is especially relevant for elementary pre-service teachers; the intended audience. The book does expand beyond elementary mathematics, however, this is deemed extremely useful for all levels of mathematics teachers. ... The text comes in pdf, XML, and an online web version. The search feature on the ...

  8. PDF Problem Solving in Mathematics Education

    Problem Solving in Mathematics Education Mathematical problem solving has long been seen as an important aspect of mathematics, the teaching of mathematics, and the learning of mathematics. ... academic discipline of "heuristics" dealing with effective approaches to problem solving (so-called heurisms) was given its name. Pólya (1964 ...

  9. PDF Introduction to Problem-Solving Strategies

    can use problem solving to teach the skills of mathematics, and how prob-lem solving should be presented to their students. They must understand that problem solving can be thought of in three different ways: 1. Problem solving is a subject for study in and of itself. 2. Problem solving is an approach to a particular problem. 3.

  10. [PDF] A Problem Solving Approach to Mathematics for Elementary School

    A Problem Solving Approach to Mathematics for Elementary School Teachers. 1. An Introduction to Problem Solving 1-1 Mathematics and Problem Solving 1-2 Explorations with Patterns 1-3 Reasoning and Logic: An Introduction 2. Numeration Systems and Sets 2-1 Numeration Systems 2-2 Describing Sets 2-3 Other Set Operations and Their Properties 3.

  11. A Problem Solving Approach to Mathematics for Elementary School

    The Gold Standard for the New Standards. A Problem Solving Approach to Mathematics for Elementary School Teachers has always reflected the content and processes set forth in today's new state mathematics standards and the Common Core State Standards (CCSS). In the Twelfth Edition, the authors have further tightened the connections to the CCSS and made them more explicit.

  12. PDF Problem-Solving in Mathematics Education

    This framework was updated in 2009 (NCTM 2000, 2009) and conceptualizes a problem-solving approach as a way of fostering mathematical reasoning and sensemaking activi-ties. Throughout the proposal, there are different examples in which reasoning and sensemaking activities are interwoven.

  13. A problem solving approach to mathematics for elementary school

    A problem solving approach to mathematics for elementary school teachers by Billstein, Rick. Publication date 1987 Topics Mathematics -- Study and teaching (Elementary), Problem solving ... Pdf_module_version 0.0.20 Ppi 360 Rcs_key 24143 Republisher_date 20230112194843 Republisher_operator [email protected] ...

  14. Discovering Mathematics: A Problem-Solving Approach to Mathematical

    Download book PDF. Overview Authors: Jiří Gregor 0, Jaroslav Tišer 1; Jiří Gregor ... The book contains chapters of structured approach to problem solving in mathematical analysis on an intermediate level. It follows the ideas of G.Polya and others, distinguishing between exercises and problem solving in mathematics. ...

  15. PDF TAO (Solving Math Problems)

    'high-tech' mathematical tools; but the point of this text is not to present the slickest solution to a problem or to provide the most up-to-date survey of results, but rather to show how one approaches a mathematical problem for the first time, and how the painstaking, systematic experience of trying

  16. PDF The Mathematics Educator A Problem With Problem Solving: Teaching

    Three examples of a problem solving heuristic are presented in Table 1. The first belongs to John Dewey, who explicated a method of problem solving in How We Think (1933). The second is George Polya's, whose method is mostly associated with problem solving in mathematics. The last is a more contemporary version

  17. Problem solving in mathematics education: tracing its ...

    In tracing recent research trends and directions in mathematical problem-solving, it is argued that advances in mathematics practices occur and take place around two intertwined activities, mathematics problem formulation and ways to approach and solve those problems. In this context, a problematizing principle emerges as central activity to organize mathematics curriculum proposals and ways ...

  18. (PDF) PROBLEM SOLVING IN MATHEMATICS EDUCATION: RECENT ...

    The aim of the present paper is to present and discuss the recent progress of the. problem solving process in mathematics education. 1. Introduction. Problem - Solving (P-S) is a principal ...

  19. Teaching Mathematics Through Problem Solving

    Teaching about problem solving begins with suggested strategies to solve a problem. For example, "draw a picture," "make a table," etc. You may see posters in teachers' classrooms of the "Problem Solving Method" such as: 1) Read the problem, 2) Devise a plan, 3) Solve the problem, and 4) Check your work. There is little or no ...

  20. (Pdf) Theories and Principles of Problem Solving in Mathematics

    The best way to help students is not to help too much. Criticisms against teaching for problem solving 1. The approach of teaching for problem solving requires that every student possess the needed requisite knowledge to be able to understand what the teacher puts forward. This mostly doesn't happen. 2.

  21. PDF Mathematical Problem Solving for Elementary School Teachers

    It is not possible to learn math-ematics by reading a textbook like a novel. Good mathematics students, from elementary school to graduate school, read a math book with pencil and paper in hand. Mathematics is not a collection of independent topics. It is not \Algebra I," \Algebra II," \Trigonometry," \Plane Geometry," etc. All of mathematics is

  22. (PDF) Teaching Mathematics: Strategies for Improved Mathematical

    Download full-text PDF Read full-text. ... Problem-solving is defined as "engaging in a task f or which the . ... An approach to the design of mathematical task sequences: Conceptual learning as ...

  23. (PDF) The problem-solving process in a mathematics classroom

    The problem-solving process consists of four basic phases according to Polya. These four phases complement each other like pieces of a puzzle (Ortiz, 2016). The four-phase conceptual framework of ...