an essay of global warming

45,000+ students realised their study abroad dream with us. Take the first step today

Here’s your new year gift, one app for all your, study abroad needs, start your journey, track your progress, grow with the community and so much more.

an essay of global warming

Verification Code

An OTP has been sent to your registered mobile no. Please verify

an essay of global warming

Thanks for your comment !

Our team will review it before it's shown to our readers.

an essay of global warming

Essay on Global Warming

dulingo

  • Updated on  
  • Apr 27, 2024

an essay of global warming

Being able to write an essay is an integral part of mastering any language. Essays form an integral part of many academic and scholastic exams like the SAT, and UPSC amongst many others. It is a crucial evaluative part of English proficiency tests as well like IELTS, TOEFL, etc. Major essays are meant to emphasize public issues of concern that can have significant consequences on the world. To understand the concept of Global Warming and its causes and effects, we must first examine the many factors that influence the planet’s temperature and what this implies for the world’s future. Here’s an unbiased look at the essay on Global Warming and other essential related topics.

Short Essay on Global Warming and Climate Change?

Since the industrial and scientific revolutions, Earth’s resources have been gradually depleted. Furthermore, the start of the world’s population’s exponential expansion is particularly hard on the environment. Simply put, as the population’s need for consumption grows, so does the use of natural resources , as well as the waste generated by that consumption.

Climate change has been one of the most significant long-term consequences of this. Climate change is more than just the rise or fall of global temperatures; it also affects rain cycles, wind patterns, cyclone frequencies, sea levels, and other factors. It has an impact on all major life groupings on the planet.

Also Read: Essay on Yoga Day

Also Read: Speech on Yoga Day

What is Global Warming?

Global warming is the unusually rapid increase in Earth’s average surface temperature over the past century, primarily due to the greenhouse gases released by people burning fossil fuels . The greenhouse gases consist of methane, nitrous oxide, ozone, carbon dioxide, water vapour, and chlorofluorocarbons. The weather prediction has been becoming more complex with every passing year, with seasons more indistinguishable, and the general temperatures hotter.

The number of hurricanes, cyclones, droughts, floods, etc., has risen steadily since the onset of the 21st century. The supervillain behind all these changes is Global Warming. The name is quite self-explanatory; it means the rise in the temperature of the Earth.

Also Read: What is a Natural Disaster?

What are the Causes of Global Warming?

According to recent studies, many scientists believe the following are the primary four causes of global warming:

  • Deforestation 
  • Greenhouse emissions
  • Carbon emissions per capita

Extreme global warming is causing natural disasters , which can be seen all around us. One of the causes of global warming is the extreme release of greenhouse gases that become trapped on the earth’s surface, causing the temperature to rise. Similarly, volcanoes contribute to global warming by spewing excessive CO2 into the atmosphere.

The increase in population is one of the major causes of Global Warming. This increase in population also leads to increased air pollution . Automobiles emit a lot of CO2, which remains in the atmosphere. This increase in population is also causing deforestation, which contributes to global warming.

The earth’s surface emits energy into the atmosphere in the form of heat, keeping the balance with the incoming energy. Global warming depletes the ozone layer, bringing about the end of the world. There is a clear indication that increased global warming will result in the extinction of all life on Earth’s surface.

Also Read: Land, Soil, Water, Natural Vegetation, and Wildlife Resources

Solutions for Global Warming

Of course, industries and multinational conglomerates emit more carbon than the average citizen. Nonetheless, activism and community effort are the only viable ways to slow the worsening effects of global warming. Furthermore, at the state or government level, world leaders must develop concrete plans and step-by-step programmes to ensure that no further harm is done to the environment in general.

Although we are almost too late to slow the rate of global warming, finding the right solution is critical. Everyone, from individuals to governments, must work together to find a solution to Global Warming. Some of the factors to consider are pollution control, population growth, and the use of natural resources.

One very important contribution you can make is to reduce your use of plastic. Plastic is the primary cause of global warming, and recycling it takes years. Another factor to consider is deforestation, which will aid in the control of global warming. More tree planting should be encouraged to green the environment. Certain rules should also govern industrialization. Building industries in green zones that affect plants and species should be prohibited.

Also Read: Essay on Pollution

Effects of Global Warming

Global warming is a real problem that many people want to disprove to gain political advantage. However, as global citizens, we must ensure that only the truth is presented in the media.

This decade has seen a significant impact from global warming. The two most common phenomena observed are glacier retreat and arctic shrinkage. Glaciers are rapidly melting. These are clear manifestations of climate change.

Another significant effect of global warming is the rise in sea level. Flooding is occurring in low-lying areas as a result of sea-level rise. Many countries have experienced extreme weather conditions. Every year, we have unusually heavy rain, extreme heat and cold, wildfires, and other natural disasters.

Similarly, as global warming continues, marine life is being severely impacted. This is causing the extinction of marine species as well as other problems. Furthermore, changes are expected in coral reefs, which will face extinction in the coming years. These effects will intensify in the coming years, effectively halting species expansion. Furthermore, humans will eventually feel the negative effects of Global Warming.

Also Read: Concept of Sustainable Development

Sample Essays on Global Warming

Here are some sample essays on Global Warming:

Essay on Global Warming Paragraph in 100 – 150 words

Global Warming is caused by the increase of carbon dioxide levels in the earth’s atmosphere and is a result of human activities that have been causing harm to our environment for the past few centuries now. Global Warming is something that can’t be ignored and steps have to be taken to tackle the situation globally. The average temperature is constantly rising by 1.5 degrees Celsius over the last few years.

The best method to prevent future damage to the earth, cutting down more forests should be banned and Afforestation should be encouraged. Start by planting trees near your homes and offices, participate in events, and teach the importance of planting trees. It is impossible to undo the damage but it is possible to stop further harm.

Also Read: Social Forestry

Essay on Global Warming in 250 Words

Over a long period, it is observed that the temperature of the earth is increasing. This affected wildlife, animals, humans, and every living organism on earth. Glaciers have been melting, and many countries have started water shortages, flooding, and erosion and all this is because of global warming. 

No one can be blamed for global warming except for humans. Human activities such as gases released from power plants, transportation, and deforestation have increased gases such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere.                                              The main question is how can we control the current situation and build a better world for future generations. It starts with little steps by every individual. 

Start using cloth bags made from sustainable materials for all shopping purposes, instead of using high-watt lights use energy-efficient bulbs, switch off the electricity, don’t waste water, abolish deforestation and encourage planting more trees. Shift the use of energy from petroleum or other fossil fuels to wind and solar energy. Instead of throwing out the old clothes donate them to someone so that it is recycled. 

Donate old books, don’t waste paper.  Above all, spread awareness about global warming. Every little thing a person does towards saving the earth will contribute in big or small amounts. We must learn that 1% effort is better than no effort. Pledge to take care of Mother Nature and speak up about global warming.

Also Read: Types of Water Pollution

Essay on Global Warming in 500 Words

Global warming isn’t a prediction, it is happening! A person denying it or unaware of it is in the most simple terms complicit. Do we have another planet to live on? Unfortunately, we have been bestowed with this one planet only that can sustain life yet over the years we have turned a blind eye to the plight it is in. Global warming is not an abstract concept but a global phenomenon occurring ever so slowly even at this moment. Global Warming is a phenomenon that is occurring every minute resulting in a gradual increase in the Earth’s overall climate. Brought about by greenhouse gases that trap the solar radiation in the atmosphere, global warming can change the entire map of the earth, displacing areas, flooding many countries, and destroying multiple lifeforms. Extreme weather is a direct consequence of global warming but it is not an exhaustive consequence. There are virtually limitless effects of global warming which are all harmful to life on earth. The sea level is increasing by 0.12 inches per year worldwide. This is happening because of the melting of polar ice caps because of global warming. This has increased the frequency of floods in many lowland areas and has caused damage to coral reefs. The Arctic is one of the worst-hit areas affected by global warming. Air quality has been adversely affected and the acidity of the seawater has also increased causing severe damage to marine life forms. Severe natural disasters are brought about by global warming which has had dire effects on life and property. As long as mankind produces greenhouse gases, global warming will continue to accelerate. The consequences are felt at a much smaller scale which will increase to become drastic shortly. The power to save the day lies in the hands of humans, the need is to seize the day. Energy consumption should be reduced on an individual basis. Fuel-efficient cars and other electronics should be encouraged to reduce the wastage of energy sources. This will also improve air quality and reduce the concentration of greenhouse gases in the atmosphere. Global warming is an evil that can only be defeated when fought together. It is better late than never. If we all take steps today, we will have a much brighter future tomorrow. Global warming is the bane of our existence and various policies have come up worldwide to fight it but that is not enough. The actual difference is made when we work at an individual level to fight it. Understanding its import now is crucial before it becomes an irrevocable mistake. Exterminating global warming is of utmost importance and each one of us is as responsible for it as the next.  

Also Read: Essay on Library: 100, 200 and 250 Words

Essay on Global Warming UPSC

Always hear about global warming everywhere, but do we know what it is? The evil of the worst form, global warming is a phenomenon that can affect life more fatally. Global warming refers to the increase in the earth’s temperature as a result of various human activities. The planet is gradually getting hotter and threatening the existence of lifeforms on it. Despite being relentlessly studied and researched, global warming for the majority of the population remains an abstract concept of science. It is this concept that over the years has culminated in making global warming a stark reality and not a concept covered in books. Global warming is not caused by one sole reason that can be curbed. Multifarious factors cause global warming most of which are a part of an individual’s daily existence. Burning of fuels for cooking, in vehicles, and for other conventional uses, a large amount of greenhouse gases like carbon dioxide, and methane amongst many others is produced which accelerates global warming. Rampant deforestation also results in global warming as lesser green cover results in an increased presence of carbon dioxide in the atmosphere which is a greenhouse gas.  Finding a solution to global warming is of immediate importance. Global warming is a phenomenon that has to be fought unitedly. Planting more trees can be the first step that can be taken toward warding off the severe consequences of global warming. Increasing the green cover will result in regulating the carbon cycle. There should be a shift from using nonrenewable energy to renewable energy such as wind or solar energy which causes less pollution and thereby hinder the acceleration of global warming. Reducing energy needs at an individual level and not wasting energy in any form is the most important step to be taken against global warming. The warning bells are tolling to awaken us from the deep slumber of complacency we have slipped into. Humans can fight against nature and it is high time we acknowledged that. With all our scientific progress and technological inventions, fighting off the negative effects of global warming is implausible. We have to remember that we do not inherit the earth from our ancestors but borrow it from our future generations and the responsibility lies on our shoulders to bequeath them a healthy planet for life to exist. 

Also Read: Essay on Disaster Management

Climate Change and Global Warming Essay

Global Warming and Climate Change are two sides of the same coin. Both are interrelated with each other and are two issues of major concern worldwide. Greenhouse gases released such as carbon dioxide, CFCs, and other pollutants in the earth’s atmosphere cause Global Warming which leads to climate change. Black holes have started to form in the ozone layer that protects the earth from harmful ultraviolet rays. 

Human activities have created climate change and global warming. Industrial waste and fumes are the major contributors to global warming. 

Another factor affecting is the burning of fossil fuels, deforestation and also one of the reasons for climate change.  Global warming has resulted in shrinking mountain glaciers in Antarctica, Greenland, and the Arctic and causing climate change. Switching from the use of fossil fuels to energy sources like wind and solar. 

When buying any electronic appliance buy the best quality with energy savings stars. Don’t waste water and encourage rainwater harvesting in your community. 

Also Read: Essay on Air Pollution

Tips to Write an Essay

Writing an effective essay needs skills that few people possess and even fewer know how to implement. While writing an essay can be an assiduous task that can be unnerving at times, some key pointers can be inculcated to draft a successful essay. These involve focusing on the structure of the essay, planning it out well, and emphasizing crucial details.

Mentioned below are some pointers that can help you write better structure and more thoughtful essays that will get across to your readers:

  • Prepare an outline for the essay to ensure continuity and relevance and no break in the structure of the essay
  • Decide on a thesis statement that will form the basis of your essay. It will be the point of your essay and help readers understand your contention
  • Follow the structure of an introduction, a detailed body followed by a conclusion so that the readers can comprehend the essay in a particular manner without any dissonance.
  • Make your beginning catchy and include solutions in your conclusion to make the essay insightful and lucrative to read
  • Reread before putting it out and add your flair to the essay to make it more personal and thereby unique and intriguing for readers  

Also Read: I Love My India Essay: 100 and 500+ Words in English for School Students

Ans. Both natural and man-made factors contribute to global warming. The natural one also contains methane gas, volcanic eruptions, and greenhouse gases. Deforestation, mining, livestock raising, burning fossil fuels, and other man-made causes are next.

Ans. The government and the general public can work together to stop global warming. Trees must be planted more often, and deforestation must be prohibited. Auto usage needs to be curbed, and recycling needs to be promoted.

Ans. Switching to renewable energy sources , adopting sustainable farming, transportation, and energy methods, and conserving water and other natural resources.

Relevant Blogs

For more information on such interesting topics, visit our essay writing page and follow Leverage Edu.

' src=

Digvijay Singh

Having 2+ years of experience in educational content writing, withholding a Bachelor's in Physical Education and Sports Science and a strong interest in writing educational content for students enrolled in domestic and foreign study abroad programmes. I believe in offering a distinct viewpoint to the table, to help students deal with the complexities of both domestic and foreign educational systems. Through engaging storytelling and insightful analysis, I aim to inspire my readers to embark on their educational journeys, whether abroad or at home, and to make the most of every learning opportunity that comes their way.

Leave a Reply Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Contact no. *

This was really a good essay on global warming… There has been used many unic words..and I really liked it!!!Seriously I had been looking for a essay about Global warming just like this…

Thank you for the comment!

I want to learn how to write essay writing so I joined this page.This page is very useful for everyone.

Hi, we are glad that we could help you to write essays. We have a beginner’s guide to write essays ( https://leverageedu.com/blog/essay-writing/ ) and we think this might help you.

It is not good , to have global warming in our earth .So we all have to afforestation program on all the world.

thank you so much

Very educative , helpful and it is really going to strength my English knowledge to structure my essay in future

Thank you for the comment, please follow our newsletter to get more insights on studying abroad and exams!

Global warming is the increase in 𝓽𝓱𝓮 ᴀᴠᴇʀᴀɢᴇ ᴛᴇᴍᴘᴇʀᴀᴛᴜʀᴇs ᴏғ ᴇᴀʀᴛʜ🌎 ᴀᴛᴍᴏsᴘʜᴇʀᴇ

browse success stories

Leaving already?

8 Universities with higher ROI than IITs and IIMs

Grab this one-time opportunity to download this ebook

Connect With Us

45,000+ students realised their study abroad dream with us. take the first step today..

an essay of global warming

Resend OTP in

an essay of global warming

Need help with?

Study abroad.

UK, Canada, US & More

IELTS, GRE, GMAT & More

Scholarship, Loans & Forex

Country Preference

New Zealand

Which English test are you planning to take?

Which academic test are you planning to take.

Not Sure yet

When are you planning to take the exam?

Already booked my exam slot

Within 2 Months

Want to learn about the test

Which Degree do you wish to pursue?

When do you want to start studying abroad.

September 2024

January 2025

What is your budget to study abroad?

an essay of global warming

How would you describe this article ?

Please rate this article

We would like to hear more.

ENCYCLOPEDIC ENTRY

Global warming.

The causes, effects, and complexities of global warming are important to understand so that we can fight for the health of our planet.

Earth Science, Climatology

Tennessee Power Plant

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Photograph by Emory Kristof/ National Geographic

Ash spews from a coal-fueled power plant in New Johnsonville, Tennessee, United States.

Global warming is the long-term warming of the planet’s overall temperature. Though this warming trend has been going on for a long time, its pace has significantly increased in the last hundred years due to the burning of fossil fuels . As the human population has increased, so has the volume of fossil fuels burned. Fossil fuels include coal, oil, and natural gas, and burning them causes what is known as the “greenhouse effect” in Earth’s atmosphere.

The greenhouse effect is when the sun’s rays penetrate the atmosphere, but when that heat is reflected off the surface cannot escape back into space. Gases produced by the burning of fossil fuels prevent the heat from leaving the atmosphere. These greenhouse gasses are carbon dioxide , chlorofluorocarbons, water vapor , methane , and nitrous oxide . The excess heat in the atmosphere has caused the average global temperature to rise overtime, otherwise known as global warming.

Global warming has presented another issue called climate change. Sometimes these phrases are used interchangeably, however, they are different. Climate change refers to changes in weather patterns and growing seasons around the world. It also refers to sea level rise caused by the expansion of warmer seas and melting ice sheets and glaciers . Global warming causes climate change, which poses a serious threat to life on Earth in the forms of widespread flooding and extreme weather. Scientists continue to study global warming and its impact on Earth.

Media Credits

The audio, illustrations, photos, and videos are credited beneath the media asset, except for promotional images, which generally link to another page that contains the media credit. The Rights Holder for media is the person or group credited.

Production Managers

Program specialists, last updated.

February 21, 2024

User Permissions

For information on user permissions, please read our Terms of Service. If you have questions about how to cite anything on our website in your project or classroom presentation, please contact your teacher. They will best know the preferred format. When you reach out to them, you will need the page title, URL, and the date you accessed the resource.

If a media asset is downloadable, a download button appears in the corner of the media viewer. If no button appears, you cannot download or save the media.

Text on this page is printable and can be used according to our Terms of Service .

Interactives

Any interactives on this page can only be played while you are visiting our website. You cannot download interactives.

Related Resources

Home — Essay Samples — Environment — Global Warming — Argumentative Essay On Global Warming

test_template

Argumentative Essay on Global Warming

  • Categories: Climate Change Environmental Issues Global Warming

About this sample

close

Words: 879 |

Published: Mar 5, 2024

Words: 879 | Pages: 2 | 5 min read

Image of Alex Wood

Cite this Essay

Let us write you an essay from scratch

  • 450+ experts on 30 subjects ready to help
  • Custom essay delivered in as few as 3 hours

Get high-quality help

author

Dr. Karlyna PhD

Verified writer

  • Expert in: Environment

writer

+ 120 experts online

By clicking “Check Writers’ Offers”, you agree to our terms of service and privacy policy . We’ll occasionally send you promo and account related email

No need to pay just yet!

Related Essays

2 pages / 745 words

4 pages / 2036 words

3 pages / 1370 words

2 pages / 869 words

Remember! This is just a sample.

You can get your custom paper by one of our expert writers.

121 writers online

Still can’t find what you need?

Browse our vast selection of original essay samples, each expertly formatted and styled

Related Essays on Global Warming

Envirothonpa. 'Invasive Species.' Pennsylvania Envirothon, 2019. www.envirothonpa.org/invasive-species. Accessed 25 July 2023.NASA. 'Climate Change: How Do We Know?' NASA, 2021. climate.nasa.gov/evidence/. Accessed 25 July [...]

In a world where dietary choices are increasingly under scrutiny, the benefits of veganism have garnered widespread attention and praise. From promoting environmental sustainability to improving personal health, the vegan [...]

Polar bears (Ursus maritimus), the iconic arctic predators, have long captured the imagination and concern of people worldwide. Residing primarily within the circumpolar Arctic, these majestic animals are perfectly adapted to [...]

In conclusion, the memo on global warming provides a valuable starting point for our analysis of this pressing issue. By adhering to formal academic writing standards, critically engaging with the arguments presented, and [...]

Preventing global warming requires a comprehensive and multifaceted approach. By reducing greenhouse gas emissions, transitioning to renewable energy sources, improving energy efficiency, protecting and restoring natural [...]

It is a melancholy object to those who have been unfortunate enough to inhabit this once great planet. These individuals, instead of searching for cooler, healthier planets, are forced to employ all of their resources and [...]

Related Topics

By clicking “Send”, you agree to our Terms of service and Privacy statement . We will occasionally send you account related emails.

Where do you want us to send this sample?

By clicking “Continue”, you agree to our terms of service and privacy policy.

Be careful. This essay is not unique

This essay was donated by a student and is likely to have been used and submitted before

Download this Sample

Free samples may contain mistakes and not unique parts

Sorry, we could not paraphrase this essay. Our professional writers can rewrite it and get you a unique paper.

Please check your inbox.

We can write you a custom essay that will follow your exact instructions and meet the deadlines. Let's fix your grades together!

Get Your Personalized Essay in 3 Hours or Less!

We use cookies to personalyze your web-site experience. By continuing we’ll assume you board with our cookie policy .

  • Instructions Followed To The Letter
  • Deadlines Met At Every Stage
  • Unique And Plagiarism Free

an essay of global warming

UN logo

Search the United Nations

  • What Is Climate Change
  • Myth Busters
  • Renewable Energy
  • Finance & Justice
  • Initiatives
  • Sustainable Development Goals
  • Paris Agreement
  • Climate Ambition Summit 2023
  • Climate Conferences
  • Press Material
  • Communications Tips

an essay of global warming

Causes and Effects of Climate Change

Fossil fuels – coal, oil and gas – are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas emissions and nearly 90 per cent of all carbon dioxide emissions. As greenhouse gas emissions blanket the Earth, they trap the sun’s heat. This leads to global warming and climate change. The world is now warming faster than at any point in recorded history. Warmer temperatures over time are changing weather patterns and disrupting the usual balance of nature. This poses many risks to human beings and all other forms of life on Earth. 

Image of a lush winding wetlands

Empowering women and restoring wetlands go hand in hand

Environmentalist and Women Changemaker in the World of Wetlands Cécile Ndjebet says women are crucial for sustainable environmental conservation.

Three boys stand on roof watching the sunset

wikiHow teams up with Verified to empower people with climate information

A woman working in the field points at something out of frame

Sacred plant helps forge a climate-friendly future in Paraguay

Facts and figures.

  • What is climate change?
  • Causes and effects
  • Myth busters

Cutting emissions

  • Explaining net zero
  • High-level expert group on net zero
  • Checklists for credibility of net-zero pledges
  • Greenwashing
  • What you can do

Clean energy

  • Renewable energy – key to a safer future
  • What is renewable energy
  • Five ways to speed up the energy transition
  • Why invest in renewable energy
  • Clean energy stories
  • A just transition

Adapting to climate change

  • Climate adaptation
  • Early warnings for all
  • Youth voices

Financing climate action

  • Finance and justice
  • Loss and damage
  • $100 billion commitment
  • Why finance climate action
  • Biodiversity
  • Human Security

International cooperation

  • What are Nationally Determined Contributions
  • Acceleration Agenda
  • Climate Ambition Summit
  • Climate conferences (COPs)
  • Youth Advisory Group
  • Action initiatives
  • Secretary-General’s speeches
  • Press material
  • Fact sheets
  • Communications tips

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center

Global warming illustration

global warming summary

Learn about the causes and effects of global warming.

an essay of global warming

global warming , Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution . In 2007 the UN Intergovernmental Panel on Climate Change forecast that by 2100 global average surface temperatures would increase 3.2–7.2 °F (1.8–4.0 °C), depending on a range of scenarios for greenhouse gas emissions, and stated that it was now 90 percent certain that most of the warming observed over the previous half century could be attributed to greenhouse gas emissions produced by human activities (i.e., industrial processes and transportation). Many scientists predict that such an increase in temperature would cause polar ice caps and mountain glaciers to melt rapidly, significantly raising the levels of coastal waters, and would produce new patterns and extremes of drought and rainfall, seriously disrupting food production in certain regions. Other scientists maintain that such predictions are overstated. The 1992 Earth Summit and the 1997 Kyoto Protocol to the United Nations Framework Convention on Climate Change attempted to address the issue of global warming, but in both cases the efforts were hindered by conflicting national economic agendas and disputes between developed and developing nations over the cost and consequences of reducing emissions of greenhouse gases.

  • Biology Article
  • Essay on Global Warming

Essay On Global Warming

Essay on global warming is an important topic for students to understand. The essay brings to light the plight of the environment and the repercussion of anthropogenic activities. Continue reading to discover tips and tricks for writing an engaging and interesting essay on global warming.

Essay On Global Warming in 300 Words

Global warming is a phenomenon where the earth’s average temperature rises due to increased amounts of greenhouse gases. Greenhouse gases such as carbon dioxide, methane and ozone trap the incoming radiation from the sun. This effect creates a natural “blanket”, which prevents the heat from escaping back into the atmosphere. This effect is called the greenhouse effect.

Contrary to popular belief, greenhouse gases are not inherently bad. In fact, the greenhouse effect is quite important for life on earth. Without this effect, the sun’s radiation would be reflected back into the atmosphere, freezing the surface and making life impossible. However, when greenhouse gases in excess amounts get trapped, serious repercussions begin to appear. The polar ice caps begin to melt, leading to a rise in sea levels. Furthermore, the greenhouse effect is accelerated when polar ice caps and sea ice melts. This is due to the fact the ice reflects 50% to 70% of the sun’s rays back into space, but without ice, the solar radiation gets absorbed. Seawater reflects only 6% of the sun’s radiation back into space. What’s more frightening is the fact that the poles contain large amounts of carbon dioxide trapped within the ice. If this ice melts, it will significantly contribute to global warming. 

A related scenario when this phenomenon goes out of control is the runaway-greenhouse effect. This scenario is essentially similar to an apocalypse, but it is all too real. Though this has never happened in the earth’s entire history, it is speculated to have occurred on Venus. Millions of years ago, Venus was thought to have an atmosphere similar to that of the earth. But due to the runaway greenhouse effect, surface temperatures around the planet began rising. 

If this occurs on the earth, the runaway greenhouse effect will lead to many unpleasant scenarios – temperatures will rise hot enough for oceans to evaporate. Once the oceans evaporate, the rocks will start to sublimate under heat. In order to prevent such a scenario, proper measures have to be taken to stop climate change.

More to Read: Learn How Greenhouse Effect works

Tips To Writing the Perfect Essay

Consider adopting the following strategies when writing an essay. These are proven methods of securing more marks in an exam or assignment.

  • Begin the essay with an introductory paragraph detailing the history or origin of the given topic.
  • Try to reduce the use of jargons. Use sparingly if the topic requires it.
  • Ensure that the content is presented in bulleted points wherever appropriate.
  • Insert and highlight factual data, such as dates, names and places.
  • Remember to break up the content into smaller paragraphs. 100-120 words per paragraph should suffice.
  • Always conclude the essay with a closing paragraph.

Explore more essays on biology or other related fields at BYJU’S.

BIOLOGY Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

an essay of global warming

Very helpful Byju’s

this app is very useful

Sample essay on global warming

Very nice and helpful⭐️

Amazing essay

This essay is very helpful to every student Thank you Byjus! 😊😊😊

This one is so helpful and easy to understand. Thank you, Byju’s!

an essay of global warming

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

  • ENVIRONMENT

What is global warming, explained

The planet is heating up—and fast.

Glaciers are melting , sea levels are rising, cloud forests are dying , and wildlife is scrambling to keep pace. It has become clear that humans have caused most of the past century's warming by releasing heat-trapping gases as we power our modern lives. Called greenhouse gases, their levels are higher now than at any time in the last 800,000 years .

We often call the result global warming, but it is causing a set of changes to the Earth's climate, or long-term weather patterns, that varies from place to place. While many people think of global warming and climate change as synonyms , scientists use “climate change” when describing the complex shifts now affecting our planet’s weather and climate systems—in part because some areas actually get cooler in the short term.

Climate change encompasses not only rising average temperatures but also extreme weather events , shifting wildlife populations and habitats, rising seas , and a range of other impacts. All of those changes are emerging as humans continue to add heat-trapping greenhouse gases to the atmosphere, changing the rhythms of climate that all living things have come to rely on.

What will we do—what can we do—to slow this human-caused warming? How will we cope with the changes we've already set into motion? While we struggle to figure it all out, the fate of the Earth as we know it—coasts, forests, farms, and snow-capped mountains—hangs in the balance.

a melting iceberg

Understanding the greenhouse effect

The "greenhouse effect" is the warming that happens when certain gases in Earth's atmosphere trap heat . These gases let in light but keep heat from escaping, like the glass walls of a greenhouse, hence the name.

Sunlight shines onto the Earth's surface, where the energy is absorbed and then radiate back into the atmosphere as heat. In the atmosphere, greenhouse gas molecules trap some of the heat, and the rest escapes into space. The more greenhouse gases concentrate in the atmosphere, the more heat gets locked up in the molecules.

Scientists have known about the greenhouse effect since 1824, when Joseph Fourier calculated that the Earth would be much colder if it had no atmosphere. This natural greenhouse effect is what keeps the Earth's climate livable. Without it, the Earth's surface would be an average of about 60 degrees Fahrenheit (33 degrees Celsius) cooler.

a polar bear on ice

A polar bear stands sentinel on Rudolf Island in Russia’s Franz Josef Land archipelago, where the perennial ice is melting.

In 1895, the Swedish chemist Svante Arrhenius discovered that humans could enhance the greenhouse effect by making carbon dioxide , a greenhouse gas. He kicked off 100 years of climate research that has given us a sophisticated understanding of global warming.

Levels of greenhouse gases have gone up and down over the Earth's history, but they had been fairly constant for the past few thousand years. Global average temperatures had also stayed fairly constant over that time— until the past 150 years . Through the burning of fossil fuels and other activities that have emitted large amounts of greenhouse gases, particularly over the past few decades, humans are now enhancing the greenhouse effect and warming Earth significantly, and in ways that promise many effects , scientists warn.

Aren't temperature changes natural?

Human activity isn't the only factor that affects Earth's climate. Volcanic eruptions and variations in solar radiation from sunspots, solar wind, and the Earth's position relative to the sun also play a role. So do large-scale weather patterns such as El Niño .

You May Also Like

an essay of global warming

How global warming is disrupting life on Earth

an essay of global warming

These breathtaking natural wonders no longer exist

an essay of global warming

What if aliens exist—but they're just hiding from us? The Dark Forest theory, explained

But climate models that scientists use to monitor Earth’s temperatures take those factors into account. Changes in solar radiation levels as well as minute particles suspended in the atmosphere from volcanic eruptions , for example, have contributed only about two percent to the recent warming effect. The balance comes from greenhouse gases and other human-caused factors, such as land use change .

The short timescale of this recent warming is singular as well. Volcanic eruptions , for example, emit particles that temporarily cool the Earth's surface. But their effect lasts just a few years. Events like El Niño also work on fairly short and predictable cycles. On the other hand, the types of global temperature fluctuations that have contributed to ice ages occur on a cycle of hundreds of thousands of years.

For thousands of years now, emissions of greenhouse gases to the atmosphere have been balanced out by greenhouse gases that are naturally absorbed. As a result, greenhouse gas concentrations and temperatures have been fairly stable, which has allowed human civilization to flourish within a consistent climate.

the Greenland Ice Sheet

Greenland is covered with a vast amount of ice—but the ice is melting four times faster than thought, suggesting that Greenland may be approaching a dangerous tipping point, with implications for global sea-level rise.

Now, humans have increased the amount of carbon dioxide in the atmosphere by more than a third since the Industrial Revolution. Changes that have historically taken thousands of years are now happening over the course of decades .

Why does this matter?

The rapid rise in greenhouse gases is a problem because it’s changing the climate faster than some living things can adapt to. Also, a new and more unpredictable climate poses unique challenges to all life.

Historically, Earth's climate has regularly shifted between temperatures like those we see today and temperatures cold enough to cover much of North America and Europe with ice. The difference between average global temperatures today and during those ice ages is only about 9 degrees Fahrenheit (5 degrees Celsius), and the swings have tended to happen slowly, over hundreds of thousands of years.

But with concentrations of greenhouse gases rising, Earth's remaining ice sheets such as Greenland and Antarctica are starting to melt too . That extra water could raise sea levels significantly, and quickly. By 2050, sea levels are predicted to rise between one and 2.3 feet as glaciers melt.

As the mercury rises, the climate can change in unexpected ways. In addition to sea levels rising, weather can become more extreme . This means more intense major storms, more rain followed by longer and drier droughts—a challenge for growing crops—changes in the ranges in which plants and animals can live, and loss of water supplies that have historically come from glaciers.

Related Topics

  • ENVIRONMENT AND CONSERVATION
  • CLIMATE CHANGE

an essay of global warming

The Gulf of Maine is warming fast. What does that mean for lobsters—and everything else?

an essay of global warming

What is the ozone layer, and why does it matter?

an essay of global warming

Why deforestation matters—and what we can do to stop it

an essay of global warming

8 places to visit if you love ‘Star Wars’

an essay of global warming

There's a frozen labyrinth atop Mount Rainier. What secrets does it hold?

  • Best of the World
  • Interactive Graphic
  • Environment
  • Paid Content

History & Culture

  • History & Culture
  • Out of Eden Walk
  • Mind, Body, Wonder
  • Terms of Use
  • Privacy Policy
  • Your US State Privacy Rights
  • Children's Online Privacy Policy
  • Interest-Based Ads
  • About Nielsen Measurement
  • Do Not Sell or Share My Personal Information
  • Nat Geo Home
  • Attend a Live Event
  • Book a Trip
  • Inspire Your Kids
  • Shop Nat Geo
  • Visit the D.C. Museum
  • Learn About Our Impact
  • Support Our Mission
  • Advertise With Us
  • Customer Service
  • Renew Subscription
  • Manage Your Subscription
  • Work at Nat Geo
  • Sign Up for Our Newsletters
  • Contribute to Protect the Planet

Copyright © 1996-2015 National Geographic Society Copyright © 2015-2024 National Geographic Partners, LLC. All rights reserved

A cityscape view with reflections of people on windows and a dramatic cloudy sky in the background.

A problem built into our relationship with energy itself. Photo by Ferdinando Scianna/Magnum

Deep warming

Even if we ‘solve’ global warming, we face an older, slower problem. waste heat could radically alter earth’s future.

by Mark Buchanan   + BIO

The world will be transformed. By 2050, we will be driving electric cars and flying in aircraft running on synthetic fuels produced through solar and wind energy. New energy-efficient technologies, most likely harnessing artificial intelligence, will dominate nearly all human activities from farming to heavy industry. The fossil fuel industry will be in the final stages of a terminal decline. Nuclear fusion and other new energy sources may have become widespread. Perhaps our planet will even be orbited by massive solar arrays capturing cosmic energy from sunlight and generating seemingly endless energy for all our needs.

That is one possible future for humanity. It’s an optimistic view of how radical changes to energy production might help us slow or avoid the worst outcomes of global warming. In a report from 1965, scientists from the US government warned that our ongoing use of fossil fuels would cause global warming with potentially disastrous consequences for Earth’s climate. The report, one of the first government-produced documents to predict a major crisis caused by humanity’s large-scale activities, noted that the likely consequences would include higher global temperatures, the melting of the ice caps and rising sea levels. ‘Through his worldwide industrial civilisation,’ the report concluded, ‘Man is unwittingly conducting a vast geophysical experiment’ – an experiment with a highly uncertain outcome, but clear and important risks for life on Earth.

Since then, we’ve dithered and doubted and argued about what to do, but still have not managed to take serious action to reduce greenhouse gas emissions, which continue to rise. Governments around the planet have promised to phase out emissions in the coming decades and transition to ‘green energy’. But global temperatures may be rising faster than we expected: some climate scientists worry that rapid rises could create new problems and positive feedback loops that may accelerate climate destabilisation and make parts of the world uninhabitable long before a hoped-for transition is possible.

Despite this bleak vision of the future, there are reasons for optimists to hope due to progress on cleaner sources of renewable energy, especially solar power. Around 2010, solar energy generation accounted for less than 1 per cent of the electricity generated by humanity. But experts believe that, by 2027, due to falling costs, better technology and exponential growth in new installations, solar power will become the largest global energy source for producing electricity. If progress on renewables continues, we might find a way to resolve the warming problem linked to greenhouse gas emissions. By 2050, large-scale societal and ecological changes might have helped us avoid the worst consequences of our extensive use of fossil fuels.

It’s a momentous challenge. And it won’t be easy. But this story of transformation only hints at the true depth of the future problems humanity will confront in managing our energy use and its influence over our climate.

As scientists are gradually learning, even if we solve the immediate warming problem linked to the greenhouse effect, there’s another warming problem steadily growing beneath it. Let’s call it the ‘deep warming’ problem. This deeper problem also raises Earth’s surface temperature but, unlike global warming, it has nothing to do with greenhouse gases and our use of fossil fuels. It stems directly from our use of energy in all forms and our tendency to use more energy over time – a problem created by the inevitable waste heat that is generated whenever we use energy to do something. Yes, the world may well be transformed by 2050. Carbon dioxide levels may stabilise or fall thanks to advanced AI-assisted technologies that run on energy harvested from the sun and wind. And the fossil fuel industry may be taking its last breaths. But we will still face a deeper problem. That’s because ‘deep warming’ is not created by the release of greenhouse gases into the atmosphere. It’s a problem built into our relationship with energy itself.

F inding new ways to harness more energy has been a constant theme of human development. The evolution of humanity – from early modes of hunter-gathering to farming and industry – has involved large systematic increases in our per-capita energy use. The British historian and archaeologist Ian Morris estimates, in his book Foragers, Farmers, and Fossil Fuels: How Human Values Evolve (2015), that early human hunter-gatherers, living more than 10,000 years ago, ‘captured’ around 5,000 kcal per person per day by consuming food, burning fuel, making clothing, building shelter, or through other activities. Later, after we turned to farming and enlisted the energies of domesticated animals, we were able to harness as much as 30,000 kcal per day. In the late 17th century , the exploitation of coal and steam power marked another leap: by 1970, the use of fossil fuels allowed humans to consume some 230,000 kcal per person per day. (When we think about humanity writ large as ‘humans’, it’s important to acknowledge that the average person in the wealthiest nations consumes up to 100 times more energy than the average person in the poorest nations.) As the global population has risen and people have invented new energy-dependent technologies, our global energy use has continued to climb.

In many respects, this is great. We can now do more with less effort and achieve things that were unimaginable to the 17th-century inventors of steam engines, let alone to our hominin ancestors. We’ve made powerful mining machines, superfast trains, lasers for use in telecommunications and brain-imaging equipment. But these creations, while helping us, are also subtly heating the planet.

All the energy we humans use – to heat our homes, run our factories, propel our automobiles and aircraft, or to run our electronics – eventually ends up as heat in the environment. In the shorter term, most of the energy we use flows directly into the environment. It gets there through hot exhaust gases, friction between tires and roads, the noises generated by powerful engines, which spread out, dissipate, and eventually end up as heat. However, a small portion of the energy we use gets stored in physical changes, such as in new steel, plastic or concrete. It’s stored in our cities and technologies. In the longer term, as these materials break down, the energy stored inside also finds its way into the environment as heat. This is a direct consequence of the well-tested principles of thermodynamics.

Waste heat will pose a problem that is every bit as serious as global warming from greenhouse gases

In the early decades of the 21st century , this heat created by simply using energy, known as ‘waste heat’, is not so serious. It’s equivalent to roughly 2 per cent of the planetary heating imbalance caused by greenhouse gases – for now. But, with the passing of time, the problem is likely to get much more serious. That’s because humans have a historical tendency to consistently discover and produce things, creating entirely new technologies and industries in the process: domesticated animals for farming; railways and automobiles; global air travel and shipping; personal computers, the internet and mobile phones. The result of such activities is that we end up using more and more energy, despite improved energy efficiency in nearly every area of technology.

During the past two centuries at least (and likely for much longer), our yearly energy use has doubled roughly every 30 to 50 years . Our energy use seems to be growing exponentially, a trend that shows every sign of continuing. We keep finding new things to do and almost everything we invent requires more and more energy: consider the enormous energy demands of cryptocurrency mining or the accelerating energy requirements of AI.

If this historical trend continues, scientists estimate waste heat will pose a problem in roughly 150-200 years that is every bit as serious as the current problem of global warming from greenhouse gases. However, deep heating will be more pernicious as we won’t be able to avoid it by merely shifting from one kind energy to another. A profound problem will loom before us: can we set strict limits on all the energy we use? Can we reign in the seemingly inexorable expansion of our activities to avoid destroying our own environment?

Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the ‘waste heat’ problem around 15 years ago.

O ne of the first people to describe the problem is the Harvard astrophysicist Eric Chaisson, who discussed the issue of waste heat in a paper titled ‘Long-Term Global Heating from Energy Usage’ (2008). He concluded that our technological society may be facing a fundamental limit to growth due to ‘unavoidable global heating … dictated solely by the second law of thermodynamics, a biogeophysical effect often ignored when estimating future planetary warming scenarios’. When I emailed Chaisson to learn more, he told me the history of his thinking on the problem:

It was on a night flight, Paris-Boston [circa] 2006, after a UNESCO meeting on the environment when it dawned on me that the IPCC were overlooking something. While others on the plane slept, I crunched some numbers literally on the back of an envelope … and then hoped I was wrong, that is, hoped that I was incorrect in thinking that the very act of using energy heats the air, however slightly now.

The transformation of energy into heat is among the most ubiquitous processes of physics

Chaisson drafted the idea up as a paper and sent it to an academic journal. Two anonymous reviewers were eager for it to be published. ‘A third tried his damnedest to kill it,’ Chaisson said, the reviewer claiming the findings were ‘irrelevant and distracting’. After it was finally published, the paper got some traction when it was covered by a journalist and ran as a feature story on the front page of The Boston Globe . The numbers Chaisson crunched, predictions of our mounting waste heat, were even run on a supercomputer at the US National Center for Atmospheric Research, by Mark Flanner, a professor of earth system science. Flanner, Chaisson suspected at the time, was likely ‘out to prove it wrong’. But, ‘after his machine crunched for many hours’, he saw the same results that Chaisson had written on the back of an envelope that night in the plane.

Around the same time, also in 2008, two engineers, Nick Cowern and Chihak Ahn, wrote a research paper entirely independent of Chaisson’s work, but with similar conclusions. This was how I first came across the problem. Cowern and Ahn’s study estimated the total amount of waste heat we’re currently releasing to the environment, and found that it is, right now, quite small. But, like Chaisson, they acknowledged that the problem would eventually become serious unless steps were taken to avoid it.

That’s some of the early history of thinking in this area. But these two papers, and a few other analyses since, point to the same unsettling conclusion: what I am calling ‘deep warming’ will be a big problem for humanity at some point in the not-too-distant future. The precise date is far from certain. It might be 150 years , or 400, or 800, but it’s in the relatively near future, not the distant future of, say, thousands or millions of years. This is our future.

T he transformation of energy into heat is among the most ubiquitous processes of physics. As cars drive down roads, trains roar along railways, planes cross the skies and industrial plants turn raw materials into refined products, energy gets turned into heat, which is the scientific word for energy stored in the disorganised motions of molecules at the microscopic level. As a plane flies from Paris to Boston, it burns fuel and thrusts hot gases into the air, generates lots of sound and stirs up contrails. These swirls of air give rise to swirls on smaller scales which in turn make smaller ones until the energy ultimately ends up lost in heat – the air is a little warmer than before, the molecules making it up moving about a little more vigorously. A similar process takes place when energy is used by the tiny electrical currents inside the microchips of computers, silently carrying out computations. Energy used always ends up as heat. Decades ago, research by the IBM physicist Rolf Landauer showed that a computation involving even a single computing bit will release a certain minimum amount of heat to the environment.

How this happens is described by the laws of thermodynamics, which were described in the mid-19th century by scientists including Sadi Carnot in France and Rudolf Clausius in Germany. Two key ‘laws’ summarise its main principles.

The first law of thermodynamics simply states that the total quantity of energy never changes but is conserved. Energy, in other words, never disappears, but only changes form. The energy initially stored in an aircraft’s fuel, for example, can be changed into the energetic motion of the plane. Turn on an electric heater, and energy initially held in electric currents gets turned into heat, which spreads into the air, walls and fabric of your house. The total energy remains the same, but it markedly changes form.

We’re generating waste heat all the time with everything we do

The second law of thermodynamics, equally important, is more subtle and states that, in natural processes, the transformation of energy always moves from more organised and useful forms to less organised and less useful forms. For an aircraft, the energy initially concentrated in jet fuel ends up dissipated in stirred-up winds, sounds and heat spread over vast areas of the atmosphere in a largely invisible way. It’s the same with the electric heater: the organised useful energy in the electric currents gets dissipated and spread into the low-grade warmth of the walls, then leaks into the outside air. Although the amount of energy remains the same, it gradually turns into less organised, less usable forms. The end point of the energy process produces waste heat. And we’re generating it all the time with everything we do.

Data on world energy consumption shows that, collectively, all humans on Earth are currently using about 170,000 terawatt-hours (TWh), which is a lot of energy in absolute terms – a terawatt-hour is the total energy consumed in one hour by any process using energy at a rate of 1 trillion watts. This huge number isn’t surprising, as it represents all the energy being used every day by the billions of cars and homes around the world, as well as by industry, farming, construction, air traffic and so on. But, in the early 21st century , the warming from this energy is still much less than the planetary heating due to greenhouse gases.

Concentrations of greenhouse gases such as CO 2 and methane are quite small, and only make a fractional difference to how much of the Sun’s energy gets trapped in the atmosphere, rather than making it back out to space. Even so, this fractional difference has a huge effect because the stream of energy arriving from the Sun to Earth is so large. Current estimates of this greenhouse energy imbalance come to around 0.87 W per square meter, which translates into a total energy figure about 50 times larger than our waste heat. That’s reassuring. But as Cowern and Ahn wrote in their 2008 paper, things aren’t likely to stay this way over time because our energy usage keeps rising. Unless, that is, we can find some radical way to break the trend of using ever more energy.

O ne common objection to the idea of the deep warming is to claim that the problem won’t really arise. ‘Don’t worry,’ someone might say, ‘with efficient technology, we’re going to find ways to stop using more energy; though we’ll end up doing more things in the future, we’ll use less energy.’ This may sound plausible at first, because we are indeed getting more efficient at using energy in most areas of technology. Our cars, appliances and laptops are all doing more with less energy. If efficiency keeps improving, perhaps we can learn to run these things with almost no energy at all? Not likely, because there are limits to energy efficiency.

Over the past few decades, the efficiency of heating in homes – including oil and gas furnaces, and boilers used to heat water – has increased from less than 50 per cent to well above 90 per cent of what is theoretically possible. That’s good news, but there’s not much more efficiency to be realised in basic heating. The efficiency of lighting has also vastly improved, with modern LED lighting turning something like 70 per cent of the applied electrical energy into light. We will gain some efficiencies as older lighting gets completely replaced by LEDs, but there’s not a lot of room left for future efficiency improvements. Similar efficiency limits arise in the growing or cooking of food; in the manufacturing of cars, bikes and electronic devices; in transportation, as we’re taken from place to place; in the running of search engines, translation software, GPT-4 or other large-language models.

Even if we made significant improvements in the efficiencies of these technologies, we will only have bought a little time. These changes won’t delay by much the date when deep warming becomes a problem we must reckon with.

Optimising efficiencies is just a temporary reprieve, not a radical change in our human future

As a thought experiment, suppose we could immediately improve the energy efficiency of everything we do by a factor of 10 – a fantastically optimistic proposal. That is, imagine the energy output of humans on Earth has been reduced 10 times , from 170,000 TWh to 17,000 TWh . If our energy use keeps expanding, doubling every 30-50 years or so (as it has for centuries), then a 10-fold increase in waste heat will happen in just over three doubling times, which is about 130 years : 17,000 TWh doubles to 34,000 TWh , which doubles to 68,000 TWh , which doubles to 136,000 TWh , and so on. All those improvements in energy efficiency would quickly evaporate. The date when deep warming hits would recede by 130 years or so, but not much more. Optimising efficiencies is just a temporary reprieve, not a radical change in our human future.

Improvements in energy efficiency can also have an inverse effect on our overall energy use. It’s easy to think that if we make a technology more efficient, we’ll then use less energy through the technology. But economists are deeply aware of a paradoxical effect known as ‘rebound’, whereby improved energy efficiency, by making the use of a technology cheaper, actually leads to more widespread use of that technology – and more energy use too. The classic example, as noted by the British economist William Stanley Jevons in his book The Coal Question (1865), is the invention of the steam engine. This new technology could extract energy from burning coal more efficiently, but it also made possible so many new applications that the use of coal increased. A recent study by economists suggests that, across the economy, such rebound effects might easily swallow at least 50 per cent of any efficiency gains in energy use. Something similar has already happened with LED lights, for which people have found thousands of new uses.

If gains in efficiency won’t buy us lots of time, how about other factors, such as a reduction of the global population? Scientists generally believe that the current human population of more than 8 billion people is well beyond the limits of our finite planet, especially if a large fraction of this population aspires to the resource-intensive lifestyles of wealthy nations. Some estimates suggest that a more sustainable population might be more like 2 billion , which could reduce energy use significantly, potentially by a factor of three or four. However, this isn’t a real solution: again, as with the example of improved energy efficiency, a one-time reduction of our energy consumption by a factor of three will quickly be swallowed up by an inexorable rise in energy use. If Earth’s population were suddenly reduced to 2 billion – about a quarter of the current population – our energy gains would initially be enormous. But those gains would be erased in two doubling times, or roughly 60-100 years , as our energy demands would grow fourfold.

S o, why aren’t more people talking about this? The deep warming problem is starting to get more attention. It was recently mentioned on Twitter by the German climate scientist Stefan Rahmstorf, who cautioned that nuclear fusion, despite excitement over recent advances, won’t arrive in time to save us from our waste heat, and might make the problem worse. By providing another cheap source of energy, fusion energy could accelerate both the growth of our energy use and the reckoning of deep warming. A student of Rahmstorf’s, Peter Steiglechner, wrote his master’s thesis on the problem in 2018. Recognition of deep warming and its long-term implications for humanity is spreading. But what can we do about the problem?

Avoiding or delaying deep warming will involve slowing the rise of our waste heat, which means restricting the amount of energy we use and also choosing energy sources that exacerbate the problem as little as possible. Unlike the energy from fossil fuels or nuclear power, which add to our waste energy burden, renewable energy sources intercept energy that is already on its way to Earth, rather than producing additional waste heat. In this sense, the deep warming problem is another reason to pursue renewable energy sources such as solar or wind rather than alternatives such as nuclear fusion, fission or even geothermal power. If we derive energy from any of these sources, we’re unleashing new flows of energy into the Earth system without making a compensating reduction. As a result, all such sources will add to the waste heat problem. However, if renewable sources of energy are deployed correctly, they need not add to our deposition of waste heat in the environment. By using this energy, we produce no more waste heat than would have been created by sunlight in the first place.

Take the example of wind energy. Sunlight first stirs winds into motion by heating parts of the planet unequally, causing vast cells of convection. As wind churns through the atmosphere, blows through trees and over mountains and waves, most of its energy gets turned into heat, ending up in the microscopic motions of molecules. If we harvest some of this wind energy through turbines, it will also be turned into heat in the form of stored energy. But, crucially, no more heat is generated than if there had been no turbines to capture the wind.

The same can hold true for solar energy. In an array of solar cells, if each cell only collects the sunlight falling on it – which would ordinarily have been absorbed by Earth’s surface – then the cells don’t alter how much waste heat gets produced as they generate energy. The light that would have warmed Earth’s surface instead goes into the solar cells, gets used by people for some purpose, and then later ends up as heat. In this way we reduce the amount of heat being absorbed by Earth by precisely the same amount as the energy we are extracting for human use. We are not adding to overall planetary heating. This keeps the waste energy burden unchanged, at least in the relatively near future, even if we go on extracting and using ever larger amounts of energy.

Covering deserts in dark panels would absorb a lot more energy than the desert floor

Chaisson summarised the problem quite clearly in 2008:

I’m now of the opinion … that any energy that’s dug up on Earth – including all fossil fuels of course, but also nuclear and ground-sourced geothermal – will inevitably produce waste heat as a byproduct of humankind’s use of energy. The only exception to that is energy arriving from beyond Earth, this is energy here and now and not dug up, namely the many solar energies (plural) caused by the Sun’s rays landing here daily … The need to avoid waste heat is indeed the single, strongest, scientific argument to embrace solar energies of all types.

But not just any method of gathering solar energy will avoid the deep warming problem. Doing so requires careful engineering. For example, covering deserts with solar panels would add to planetary heating because deserts reflect a lot of incident light back out to space, so it is never absorbed by Earth (and therefore doesn’t produce waste heat). Covering deserts in dark panels would absorb a lot more energy than the desert floor and would heat the planet further.

We’ll also face serious problems in the long run if our energy appetite keeps increasing. Futurists dream of technologies deployed in space where huge panels would absorb sunlight that would otherwise have passed by Earth and never entered our atmosphere. Ultimately, they believe, this energy could be beamed down to Earth. Like nuclear energy, such technologies would add an additional energy source to the planet without any compensating removal of heating from the sunlight currently striking our planet’s surface. Any effort to produce more energy than is normally available from sunlight at Earth’s surface will only make our heating problems worse.

D eep warming is simply a consequence of the laws of physics and our inquisitive nature. It seems to be in our nature to constantly learn and develop new things, changing our environment in the process. For thousands of years, we have harvested and exploited ever greater quantities of energy in this pursuit, and we appear poised to continue along this path with the rapidly expanding use of renewable energy sources – and perhaps even more novel sources such as nuclear fusion. But this path cannot proceed indefinitely without consequences.

The logic that more energy equals more warming sets up a profound dilemma for our future. The laws of physics and the habits ingrained in us from our long evolutionary history are steering us toward trouble. We may have a technological fix for greenhouse gas warming – just shift from fossil fuels to cleaner energy sources – but there is no technical trick to get us out of the deep warming problem. That won’t stop some scientists from trying.

Perhaps, believing that humanity is incapable of reducing its energy usage, we’ll adopt a fantastic scheme to cool the planet, such as planetary-scale refrigeration or using artificially engineered tornadoes to transport heat from Earth’s surface to the upper atmosphere where it can be radiated away to space. As far-fetched as such approaches sound, scientists have given some serious thought to these and other equally bizarre ideas, which seem wholly in the realm of science fiction. They’re schemes that will likely make the problem worse not better.

We will need to transform the human story. It must become a story of doing less, not more

I see several possibilities for how we might ultimately respond. As with greenhouse gas warming, there will probably be an initial period of disbelief, denial and inaction, as we continue with unconstrained technological advance and growing energy use. Our planet will continue warming. Sooner or later, however, such warming will lead to serious disruptions of the Earth environment and its ecosystems. We won’t be able to ignore this for long, and it may provide a natural counterbalance to our energy use, as our technical and social capacity to generate and use ever more energy will be eroded. We may eventually come to some uncomfortable balance in which we just scrabble out a life on a hot, compromised planet because we lack the moral and organisational ability to restrict our energy use enough to maintain a sound environment.

An alternative would require a radical break with our past: using less energy. Finding a way to use less energy would represent a truly fundamental rupture with all of human history, something entirely novel. A rupture of this magnitude won’t come easily. However, if we could learn to view restrictions on our energy use as a non-negotiable element of life on Earth, we may still be able to do many of the things that make us essentially human: learning, discovering, inventing, creating. In this scenario, any helpful new technology that comes into use and begins using lots of energy would require a balancing reduction in energy use elsewhere. In such a way, we might go on with the future being perpetually new, and possibly better.

None of this is easily achieved and will likely mirror our current struggles to come to agreements on greenhouse gas heating. There will be vicious squabbles, arguments and profound polarisation, quite possibly major wars. Humanity will never have faced a challenge of this magnitude, and we won’t face up to it quickly or easily, I expect. But we must. Planetary heating is in our future – the very near future and further out as well. Many people will find this conclusion surprisingly hard to swallow, perhaps because it implies fundamental restrictions on our future here on Earth: we can’t go on forever using more and more energy, and, at the same time, expecting the planet’s climate to remain stable.

The world will likely be transformed by 2050. And, sometime after that, we will need to transform the human story. The narrative arc of humanity must become a tale of continuing innovation and learning, but also one of careful management. It must become a story, in energy terms, of doing less, not more. There’s no technology for entirely escaping waste heat, only techniques.

This is important to remember as we face up to the extremely urgent challenge of heating linked to fossil-fuel use and greenhouse gases. Global warming is just the beginning of our problems. It’s a testing ground to see if we can manage an intelligent and coordinated response. If we can handle this challenge, we might be better prepared, more capable and resilient as a species to tackle an even harder one.

Black-and-white photo of a man in a suit and hat grabbing another man by his collar in front of a bar with bottles.

Political philosophy

C L R James and America

The brilliant Trinidadian thinker is remembered as an admirer of the US but he also warned of its dark political future

Harvey Neptune

A suburban street with mountains in the background, featuring a girl on a bike, parked cars, and old furniture on the sidewalk in front of a house.

Progress and modernity

The great wealth wave

The tide has turned – evidence shows ordinary citizens in the Western world are now richer and more equal than ever before

Daniel Waldenström

Silhouette of a person walking through a spray of water at sunset with cars and buildings in the background.

Neuroscience

The melting brain

It’s not just the planet and not just our health – the impact of a warming climate extends deep into our cortical fissures

Clayton Page Aldern

A brick house with a tiled roof, surrounded by a well-maintained garden with bushes and colourful flowers.

Falling for suburbia

Modernists and historians alike loathed the millions of new houses built in interwar Britain. But their owners loved them

Michael Gilson

Close-up of a person’s hand using a smartphone in a dimly lit room with blurred lights in the background. The phone screen shows the text ‘How can I help you today?’ and a text input field.

Computing and artificial intelligence

Mere imitation

Generative AI has lately set off public euphoria: the machines have learned to think! But just how intelligent is AI?

A black-and-white photo of a person riding a horse in, with a close-up of another horse in the foreground under bright sunlight.

Anthropology

Your body is an archive

If human knowledge can disappear so easily, why have so many cultural practices survived without written records?

Helena Miton

  • Student Opportunities

About Hoover

Located on the campus of Stanford University and in Washington, DC, the Hoover Institution is the nation’s preeminent research center dedicated to generating policy ideas that promote economic prosperity, national security, and democratic governance. 

  • The Hoover Story
  • Hoover Timeline & History
  • Mission Statement
  • Vision of the Institution Today
  • Key Focus Areas
  • About our Fellows
  • Research Programs
  • Annual Reports
  • Hoover in DC
  • Fellowship Opportunities
  • Visit Hoover
  • David and Joan Traitel Building & Rental Information
  • Newsletter Subscriptions
  • Connect With Us

Hoover scholars form the Institution’s core and create breakthrough ideas aligned with our mission and ideals. What sets Hoover apart from all other policy organizations is its status as a center of scholarly excellence, its locus as a forum of scholarly discussion of public policy, and its ability to bring the conclusions of this scholarship to a public audience.

  • Peter Berkowitz
  • Ross Levine
  • Michael McFaul
  • Timothy Garton Ash
  • China's Global Sharp Power Project
  • Economic Policy Group
  • History Working Group
  • Hoover Education Success Initiative
  • National Security Task Force
  • National Security, Technology & Law Working Group
  • Middle East and the Islamic World Working Group
  • Military History/Contemporary Conflict Working Group
  • Renewing Indigenous Economies Project
  • State & Local Governance
  • Strengthening US-India Relations
  • Technology, Economics, and Governance Working Group
  • Taiwan in the Indo-Pacific Region

Books by Hoover Fellows

Books by Hoover Fellows

Economics Working Papers

Economics Working Papers

Hoover Education Success Initiative | The Papers

Hoover Education Success Initiative

  • Hoover Fellows Program
  • National Fellows Program
  • Student Fellowship Program
  • Veteran Fellowship Program
  • Congressional Fellowship Program
  • Media Fellowship Program
  • Silas Palmer Fellowship
  • Economic Fellowship Program

Throughout our over one-hundred-year history, our work has directly led to policies that have produced greater freedom, democracy, and opportunity in the United States and the world.

  • Determining America’s Role in the World
  • Answering Challenges to Advanced Economies
  • Empowering State and Local Governance
  • Revitalizing History
  • Confronting and Competing with China
  • Revitalizing American Institutions
  • Reforming K-12 Education
  • Understanding Public Opinion
  • Understanding the Effects of Technology on Economics and Governance
  • Energy & Environment
  • Health Care
  • Immigration
  • International Affairs
  • Key Countries / Regions
  • Law & Policy
  • Politics & Public Opinion
  • Science & Technology
  • Security & Defense
  • State & Local
  • Books by Fellows
  • Published Works by Fellows
  • Working Papers
  • Congressional Testimony
  • Hoover Press
  • PERIODICALS
  • The Caravan
  • China's Global Sharp Power
  • Economic Policy
  • History Lab
  • Hoover Education
  • Global Policy & Strategy
  • Middle East and the Islamic World
  • Military History & Contemporary Conflict
  • Renewing Indigenous Economies
  • State and Local Governance
  • Technology, Economics, and Governance

Hoover scholars offer analysis of current policy challenges and provide solutions on how America can advance freedom, peace, and prosperity.

  • China Global Sharp Power Weekly Alert
  • Email newsletters
  • Hoover Daily Report
  • Subscription to Email Alerts
  • Periodicals
  • California on Your Mind
  • Defining Ideas
  • Hoover Digest
  • Video Series
  • Uncommon Knowledge
  • Battlegrounds
  • GoodFellows
  • Hoover Events
  • Capital Conversations
  • Hoover Book Club
  • AUDIO PODCASTS
  • Matters of Policy & Politics
  • Economics, Applied
  • Free Speech Unmuted
  • Secrets of Statecraft
  • Capitalism and Freedom in the 21st Century
  • Libertarian
  • Library & Archives

Support Hoover

Learn more about joining the community of supporters and scholars working together to advance Hoover’s mission and values.

pic

What is MyHoover?

MyHoover delivers a personalized experience at  Hoover.org . In a few easy steps, create an account and receive the most recent analysis from Hoover fellows tailored to your specific policy interests.

Watch this video for an overview of MyHoover.

Log In to MyHoover

google_icon

Forgot Password

Don't have an account? Sign up

Have questions? Contact us

  • Support the Mission of the Hoover Institution
  • Subscribe to the Hoover Daily Report
  • Follow Hoover on Social Media

Make a Gift

Your gift helps advance ideas that promote a free society.

  • About Hoover Institution
  • Meet Our Fellows
  • Focus Areas
  • Research Teams
  • Library & Archives

Library & archives

Events, news & press.

governance

Global Warming: Causes And Consequences

The familiar photo of the Earth spinning in the blackness of space that was taken 50 years ago by William Anders, an astronaut on the Apollo 8 lunar mission, starkly illustrated our isolation on this planet. Now we face a crisis as the climate and environmental conditions that support life as we know it become ever more fragile owing to CO 2 -induced global warming. The evidence suggests there is significant risk that areas of the Earth in tropical zones may become uninhabitable and that significant food chains will collapse in this century. 

Image

Spaceship Earth

The familiar photo of the Earth spinning in the blackness of space that was taken 50 years ago by William Anders, an astronaut on the Apollo 8 lunar mission, starkly illustrated our isolation on this planet. Now we face a crisis as the climate and environmental conditions that support life as we know it become ever more fragile owing to CO 2 -induced global warming. The evidence suggests there is significant risk that areas of the Earth in tropical zones may become uninhabitable and that significant food chains will collapse in this century. We agree with those who say that the highest human priority now is to greatly reduce human societies’ reliance on CO 2 -producing oil and coal. However, even the most optimistic projections of reduced CO 2 production and resulting reductions in climatic warming suggest that future generations will face daunting problems. Fortunately, this growing disruption is occurring at a time of unprecedented breakthroughs in science and technology. Although there are many things that can be done to ameliorate individual events, the worldwide effort is uncoordinated and there is widespread resistance from vested economic and political interest groups. Here, we first survey the consequences of the rapid rise in CO 2 emissions and then consider the possibility that new genetic technologies can help mitigate some of the biological consequences of global changes in climate patterns.

Life on Earth has evolved in an interconnected ecology determined by weather patterns, movements of global tectonic plates, and the dynamic surface chemistry of oceans and land. The creatures on Earth—all the humans, animals, plants, bacteria, fungi, and viruses—are dependent on each another as well as on this enveloping ecosystem. Since the Earth is an integrated system, significant changes in any internal component or in external influences induce movement toward a new equilibrium. Throughout the history of the Earth there have been long periods of cooling leading to growth of massive continental ice sheets, interspersed with warm intervals. While the causes of these ice ages are not fully understood, the principal contributing factors have been identified. The composition of the atmosphere, particularly the concentration of carbon dioxide and methane, is important. Also changes in the Earth’s orbit around the sun, changes in the tilt in the Earth’s axis, impacts of large meteorites, and eruptions of super volcanoes. The latter two phenomena can both put massive amounts of particulate matter and carbon dioxide into the atmosphere.

In two instances, biological phenomena have disrupted the composition of the atmosphere with global consequences. One was the Great Oxidation Event or the Oxidation Catastrophe, around 2.45 billion years ago. This occurred after a bacterial species, an ancestor of contemporary cyanobacteria, evolved the ability to produce oxygen as a byproduct of photosynthesis. This event had extraordinary consequences for ocean chemistry and eventually for the slow accumulation of atmospheric oxygen to contemporary levels over an interval of several million years. The newly oxygenated atmosphere was toxic to virtually all the anaerobic organisms that then populated the earth. These organisms died and were replaced by creatures that could thrive in the new oxygenated atmosphere. 1 Now, the current human-induced increase in atmospheric CO 2 is the second biological disruption of atmospheric composition that is producing global warming with credible predictions of ever more dire consequences in coming decades. Consequences we are already seeing include:

Accelerating rise in global sea level owing to irreversible melting of glacial ice in the European Alps, melting of arctic ice, and of greatest concern, melting of the land ice sheets in Greenland and Antarctica.

Large changes in climate patterns that have led to cataclysmic wild fires encouraged by the hottest summers on record and extreme floods stemming from new and disruptive storm patterns.

Acidification and warming of the oceans leading to decimation of coral reefs and other changes that are disrupting the marine food chain.

The global redistribution of bacterial, fungal, and viral pathogens and their vectors out of the tropics and into temperate zones and the emergence of previously unknown pathogens.

As the Earth’s climate continues to warm owing to increasing levels of atmospheric CO 2 the mean sea level will rise. 2 The mean sea level has risen about 8 inches since the late 1800s, and projections suggest an accelerating rise of between 2 and 6 feet by 2100. 3 The predominant contributor to the future sea level increase will be melting of the enormous land-based ice sheets and glaciers on Antarctica and Greenland. The amount of the rise will be strongly dependent on mankind’s success in limiting future CO 2 emissions. However, even the lowest estimates portend devastating consequences: 4 loss of arable land owing to flooding and salt water intrusion (e.g., Vietnam, Bangladesh, California’s Salinas valley 5 ); major population displacements (100 million people will be displaced by a three-foot rise); many coastal areas may have to be abandoned (e.g., South Florida and Miami 6 ).

We are already experiencing changes in global weather patterns. Regions accustomed to temperate temperatures and predictable periods of rainfall are seeing prolonged drought and periods of extreme high temperature, while other regions are experiencing excess rain and snowfall along with lower ambient temperatures. In parts of Australia, drought and peak summer temperatures nearing 116 o F are causing vast wildfires. Simultaneously, U.S. states around the Great Lakes have experienced winter temperatures of -34 o C (-29.2 o F) that are significantly colder than temperatures in the Arctic. This skewing of ambient temperatures in North America is due to changes in the jet stream that have allowed polar air from the Arctic to flow into zones normally buffered against temperature extremes. Global warming contributes to these unusual weather patterns through its influence on the polar vortex, a wide expanse of swirling cold air near the pole. 7 Over a surprisingly short time, the average temperature rise at the north polar region has been higher than in some more southerly areas. While average temperatures across the globe have now increased to 1.2 o C above preindustrial revolution levels, the poles have seen an average increase of 3 o C. During March 2018, temperatures in Siberia were 15 o C (59 o F) above historical averages, and Greenland experienced a period of 61 hours above freezing (three times longer than any previous year), while temperatures were unusually low in Europe. These disruptions in global weather patterns have caused long-term drought conditions in some regions and unprecedented floods in others, leading to loss of arable land and precipitous reductions in agricultural production. Those who deny climate change often point to periods of extreme cold in unexpected regions as evidence supporting their views, without understanding that the large-scale changes in weather patterns are a central consequence of global warming. When the oceans warm, global weather patterns are disrupted in many areas in unexpected ways.

It is important to recognize that these global events are interconnected. For example, consider the consequences of sustained rainfall on degraded farmland: Increased rainfall leads to soil erosion, that in turn results in the release of phosphorous from fertilized soil into rivers and the oceans. That release, in turn can stimulate algal blooms and red tides, further reducing the ocean oxygen levels that are already lowered by warming waters. These phenomena add to the impacts of warming and acidification on food chains in the ocean.

What will be the impact of global warming on our land-based food supply and our ability to maintain the animals and plants we depend on? Warming is already slowing yield gains in most wheat-growing locations, and global wheat production is expected to fall by 6% for each 1°C of further temperature increase while becoming more variable. 8 Global production of corn is similarly at risk. 9 Global warming will alter world food production patterns, with crop productivity reduced in low latitudes and tropical regions but increased somewhat in high latitude regions. This will lead to trade changes with expanded sales of food products from the mid-to-high latitudes to lower latitude regions. 10

Extinction of species owing to expanding human activities around the globe has been accelerating over the last two centuries. Now the onset of changes in the climate is accelerating the rate of extinctions. Disruptions of habitats, loss of food sources, and the spread of infectious diseases are happening at a rate that cannot be accommodated by evolutionary adaptation. The number of species that have gone extinct in the last century alone would have taken between 800 and 1000 years to disappear in previous mass extinctions. 11 During one of these extinctions, the Permian-Triassic extinction 250 million years ago, 12,13 the earth lost 96% of all marine species, 100% of the coral reefs, and 70% of terrestrial vertebrates. In that event, the accumulation of carbon dioxide in the atmosphere led to ocean warming and to ocean acidification that together played a key role in the global loss of life. Recovery from that extinction event took more than 10 million years.

Currently, we are experiencing a 6 th mass extinction, 11 and we are approaching up to 100x higher rates of extinction than the background rate. There are two critical differences now. First, the current rate of change to the earth’s ecosystem is occurring in a few decades rather than over thousands of years as in the previous five extinction periods. Second, the events underlying the current cataclysm are man-made. Metaphorically, we are riding a runaway climate train with no one at the controls.

Effects on the Oceans

In the past there have been few established populations of invasive species identified in the high northern latitudes, that is, the northern coasts of Canada or Russia. With the continuing loss of Arctic sea ice, this situation will change. There has been rapid growth of shipping traffic along the northern coast of Russia in recent years, a large cruise ship went through the Northwest Passage in 2016, and now multiple arctic cruises are advertised each year. We can expect continuing expansion in arctic shipping activities, mineral/energy exploration, fishing, and tourism in future years. These new northern transport routes offer shorter and less expensive connections between northern hemisphere ports, so the shipping traffic will inevitably grow as more ice melts and warmer weather seasons get longer. Introduction of invasive species into these Arctic regions will follow rapidly. This will bring new challenges to the native inhabitants—humans, wildlife, and plants—of these northern ocean and terrestrial habitats. There will be greater competition for food sources and introduction of new infectious diseases. This sequence of events has occurred innumerable times before when alien populations expanded into new regions. 14

Currently, the oceans absorb 93% of the heat trapped by greenhouse gases in the atmosphere, thus slowing warming of land masses. But the resulting rapid warming of the oceans directly impacts marine life and related food chains. Consider, for example, the coral reefs along over 93,000 miles of coastline rimming the oceans—one of the largest ecosystems on the planet.

A thriving coral reef is comprised of groups of millions of identical tiny polyps a few millimeters wide and a few centimeters long, each with a calcite skeleton. Millions of these tiny stony skeletons accumulate over generations to form the large hard coral reefs found along tropical shorelines. Many of the coral species obtain most of their nutrients from photosynthetic algae plants called zooxanthellae . When the sea around them warms excessively, the polyps expel the zooxanthellae and the coral becomes completely white—a condition called coral bleaching. Corals can survive bleaching events and restore the zooxanthellae , if conditions normalize quickly enough. But the bleaching events are highly stressful, and the corals will die if occurrence of bleaching events persists. When this happens, only the dead coral skeletons—which can be immense—are left.

The Great Barrier Reef, 500 feet thick at some points, extends discontinuously for over 1500 miles off the coast of eastern Australia. By 2018, half of the Great Barrier Reef had died from heat stress. Similar damage is occurring in the Caribbean and the rest of the world’s tropical shorelines. 15,16

Loss of the ocean reef ecosystems could substantially compromise the Earths ability to sustain the health and well-being of its inhabitants. Fish populations in the coral reefs are the source of food for hundreds of millions of people. Loss of the reefs disrupts the marine food chain which causes loss of local food supplies, stressed populations, and conflicts over fishing rights.

There is now a global sense of urgency to develop methods to restore and maintain the health of the reefs considering their increasing destruction. Corals can evolve to survive in changed conditions—warmer, more acidic, etc. However, the rate of natural adaptation is too slow relative to the current rate of changes in their ocean environment, so there is widespread devastation of established reefs. This has led to efforts to accelerate the rate of adaptation. In some stressed reefs, small coral colonies are found that have successfully adapted to the local changes in temperature and increased acidity. Reef preservationists have shown that corals harvested from these colonies can be nurtured in coral “farms” and then used to seed new growth in damaged areas. Scientists are also experimenting with selective breeding to develop coral strains better adapted to changed conditions. 17–19

In Indonesia another attempt at coral reef remediation involves attaching optimized coral polyps to metal rods planted within the compromised reefs. The application of a mild electric shock causes minerals in the water to precipitate and adhere to the metal structures, thus stimulating calcification with the goal of creating the more native ‘cement’ of a reef’s exoskeleton, referred to as ‘Biorock.’ 20 The resulting limestone surface increases the growth of the corals under conditions that would normally lead to their death. All these schemes are highly promising, but there are daunting cost and logistical barriers to scaling restoration efforts to address the vast areas of lost reefs.

Global Warming Is Changing the Distribution of Animal and Plant Pathogens

The last century has seen radical changes in the pattern, volume, and speed of transport of people and cargo between widely separated regions on the planet. One consequence has been the increase in direct long-distance human transport of dangerous infectious diseases by person to person transmission. Surveillance of travelers at entry points, coupled with identification, treatment, and when necessary, quarantine of the infected persons and their contacts, has been the response strategy. But diseases that are carried by intermediate vectors, for example, mosquitoes or ticks, present a different and more complex challenge. Any such vector is adapted to thrive in some environmental niche—characterized by a temperature and rainfall range, urban or rural, indoor or outdoor, etc. When a region’s climate warms, it may become hospitable to new vectors, which will then inevitably arrive either by expansion from adjacent territories or as accidental hitchhikers in freight shipments or transport vehicles.

For example, in a remarkably short time, human viruses like Zika, Dengue, Chikungunya, Yellow Fever, and West Nile have spread into regions of the Caribbean, Latin America, and the United States that until recently had ambient temperatures below that required to support their transmission. In addition, fungal infections of food plants, like the blights infecting Cavendish bananas and cocoa trees, have become a global problem. The rapid spread of global disease caused by changes in atmospheric temperature, ocean temperature, erratic and drenching rains, and floods in one geographic location accompanied by droughts in another location is being facilitated by migration of the vectors, such as mosquitoes, ticks, bats, and rats, that carry the pathogens. Insect vectors are exquisitely sensitive to changes in temperature, and warmer temperatures increase their breeding season and life span. Zika, Dengue, Chikungunya, and Yellow Fever viruses soon follow arrival of the common Aedes aegypti mosquito and are then transmitted among humans by the female mosquito. Other mosquito species transmit West Nile virus, the malaria parasite, and the parasitic nematode worm that causes the human disfiguring disease lymphatic filariasis (elephantiasis).

Ticks are another rapidly spreading vector. Although most tick species do not harbor pathogens harmful to humans, Lyme disease is caused by a tick-borne bacterial pathogen, Borrelia burgdorferi . Until recently, ticks were inhibited over much of North America by cold winters, but with increasing average temperatures and milder winters they are becoming established further north. Lyme disease is now endemic in Canada, so the government has recently established tick surveillance networks.

The vector-borne bacterial pathogen Candidatus Liberibacter that causes citrus greening disease is a serious agricultural threat. Liberibacter are transferred to citrus trees by an insect vector, the Asian citrus psyllid or jumping plant lice. The disease causes the decline and death of citrus trees by blocking the flow of nutrients and sugars from the leaves to the roots. Once infected, the tree is doomed. Liberibacter have recently migrated along with the citrus psyllid vector to warming temperate climate zones worldwide, including ten U.S. states. 21 The resulting Citrus Greening infections have devastated the Florida citrus industry and destroyed citrus groves in Asia, Brazil, and the Dominican Republic. In the United States, the damage has been less in states further north than Florida, probably because of their cooler temperatures, but as the climate warms, the citrus greening infections will likely continue moving northward.

Owing to the huge financial impact of citrus greening, there are multiple biology-based efforts underway to disrupt the infection pathway either by eliminating the psyllid vector, by killing the bacterial Liberibacter pathogen, or by developing an infection resistant citrus tree variety. 22 Insect warfare has also been tried by introduction of a wasp that preys specifically on the Asian citrus psyllid. This strategy works, but it only reduces, rather than eliminating, the citrus psyllid population. 23

Each biological approach tried so far has its pros and cons. Insecticides can kill the citrus psyllid, but they may also threaten beneficial insects. Antibiotics may kill the Liberibacter, but their use can also increase bacterial antibiotic resistance and thus loss of antibiotic effectiveness for treating human diseases. This story of the challenges of containing the spread of the citrus greening disease is representative of similar challenges encountered in trying to deal with a myriad of newly encroaching diseases, some carried by other insect vectors. Are there better solutions on the horizon? It may be that recent advances in genetic technology will lead to more effective approaches.

Can New Genetic Technologies Reduce Global Warming Consequences?

Along with the increasing threat of climate change to human health and agriculture, we are experiencing a revolution in genetic engineering technology. Perhaps this will lead to new methods for effective surveillance and for mitigation of the redistribution of vectors that transmit disease.

The new CRISPR Cas9 technology lets us change specific genes in an insect or animal vector, thus making it either unable to serve as a reservoir for a given pathogen (known as a population modification drive) or eliminating the ability of the vector to propagate (known as a suppression drive). A suppression drive targets the reproductive capacity of the insect vector and can lead to a population crash, potentially wiping out a species. A population modification drive does not affect the reproduction capability of the insect, but it prevents the vector from harboring the pathogen or it prevents transmitting the pathogen to the human host. With these technologies, the genetic makeup of a few individuals in a targeted vector species is changed in such a manner that once these individuals are released into the wild, the change spreads rapidly throughout the entire vector population. Gene drives only affect sexually reproducing species, and thus they cannot be used directly on bacterial and viral pathogens.

Malaria transmission has been used as a test case to explore use of a vector gene drive to contain the spread of a disease. The results have been encouraging. In 2015, 200 million people worldwide were infected with malaria and between 500,000 and 700,000 died from the disease. Seventy-two percent of these were children under 5 years of age. In 2016, the number of cases worldwide increased to 216 million. Of 3,500 mosquito species, only those that belong to a subset called Anopheles can transmit the malaria parasite, Plasmodium falciparum , to a human by means of a bite from a female. The Anopheles stephensi mosquito, endemic to India and South Asia, carries the malaria parasite in that region. These mosquitoes were experimentally gene edited so that they could no longer carry the malaria parasite, establishing a population modification gene drive. A key trick in a gene drive is to engineer both copies of the chromosome so that all the offspring of a mating between a normal mosquito and a genetically altered one carry the genetic profile of the desired alteration, rather than just half the offspring, which is normally the case. Under laboratory conditions, it was demonstrated that this population modification drive leads to rapid spread of the desired genetically-altered mosquito and disappearance of the normal mosquitoes. The genetically altered mosquitoes cannot harbor the malaria parasite. This suggests that release of this genetically altered mosquito into the wild would halt the spread of malaria and thus save millions of lives. Eventually the malaria parasite could naturally mutate to overcome the genetic change in its mosquito host allowing it to once again infect humans, but this might not occur for a long time.

Another example is the Anopheles gambiae mosquito, which transmits malaria in sub-Saharan Africa. In another series of gene drive experiments, gene editing was used to change genes that the female mosquito needs for egg production, thereby creating female sterility (a suppression gene drive). In this case, the goal was just to reduce the number of mosquitoes transmitting malaria, but the technique could potentially wipe out the entire population of Anopheles gambiae . The combined challenge of climate change, which is altering the geographic distribution of the vector mosquitoes, and growing resistance to drugs routinely used to treat malaria-infected patients is making gene editing of the insect vectors an increasingly attractive potential solution. However, the notion of eliminating an entire insect species troubles many people.

In another test case, gene drives are being explored as a way of controlling transmission of Lyme disease by ticks on the U.S. island of Nantucket. Owing to recent increases in the population of island ticks, over 40% of the 10,000 inhabitants of Nantucket have, or have had, Lyme disease. Both deer and the white foot mouse can transmit the Lyme disease pathogen, Borrelia burgdorferi bacteria, to ticks, and the pathogen can then be transmitted to humans by the ticks. Ticks feed on the deer or white foot mice carrying Borrelia and the infected ticks bite humans, passing on Lyme disease. A plan was proposed by Kevin Esvelt (MIT) and Sam Telford (Tufts U., Cummings School of Veterinary Medicine) to use a gene drive to reduce the population of white footed mice that are infected with Borrelia . To do this, the mice would be genetically engineered so that they are immune to infection by the Lyme disease bacterial pathogen and thus could not accumulate infectious Borrelia . In this case, there would still be the same number of mice and the same number of ticks, but the number of ticks able to transmit Borrelia would be significantly reduced. Thousands of altered mice would be released on the island. The gene drive would ensure that the genetic alteration would pass down through all following generations of mice on the island, disrupting the cycle of transmission. The plan is to first test the genetically modified mice on an uninhabited island and then, with the concurrence of the inhabitants of both Nantucket Island and Martha’s Vineyard, release the genetically altered mice. The first step will be to get the concurrence and support of the inhabitants of these islands, because the gene drive would be altering the environment shared by all inhabitants.

Recently, a new gene editing application has been developed to alter the response of plants to environmental challenges. The proposed scheme involves spraying a field of plants with millions of insect vectors carrying viruses that are programmed to edit the genome of a plant such as maize to become drought resistant, in one growing season. This technique would be significantly faster than a gene drive. Further, this method would not permanently alter the genetic makeup of future plant generations, as is the case with gene drives. The goal is to engineer drought-resistant and temperature-tolerant plants, thereby securing the food supply during times of climate instability. But there is a catch, as once released into the wild, controlling these insect vectors would be difficult, if not impossible. As a result, this work has been limited so far to the laboratory. There is also concern that the method could be adapted as a biological weapon, enabling destruction of targeted food crops over wide areas by adverse genetic manipulation of the plants’ chromosomes. In addition to controlling mosquito vectors and tick-borne Lyme disease, gene drives are also being devised to control the nematode worms that carry the parasite causing Schistosomiasis.

Gene drives have not yet been released in the wild to mitigate vector-borne transmission of disease as there are critical questions to be resolved as noted above. Although the biology is ready, there are many questions of governance, safety, and ethics to be answered. Caution is important, since once the genetically-altered vectors are released, there is no assured way of controlling them at this point.

In July 2015, the U.S. National Academy of Sciences convened a meeting to discuss “the promise and perils of gene drives.” Critical questions raised at the meeting were:

Will an entire species of vector be wiped out? Methods are being devised to slow the gene drive so that only a portion of the offspring contain the genetically engineered alterations. These “Daisy chain drives,” have been engineered to be self-limiting and eventually disappear from the population.

Have techniques been devised that could control a runaway gene drive? By creating a second gene drive that undoes the genetic alterations of the first gene drive, essentially “a molecular eraser,” it is hoped a gene drive could be reversed, but not before unintended consequences to the ecosystem become apparent.

Can the altered genetic traits be transferred to other insect species ? Unlikely, but possible. If this occurred, the potential for wiping out beneficial insect species would lead to further ecological disruptions, compounding the ravages of climate change.

Global Warming Mitigation Will Require a Coordinated International Effort

Many climate scientists and other thoughtful people have had concerns about the deteriorating global ecosystem for several decades now. The contribution of human activity to this escalating cataclysm is well documented. Predictions of dire consequences have been noted and sporadic attempts by the international community have been made to mitigate the ongoing onslaught of carbon emissions. But global warming is a problem that can only be solved by global cooperation because the world’s ecosystem is an integrated system. The causes of environmental degradation cannot be addressed by a patchwork of uncoordinated responses. We are dependent upon achieving international cooperation to mount a coordinated, science-based response.

In the United States today, political calculations relating to oil and coal interests have halted government acknowledgement of the risks of continuing future emissions of CO 2 into the atmosphere. In December 2018, at a UN Climate Change Conference in Poland, Wells Griffith, Mr. Trump’s international energy and climate adviser, said “We strongly believe that no country should have to sacrifice their economic prosperity or energy security in pursuit of environmental sustainability.” The attendees broke into jeers and mocking laughter. 24 Do not think that the United States is alone in this stance. We are aligned with other major fossil fuel producing nations, including Russia, Saudi Arabia, Kuwait, and Australia. We are now well beyond the time of debating about validity of the predictions about what will happen if climate change is left unaddressed. Rather, we are trying to mitigate what has already happened, while, as a society, summoning the courage and the will to leave fossil fuels in the ground and switch to alternative energy sources. Renewable power resources and improvements in the efficiency of our energy use can be important components of our energy future for the rest of this century. But, practically speaking, nuclear power will probably also have to be a major component of the future energy portfolio in order to meet world energy demands while greatly reducing use of fossil fuels. 25, 26 That too is controversial. These are existential choices that call for an unprecedented level of wisdom and societal responsiveness in the world’s political systems. It does seem likely that achieving the necessary global political response will only come when there is widespread public fear and panic as the realization of the danger percolates into public consciousness. 27 It is extraordinary that the current U.S. national leadership both denies existence of the global warming problem and actively promotes more use of fossil fuels. The longer we delay reduction in global CO 2 emissions, the worse the ultimate catastrophe will be.

Authors’ Note:

We believe the world energy economy must shift rapidly from reliance on fossil fuels—coal, oil, and gas—to cleaner alternatives or our children and grandchildren will suffer dire consequences. We encourage the reader to personally assess the risks and potential solutions. To that end, we have included references for further reading that are openly accessible on the Internet.

Lucy Shapiro is a professor in the Department of Developmental Biology at Stanford University School of Medicine where she holds the Virginia and D. K. Ludwig Chair in Cancer Research and is the director of the Beckman Center for Molecular and Genetic Medicine. Harley McAdams is an emeritus professor at the Department of Developmental Biology at Stanford University School of Medicine.

View the discussion thread.

footer

Join the Hoover Institution’s community of supporters in ideas advancing freedom.

 alt=

  • Share full article

an essay of global warming

The Science of Climate Change Explained: Facts, Evidence and Proof

Definitive answers to the big questions.

Credit... Photo Illustration by Andrea D'Aquino

Supported by

By Julia Rosen

Ms. Rosen is a journalist with a Ph.D. in geology. Her research involved studying ice cores from Greenland and Antarctica to understand past climate changes.

  • Published April 19, 2021 Updated Nov. 6, 2021

The science of climate change is more solid and widely agreed upon than you might think. But the scope of the topic, as well as rampant disinformation, can make it hard to separate fact from fiction. Here, we’ve done our best to present you with not only the most accurate scientific information, but also an explanation of how we know it.

How do we know climate change is really happening?

  • How much agreement is there among scientists about climate change?
  • Do we really only have 150 years of climate data? How is that enough to tell us about centuries of change?
  • How do we know climate change is caused by humans?
  • Since greenhouse gases occur naturally, how do we know they’re causing Earth’s temperature to rise?
  • Why should we be worried that the planet has warmed 2°F since the 1800s?
  • Is climate change a part of the planet’s natural warming and cooling cycles?
  • How do we know global warming is not because of the sun or volcanoes?
  • How can winters and certain places be getting colder if the planet is warming?
  • Wildfires and bad weather have always happened. How do we know there’s a connection to climate change?
  • How bad are the effects of climate change going to be?
  • What will it cost to do something about climate change, versus doing nothing?

Climate change is often cast as a prediction made by complicated computer models. But the scientific basis for climate change is much broader, and models are actually only one part of it (and, for what it’s worth, they’re surprisingly accurate ).

For more than a century , scientists have understood the basic physics behind why greenhouse gases like carbon dioxide cause warming. These gases make up just a small fraction of the atmosphere but exert outsized control on Earth’s climate by trapping some of the planet’s heat before it escapes into space. This greenhouse effect is important: It’s why a planet so far from the sun has liquid water and life!

However, during the Industrial Revolution, people started burning coal and other fossil fuels to power factories, smelters and steam engines, which added more greenhouse gases to the atmosphere. Ever since, human activities have been heating the planet.

an essay of global warming

Where it was cooler or warmer in 2020 compared with the middle of the 20th century

an essay of global warming

Global average temperature compared with the middle of the 20th century

+0.75°C

–0.25°

an essay of global warming

30 billion metric tons

Carbon dioxide emitted worldwide 1850-2017

Rest of world

Other developed

European Union

Developed economies

Other countries

United States

an essay of global warming

E.U. and U.K.

an essay of global warming

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

Advertisement

Yale Program on Climate Change Communication

  • About YPCCC
  • Yale Climate Connections
  • Student Employment
  • For The Media
  • Past Events
  • YPCCC in the News
  • Climate Change in the American Mind (CCAM)
  • Publications
  • Climate Opinion Maps
  • Climate Opinion Factsheets
  • Six Americas Super Short Survey (SASSY)
  • Resources for Educators
  • All Tools & Interactives
  • Partner with YPCCC

Home / For Educators: Grades 6-12 / Climate Explained: Introductory Essays About Climate Change Topics

Climate Explained: Introductory Essays About Climate Change Topics

Filed under: backgrounders for educators ,.

Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it’s cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

More Activities like this

an essay of global warming

Climate Change Basics: Five Facts, Ten Words

Backgrounders for Educators

To simplify the scientific complexity of climate change, we focus on communicating five key facts about climate change that everyone should know. 

an essay of global warming

Why should we care about climate change?

Having different perspectives about global warming is natural, but the most important thing that anyone should know about climate change is why it matters.  

an essay of global warming

External Resources

Looking for resources to help you and your students build a solid climate change science foundation? We’ve compiled a list of reputable, student-friendly links to help you do just that!  

Subscribe to our mailing list

Please select all the ways you would like to hear from Yale Program on Climate Change Communication:

You can unsubscribe at any time by clicking the link in the footer of our emails. For information about our privacy practices, please visit our website.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices here.

an essay of global warming

What evidence exists that Earth is warming and that humans are the main cause?

We know the world is warming because people have been recording daily high and low temperatures at thousands of weather stations worldwide, over land and ocean, for many decades and, in some locations, for more than a century. When different teams of climate scientists in different agencies (e.g., NOAA and NASA) and in other countries (e.g., the U.K.’s Hadley Centre) average these data together, they all find essentially the same result: Earth’s average surface temperature has risen by about 1.8°F (1.0°C) since 1880. 

Bar graph of global temperature anomalies with an overlay of a line graph of atmospheric carbon dioxide from 1850-2023

( bar chart ) Yearly temperature compared to the twentieth-century average from 1850–2023. Red bars mean warmer-than-average years; blue bars mean colder-than-average years. (line graph) Atmospheric carbon dioxide amounts: 1850-1958 from IAC , 1959-2023 from NOAA Global Monitoring Lab . NOAA Climate.gov graph, adapted from original by Dr. Howard Diamond (NOAA ARL).

In addition to our surface station data, we have many different lines of evidence that Earth is warming ( learn more ). Birds are migrating earlier, and their migration patterns are changing.  Lobsters  and  other marine species  are moving north. Plants are blooming earlier in the spring. Mountain glaciers are melting worldwide, and snow cover is declining in the Northern Hemisphere (Learn more  here  and  here ). Greenland’s ice sheet—which holds about 8 percent of Earth’s fresh water—is melting at an accelerating rate ( learn more ). Mean global sea level is rising ( learn more ). Arctic sea ice is declining rapidly in both thickness and extent ( learn more ).

Aerial photo of glacier front with a graph overlay of Greenland ice mass over time

The Greenland Ice Sheet lost mass again in 2020, but not as much as it did 2019. Adapted from the 2020 Arctic Report Card, this graph tracks Greenland mass loss measured by NASA's GRACE satellite missions since 2002. The background photo shows a glacier calving front in western Greenland, captured from an airplane during a NASA Operation IceBridge field campaign. Full story.

We know this warming is largely caused by human activities because the key role that carbon dioxide plays in maintaining Earth’s natural greenhouse effect has been understood since the mid-1800s. Unless it is offset by some equally large cooling influence, more atmospheric carbon dioxide will lead to warmer surface temperatures. Since 1800, the amount of carbon dioxide in the atmosphere  has increased  from about 280 parts per million to 410 ppm in 2019. We know from both its rapid increase and its isotopic “fingerprint” that the source of this new carbon dioxide is fossil fuels, and not natural sources like forest fires, volcanoes, or outgassing from the ocean.

DIgital image of a painting of a fire burning in a coal pile in a small village

Philip James de Loutherbourg's 1801 painting, Coalbrookdale by Night , came to symbolize the start of the Industrial Revolution, when humans began to harness the power of fossil fuels—and to contribute significantly to Earth's atmospheric greenhouse gas composition. Image from Wikipedia .

Finally, no other known climate influences have changed enough to account for the observed warming trend. Taken together, these and other lines of evidence point squarely to human activities as the cause of recent global warming.

USGCRP (2017). Climate Science Special Report: Fourth National Climate Assessment, Volume 1 [Wuebbles, D.J., D.W. Fahey, K.A. Hibbard, D.J. Dokken, B.C. Stewart, and T.K. Maycock (eds.)]. U.S. Global Change Research Program, Washington, DC, USA, 470 pp, doi:  10.7930/J0J964J6 .

National Fish, Wildlife, and Plants Climate Adaptation Partnership (2012):  National Fish, Wildlife, and Plants Climate Adaptation Strategy . Association of Fish and Wildlife Agencies, Council on Environmental Quality, Great Lakes Indian Fish and Wildlife Commission, National Oceanic and Atmospheric Administration, and U.S. Fish and Wildlife Service. Washington, D.C. DOI: 10.3996/082012-FWSReport-1

IPCC (2019). Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. [H.-O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. In press.

NASA JPL: "Consensus: 97% of climate scientists agree."  Global Climate Change . A website at NASA's Jet Propulsion Laboratory (climate.nasa.gov/scientific-consensus). (Accessed July 2013.)

We value your feedback

Help us improve our content

Related Content

News & features, 2017 state of the climate: mountain glaciers, warming waters shift fish communities northward in the arctic, climate & fish sticks, maps & data, past climate, future climate, ocean - oceanic climate variables, teaching climate, toolbox for teaching climate & energy, student climate & conservation congress (sc3), climate youth engagement, climate resilience toolkit, arctic oceans, sea ice, and coasts, alaska and the arctic, food safety and nutrition.

Global Warming Definition, Causes, Effects, Impacts, Solutions_1.1

Global Warming Definition, Causes, Effects, Impacts, Solutions

Global Warming is a long-term increase in average global temperature. Read about Global Warming Definition, Causes, Effects, Impact on Climate Change & Solutions for the UPSC exam.

Global Warming

Table of Contents

What is Global Warming?

Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post Industrial Revolution , have led to an increase in the rate of this temperature increase. Various Reports published by the International Panel on Climate Change (IPCC) have time and again highlighted that since 1850 human activities have led to an increase of about 1 degree Celsius in average global temperature. Most of this warming has taken place in the second half of the 20th century. The fact that 5 of the hottest recorded year have occurred since 2015 can help us better understand the calamitous impact of anthropogenic activities.

Global Warming Causes

Green House Gases also known as GHGs in the atmosphere trap the solar radiations that are reflected by the earth’s surface. Under normal circumstances, most of these radiations escape into outer space. However, the release of GHGs by anthropogenic activities has increased their concentration in the atmosphere. Thus, the earth is getting hotter and hotter. 

Some of the common GHGs include carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, and water vapour, among others. The global warming potential of each GHG is different. For example, methane has a 25-time warming potential than carbon dioxide. Similarly, nitrous oxide has more than 250 times the warming potential than carbon dioxide. The top  anthropogenic activities that are responsible for the release of GHGs are shown below.

Global Warming Definition, Causes, Effects, Impacts, Solutions_4.1

Global Warming and Green House Effect

Both phenomena are related to each other. Green House Gases also known as GHGs in the atmosphere trap the solar radiations that are reflected by the earth’s surface. Under normal circumstances, most of these radiations escape into outer space. However, the release of GHGs by anthropogenic activities has increased their concentration in the atmosphere. This is the primary cause of Global Warming . 

Global Warming Effects

Increase in the average temperature of the earth.

According to IPCC reports, human-induced global warming is responsible for nearly 1 degree Celsius temperature rise vis a vis pre-industrial level. Data from NASA suggest that 2016 has been the hottest year on record.

Frequency of Extreme Weather Events is Increasing

Across the globe, extreme weather events have increased in occurrence. For example, forest fires in California have become an annual event. Also, it is increasing in frequency each year. Most recently, we have recorded the phenomena of heat waves in Antarctica. The intensity of cyclones in the Bay of Bengal region has increased. Similarly, the frequency of occurrence of El Niño and La Niña has reduced from once in 8–10 years to once in 3–4 years now. More frequent episodes of floods and drought are being recorded every year across the world.

Melting of Ice

According to IPCC, there is 10% less permafrost in North Hemisphere at present compared to the 1900s. Remote sensing data suggest Arctic ice is melting fast. Experts suggest that not only will the sea level rise with the melting of glaciers, but there is also a danger of new bacteria and viruses being released into the environment which has so far been trapped in ice sheets. This may lead to outbreaks of disease and pandemics which are beyond the control of human medical sciences.

Sea Level Rise and Acidification of Ocean

A report published by WMO, suggests that the rate of sea level rise has doubled for the period between 2013 and 2021 compared to the rate for the period between 1993 and 2002. Earth scientists are suggesting that if this phenomenon continues, many human-inhabited coastal areas will be submerged into the sea in the coming decades. Also, with the concentration of carbon dioxide rising in the atmosphere, oceans are absorbing more of it. This is leading to ocean acidification. The impact of this phenomenon can be disastrous for ocean biodiversity, particularly the coral reefs. 

Adverse Impact on Terrestrial Ecosystems of the Earth

It has been recorded that many flora and fauna species are heading northwards in Northern Hemisphere. Significant changes have been observed in the migratory movements of birds across the world. Early arrival to their summer feeding and breeding grounds is quite evident. Expert biologists suggest that rising temperatures in the tropical and subtropical regions may lead to an outbreak of new diseases, which in turn may render many floral and faunal species extinct.

Social and Economic Impact

A rising number of extreme weather events will have an adverse impact on agriculture and fisheries. Rising global temperatures will have a negative impact on the productivity of human beings, particularly in tropical and subtropical regions of the earth. The impact on life and livelihoods of indigenous people across the world will be even more pronounced. 

Global Warming Solutions

Global cooperation for reduction of emissions.

It is time that the target of containing the global average temperature rise within 1.5 degrees Celsius of pre-industrial levels is taken seriously. Also, global efforts should be based on a spirit of Common But Differentiated Responsibility. This will ensure that historical injustices done to the global south are duly acknowledged, and they have an equal chance to transform themselves into developed countries. Countries must act proactively to achieve Net Zero Emission status at the earliest. 

Transition to Cleaner and Greener Forms of Energy

Thermal power plants based on coal should be made more efficient and inefficient ones should be phased off. Also, mass adoption of renewable forms of energy like solar should be promoted. Similarly, avenues for using hydrogen as energy fuel should be looked into. We must also explore the possibility of Nuclear fusion for energy generation, in addition to making nuclear fission-based energy generation safer.

Changes in Agricultural Practices and Land Use

Agriculture based on the use of nitrogenous fertilizers must be replaced with organic farming techniques. Also, methane gas released from agricultural and cattle waste must be trapped as biogas for domestic usage. Massive afforestation drives must be organized. Urban governments must make it a point to include green spaces in urban planning.

Improving Transportation System

The advent of E-vehicles is a welcome change, but we need to make the batteries used in these vehicles more efficient. Urban planners must make public transportation systems inherent as a benchmark of good urban planning. Also, urban planning should be such that it promotes more walking and cycling habits among the residents. 

Behavioural Changes

All the above discussions will have no meaning if we as individuals are not sensitive enough. We need to make reducing, reusing and recycling a mantra of our living. It should be our civic duty to save water, and wildlife and raise awareness among others. 

Solar Geoengineering

Solar geoengineering, a proposed climate intervention method, aims to counteract global warming by reflecting a portion of the sun’s rays back into space. One prominent approach involves injecting substances like sulphur dioxide into the upper atmosphere to create reflective aerosols. These particles can scatter sunlight, reducing the Earth’s temperature. However, solar geoengineering is a topic of debate, with concerns about its side effects, such as disrupted weather patterns and potential geopolitical risks. Research in this field is ongoing, but it remains a theoretical concept with limited practical implementation.

Can Solar Geoengineering Halt Global Warming?

Solar geoengineering, specifically solar radiation management (SRM), is under scrutiny as a potential method to mitigate global warming. SRM involves reflecting sunlight away from Earth, often by injecting substances like sulphur dioxide into the upper atmosphere to create reflective aerosols. However, its effectiveness remains a subject of debate, with concerns about potential side effects and ethical implications. While research in this field is ongoing, solar geoengineering is currently in a theoretical stage, with limited practical implementation.

Global Warming Conclusion

It is rightly said that “Charity begins at home.” Climate action will be more efficient if we go by this spirit. To begin with, each individual can make sure that what is happening in their house and immediate surroundings is in harmony with the environment. If this can happen, all the policies we are making at the local, national, regional and global levels will give far better results. 

Global Warming UPSC

Each year, we read about rising global temperatures. Also, catching the headlines is the news related to disasters caused by events like cyclones, forest fires, floods and drought. All these phenomena can be attributed to one single cause which is global warming. 

Global Warming is a long-term increase in average global temperature. It is considered a natural phenomenon, but anthropogenic activities on earth, particularly post-Industrial Revolution, have led to an increase in the rate of this temperature increase.

Sharing is caring!

Why is global warming a problem?

Global Warming at present rate can lead to disastrous impacts like rising sea level, out break of new diseases, extreme weather events among others.

What are 3 causes of global warming?

Human induced green house gas emission due to activities like agriculture, industrial emissions, transportation are the top 3 causes of global warming.

What are 5 effects of global warming?

Rising sea level, out break of new diseases, extreme weather events, changes in biodiversity and melting of glaciers are top 5 effects of global warming.

Why global warming is important?

Global warming at its natural rate is important to keep up the temperature of earth within the range that makes it habitable. This makes global warming important.

Can we control global warming?

Number of mitigation measures like shifting to cleaning forms of energy and transportation can be taken to control global warming.

Who help with global warming?

Global Warming is a collective challenge for entire humanity. Citizens, civil societies, governments and businesses must act in unison to address it.

Sakshi Gupta

I, Sakshi Gupta, am a content writer to empower students aiming for UPSC, PSC, and other competitive exams. My objective is to provide clear, concise, and informative content that caters to your exam preparation needs. I strive to make my content not only informative but also engaging, keeping you motivated throughout your journey!

Monetary Policy

Leave a comment

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Trending Event

  • TNPSC Group 4 Result 2024
  • KPSC KAS Hall Ticket 2024
  • MPSC Prelims Admit Card 2024

P2I Hinglish

Recent Posts

PSIR Batch

  • UPSC Online Coaching
  • UPSC Exam 2024
  • UPSC Syllabus 2024
  • UPSC Prelims Syllabus 2024
  • UPSC Mains Syllabus 2024
  • UPSC Exam Pattern 2024
  • UPSC Age Limit 2024
  • UPSC Calendar 2024
  • UPSC Syllabus in Hindi
  • UPSC Full Form
  • UPPSC Exam 2024
  • UPPSC Calendar
  • UPPSC Syllabus 2024
  • UPPSC Exam Pattern 2024
  • UPPSC Application Form 2024
  • UPPSC Eligibility Criteria 2024
  • UPPSC Admit card 2024
  • UPPSC Salary And Posts
  • UPPSC Cut Off
  • UPPSC Previous Year Paper

BPSC Exam 2024

  • BPSC 70th Notification
  • BPSC 69th Exam Analysis
  • BPSC Admit Card
  • BPSC Syllabus
  • BPSC Exam Pattern
  • BPSC Cut Off
  • BPSC Question Papers

SSC CGL 2024

  • SSC CGL Exam 2024
  • SSC CGL Syllabus 2024
  • SSC CGL Cut off
  • SSC CGL Apply Online
  • SSC CGL Salary
  • SSC CGL Previous Year Question Paper
  • SSC MTS 2024
  • SSC MTS Apply Online 2024
  • SSC MTS Syllabus 2024
  • SSC MTS Salary 2024
  • SSC MTS Eligibility Criteria 2024
  • SSC MTS Previous Year Paper

SSC Stenographer 2024

  • SSC Stenographer Notification 2024
  • SSC Stenographer Apply Online 2024
  • SSC Stenographer Syllabus 2024
  • SSC Stenographer Salary 2024
  • SSC Stenographer Eligibility Criteria 2024

SSC GD Constable 2025

  • SSC GD Salary 2025
  • SSC GD Constable Syllabus 2025
  • SSC GD Eligibility Criteria 2025

IMPORTANT EXAMS

youtube

  • Terms & Conditions
  • Return & Refund Policy
  • Privacy Policy

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

National Academies Press: OpenBook

Climate Change: Evidence and Causes: Update 2020 (2020)

Chapter: conclusion, c onclusion.

This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of the recent change is almost certainly due to emissions of greenhouse gases caused by human activities. Further climate change is inevitable; if emissions of greenhouse gases continue unabated, future changes will substantially exceed those that have occurred so far. There remains a range of estimates of the magnitude and regional expression of future change, but increases in the extremes of climate that can adversely affect natural ecosystems and human activities and infrastructure are expected.

Citizens and governments can choose among several options (or a mixture of those options) in response to this information: they can change their pattern of energy production and usage in order to limit emissions of greenhouse gases and hence the magnitude of climate changes; they can wait for changes to occur and accept the losses, damage, and suffering that arise; they can adapt to actual and expected changes as much as possible; or they can seek as yet unproven “geoengineering” solutions to counteract some of the climate changes that would otherwise occur. Each of these options has risks, attractions and costs, and what is actually done may be a mixture of these different options. Different nations and communities will vary in their vulnerability and their capacity to adapt. There is an important debate to be had about choices among these options, to decide what is best for each group or nation, and most importantly for the global population as a whole. The options have to be discussed at a global scale because in many cases those communities that are most vulnerable control few of the emissions, either past or future. Our description of the science of climate change, with both its facts and its uncertainties, is offered as a basis to inform that policy debate.

A CKNOWLEDGEMENTS

The following individuals served as the primary writing team for the 2014 and 2020 editions of this document:

  • Eric Wolff FRS, (UK lead), University of Cambridge
  • Inez Fung (NAS, US lead), University of California, Berkeley
  • Brian Hoskins FRS, Grantham Institute for Climate Change
  • John F.B. Mitchell FRS, UK Met Office
  • Tim Palmer FRS, University of Oxford
  • Benjamin Santer (NAS), Lawrence Livermore National Laboratory
  • John Shepherd FRS, University of Southampton
  • Keith Shine FRS, University of Reading.
  • Susan Solomon (NAS), Massachusetts Institute of Technology
  • Kevin Trenberth, National Center for Atmospheric Research
  • John Walsh, University of Alaska, Fairbanks
  • Don Wuebbles, University of Illinois

Staff support for the 2020 revision was provided by Richard Walker, Amanda Purcell, Nancy Huddleston, and Michael Hudson. We offer special thanks to Rebecca Lindsey and NOAA Climate.gov for providing data and figure updates.

The following individuals served as reviewers of the 2014 document in accordance with procedures approved by the Royal Society and the National Academy of Sciences:

  • Richard Alley (NAS), Department of Geosciences, Pennsylvania State University
  • Alec Broers FRS, Former President of the Royal Academy of Engineering
  • Harry Elderfield FRS, Department of Earth Sciences, University of Cambridge
  • Joanna Haigh FRS, Professor of Atmospheric Physics, Imperial College London
  • Isaac Held (NAS), NOAA Geophysical Fluid Dynamics Laboratory
  • John Kutzbach (NAS), Center for Climatic Research, University of Wisconsin
  • Jerry Meehl, Senior Scientist, National Center for Atmospheric Research
  • John Pendry FRS, Imperial College London
  • John Pyle FRS, Department of Chemistry, University of Cambridge
  • Gavin Schmidt, NASA Goddard Space Flight Center
  • Emily Shuckburgh, British Antarctic Survey
  • Gabrielle Walker, Journalist
  • Andrew Watson FRS, University of East Anglia

The Support for the 2014 Edition was provided by NAS Endowment Funds. We offer sincere thanks to the Ralph J. and Carol M. Cicerone Endowment for NAS Missions for supporting the production of this 2020 Edition.

F OR FURTHER READING

For more detailed discussion of the topics addressed in this document (including references to the underlying original research), see:

  • Intergovernmental Panel on Climate Change (IPCC), 2019: Special Report on the Ocean and Cryosphere in a Changing Climate [ https://www.ipcc.ch/srocc ]
  • National Academies of Sciences, Engineering, and Medicine (NASEM), 2019: Negative Emissions Technologies and Reliable Sequestration: A Research Agenda [ https://www.nap.edu/catalog/25259 ]
  • Royal Society, 2018: Greenhouse gas removal [ https://raeng.org.uk/greenhousegasremoval ]
  • U.S. Global Change Research Program (USGCRP), 2018: Fourth National Climate Assessment Volume II: Impacts, Risks, and Adaptation in the United States [ https://nca2018.globalchange.gov ]
  • IPCC, 2018: Global Warming of 1.5°C [ https://www.ipcc.ch/sr15 ]
  • USGCRP, 2017: Fourth National Climate Assessment Volume I: Climate Science Special Reports [ https://science2017.globalchange.gov ]
  • NASEM, 2016: Attribution of Extreme Weather Events in the Context of Climate Change [ https://www.nap.edu/catalog/21852 ]
  • IPCC, 2013: Fifth Assessment Report (AR5) Working Group 1. Climate Change 2013: The Physical Science Basis [ https://www.ipcc.ch/report/ar5/wg1 ]
  • NRC, 2013: Abrupt Impacts of Climate Change: Anticipating Surprises [ https://www.nap.edu/catalog/18373 ]
  • NRC, 2011: Climate Stabilization Targets: Emissions, Concentrations, and Impacts Over Decades to Millennia [ https://www.nap.edu/catalog/12877 ]
  • Royal Society 2010: Climate Change: A Summary of the Science [ https://royalsociety.org/topics-policy/publications/2010/climate-change-summary-science ]
  • NRC, 2010: America’s Climate Choices: Advancing the Science of Climate Change [ https://www.nap.edu/catalog/12782 ]

Much of the original data underlying the scientific findings discussed here are available at:

  • https://data.ucar.edu/
  • https://climatedataguide.ucar.edu
  • https://iridl.ldeo.columbia.edu
  • https://ess-dive.lbl.gov/
  • https://www.ncdc.noaa.gov/
  • https://www.esrl.noaa.gov/gmd/ccgg/trends/
  • http://scrippsco2.ucsd.edu
  • http://hahana.soest.hawaii.edu/hot/
was established to advise the United States on scientific and technical issues when President Lincoln signed a Congressional charter in 1863. The National Research Council, the operating arm of the National Academy of Sciences and the National Academy of Engineering, has issued numerous reports on the causes of and potential responses to climate change. Climate change resources from the National Research Council are available at .
is a self-governing Fellowship of many of the world’s most distinguished scientists. Its members are drawn from all areas of science, engineering, and medicine. It is the national academy of science in the UK. The Society’s fundamental purpose, reflected in its founding Charters of the 1660s, is to recognise, promote, and support excellence in science, and to encourage the development and use of science for the benefit of humanity. More information on the Society’s climate change work is available at

Image

Climate change is one of the defining issues of our time. It is now more certain than ever, based on many lines of evidence, that humans are changing Earth's climate. The Royal Society and the US National Academy of Sciences, with their similar missions to promote the use of science to benefit society and to inform critical policy debates, produced the original Climate Change: Evidence and Causes in 2014. It was written and reviewed by a UK-US team of leading climate scientists. This new edition, prepared by the same author team, has been updated with the most recent climate data and scientific analyses, all of which reinforce our understanding of human-caused climate change.

Scientific information is a vital component for society to make informed decisions about how to reduce the magnitude of climate change and how to adapt to its impacts. This booklet serves as a key reference document for decision makers, policy makers, educators, and others seeking authoritative answers about the current state of climate-change science.

READ FREE ONLINE

Welcome to OpenBook!

You're looking at OpenBook, NAP.edu's online reading room since 1999. Based on feedback from you, our users, we've made some improvements that make it easier than ever to read thousands of publications on our website.

Do you want to take a quick tour of the OpenBook's features?

Show this book's table of contents , where you can jump to any chapter by name.

...or use these buttons to go back to the previous chapter or skip to the next one.

Jump up to the previous page or down to the next one. Also, you can type in a page number and press Enter to go directly to that page in the book.

Switch between the Original Pages , where you can read the report as it appeared in print, and Text Pages for the web version, where you can highlight and search the text.

To search the entire text of this book, type in your search term here and press Enter .

Share a link to this book page on your preferred social network or via email.

View our suggested citation for this chapter.

Ready to take your reading offline? Click here to buy this book in print or download it as a free PDF, if available.

Get Email Updates

Do you enjoy reading reports from the Academies online for free ? Sign up for email notifications and we'll let you know about new publications in your areas of interest when they're released.

To revisit this article, visit My Profile, then View saved stories .

  • The Big Story
  • Newsletters
  • Steven Levy's Plaintext Column
  • WIRED Classics from the Archive
  • WIRED Insider
  • WIRED Consulting

If you buy something using links in our stories, we may earn a commission. Learn more.

Let Venice Sink

“My own solution for the problem of Venice is to let her sink,” wrote British author and onetime Venice resident Jan Morris with casual mercilessness in a 1971 essay for The Architectural Review . She reiterated the point in The New York Times four years later, hammering home her point with conviction and relish: “Let her sink.”

And yet Morris predicted that this would never be Venice’s fate, because “the world would not allow it.” That may be true. What she wasn’t right about was the time frame of the impending tragedy. She thought it would be a long time coming—“One cannot hang around for the apocalypse”—but likely didn’t envisage that only 50 years later, scientists would be able to predict that, in a worst-case scenario, Venice could be underwater by 2100. Prepare the horses; the apocalypse is here. You don’t prepare for the end of the world by battening down the hatches and staying put— you need to adapt.

“One thing we’re trying to explore in heritage practice is going beyond the impulse to save everything all the time,” says UK-based cultural geography professor Caitlin DeSilvey. In her 2017 book Curated Decay: Heritage Beyond Saving , DeSilvey wrote about letting landscapes and landmarks transform, buffeted by the wind or eroded by waves, rather than forcing them to remain in the state in which we inherited them. “The heritage sector has a bit of a block, because when you talk about managing that kind of change, and you talk about ruination, that’s perceived to be a failure,” she adds.

But as loss and destruction of global heritage sites due to climate change becomes more commonplace, we need to change the way we think about that loss and redefine our notion of failure. Our values must shift along with our changing climate. As researchers Erin Seekamp and Eugene Jo put it in a 2020 paper , we need a “transition of values from what has been known to what can become, overcoming the tendency for continual maintenance and last-ditch efforts to prolong the inevitable.”

The situation has changed since Morris wrote about Venice, looking out from her perch on the Punta della Dogana. If Morris described the city as a problem in the ’70s, it is now a disaster, swallowed whole by both the rise of water and the rise of tourism.

Though it is well documented that Venice is sinking, its new MOSE flood barriers do an excellent job of protecting it. In November 2022, they saved Venice from its biggest tide in 50 years, which would have devastated the city. But the system was built after years of delays, a corruption scandal, and a price tag of €6.2 billion ($6.9 billion). It is set to cost a further €200,000 each time the barriers are raised, and it will need to be raised ever more frequently. Seekamp and Jo argue that preserving all World Heritage sites and their current values “in perpetuity” is “fiscally impossible.” In Venice’s case, that money could be used instead to relocate the city’s residents, and if its urban heritage is going to be lost or irrevocably changed, we could switch our focus to the protection of its natural heritage, as the lagoon is one of the most important coastal ecosystems in the whole Mediterranean basin.

Step Away From Screens With the 32 Best Family Board Games

And were we to let the “Bride of the Adriatic,” as Morris calls the city, be “enfolded at last by the waters she espoused,” the angel on top of the St Mark’s bell tower poking out above the lagoon’s sandbanks, would that not be a powerful visual reminder of the ravages of climate change and our role in rising global temperatures? Imagine the scene: Boats of tourists can sail over the area as a guide explains that this is where one of the world’s greatest maritime powers used to be, before it succumbed to a most “Venetian end.”

The affront we may feel at the idea of letting the rich cultural and artistic history of Venice fall under the waves indicates the emotional attachment we have with historical sites. There’s nothing wrong with feeling emotional about old buildings. But losing a built structure does not have to mean severing our connection to the site. “We can stay connected to these places as we watch them undergo change,” DeSilvey says.

This idea of “transformative continuity” means that places that have been damaged by climate change can serve as a “memory” and even a deterrent, to prevent the same thing happening in the future. It also allows us to discover new heritage values in a site as it evolves. Seekamp and Jo use the example of the Gardens of Ninfa in southern Italy, where a beautiful garden was cultivated in the ruins of an abandoned medieval city, giving the site a “renewed living heritage” that both celebrates its history and endows it with new values of biodiversity and a flourishing ecosystem. Other studies have shown how abandoned man-made structures like harbors have proven ecologically productive, becoming unintended habitats for marine wildlife. While that it isn’t a reason to let a structure fall into ruin, it does show that there may be ancillary environmental advantages to decay.

That doesn’t mean giving up and abandoning cultural sites to climate change as soon as they are threatened. Going back to that cost argument: This isn’t the free option. It would require physical management of the site to make sure it doesn’t become dangerous, and a process of digital documentation and archiving and profound consultation with the public and other stakeholders. Technologies like augmented reality and drone imaging can create immersive experiences for visitors and provide another way of seeing heritage sites. It may not be the same experience, but heritage is capable of interpreting absence, maybe more so than other sectors. “There are a lot of people who find ruins more interesting than stable structures!” DeSilvey laughs. “And yet we shy away from the idea of creating a new ruin, because no one wants to be responsible for making the decision to let something transition.”

We also have to detach our sense of national or regional identity from our heritage sites and think outside the modern, Western framework of permanence. Seekamp, who works with the US National Parks Service, explains that the Indigenous communities she speaks to sometimes see impermanence as an integral part of their cultural sites and the landscape in general—some places are meant to alter with the seasons and climatic changes. This is why a people-centered approach is vital: It opens us up to different heritage ideologies that are better adapted to our changing world.

If we think of heritage sites as being in a continuous process of change, rather than in their final, fixed form, then we avoid the ticking time-bomb effect of labels like “endangered,” which paint places like Venice as “last-chance destinations”—paradoxically raising the pressure of tourism as millions rush to see the city before it is submerged. “As soon as you flag a place as being at risk of loss, then you increase its value. The language used to confront this type of process automatically makes it more difficult to cope with change,” explains DeSilvey.

Venice shouldn’t be used as a sacrificial lamb to make a point. Picturing a world in which the “extraordinary architectural masterpiece” of Venice (UNESCO’s description) is abandoned is a provocation. As of June 30, there are still—according to public counters installed across the city—49,442 official residents in the city, who may not take too kindly to being turfed out of their homes, first by mass tourism and then by pontificating heritage officials. On top of that, the political weight of Venice’s position as a cash cow providing Italy with a steady flow of tourism dollars cannot be underestimated.

But these arguments for a transformative way of thinking about heritage can hold true for other places around the world. By adopting a more expansive approach, we can imagine more generative ways of managing our historical sites as they are affected by climate change. In 25, 50, or 100 years’ time, our current model of heritage protection may appear hopelessly antiquated and unable to deal with the pressures of a rapidly heating world.

You Might Also Like …

Politics Lab: Get the newsletter and listen to the podcast

What happens when you give people free money

Not everyone loses weight on Ozempic

The Pentagon wants to spend $141 billion on a doomsday machine

Event: Join us for the Energy Tech Summit on October 10 in Berlin

Membership Ticker

BREAKING: Good journalism costs money , and we need a lot of both right now. We need $163,000 in online donations before the month ends and the election noise and news get even louder after Labor Day. You know what’s at stake. And you know Mother Jones is up for it. Please pitch in if you can so we can do our best work.

We need to raise $163,000 before the month ends and the election noise and news get louder. You know what’s at stake. And you know Mother Jones is up for it. Please help if you can.

  • Environment

Climate Scientists Flummoxed by Unexpected Bump in Global Temperatures

“we should have better answers by now.”, jonathan watts.

  • Share on Facebook
  • Share on Twitter

an essay of global warming

Guardian Design

This story was originally published by the  Guardian   and is reproduced here as part of the  Climate Desk   collaboration.

In a remarkably candid   essay in the journal Nature  this March, one of the world’s top climate scientists posited the alarming possibility that global heating may be moving beyond the ability of experts to predict what happens next.

“The 2023 temperature anomaly has come out of the blue, revealing an unprecedented knowledge gap perhaps for the first time since about 40 years ago, when satellite data began offering modellers an unparalleled, real-time view of Earth’s climate system,” wrote Gavin Schmidt, a British scientist and the director of the NASA Goddard Institute for Space Studies in New York.

If this anomaly does not stabilize by August, he said, it could imply “that a warming planet is already fundamentally altering how the climate system operates, much sooner than scientists had anticipated.”

Many in the science and environment community read these words with alarm. Was the leap in temperatures over the past 13 months, which has exceeded the global heating forecasts of experts, a sign of a systemic shift, or just a temporary anomaly? If the world was warming even faster than scientists thought it would, seemingly jumping years ahead of predictions, would that mean even more crucial decades of action had been lost?

“We are already in uncharted territory with respect to climate and with every decade we go more further out on a limb.”

With August now here, Schmidt is a fraction less disturbed. He said the situation remains unclear, but the broader global heating trends are starting to move back in the direction of forecasts. “What I am thinking now is we aren’t that far off from expectations. If we maintain this for the next couple of months then we can say what happened in late 2023 was more ‘blippish’ than systematic. But it is still too early to call it,” he said. “I am slightly less worried, but still humbled that we can’t explain it.”

In an exclusive interview with the Guardian , Schmidt, said records were beaten last year by a surprising margin and predicts 2024 is also likely to set a new peak, though the trend may nudge closer towards expectations.

Looking back at the most extreme months of heat in the second half of 2023 and early 2024 when the previous records were beaten at times by more than 0.2 C, an enormous anomaly, he said scientists were still baffled: “We don’t have a quantitative explanation for even half of it. That is pretty humbling.”

He added: “We should have better answers by now. Climate modeling as an enterprise is not set out to be super reactive. It is a slow, long process in which people around the world are volunteering their time. We haven’t got our act together on this question yet.”

This is not to doubt the underlying science of global heating, which  more than 99.9 percent of climatologists agree  is caused by human burning of gas, oil, coal, and forests.

That alone is creating alarming new temperature records every year, as the world experienced last month with  two consecutive days of heat in excess of anything in human records , and probably also  anything in more than 120,000 years .

This is wreaking havoc over an even wider swath of the world by intensifying forest fires, droughts, floods, sea-ice loss, and other manifestations of extreme weather.

The worsening trend will continue until fossil fuels are stopped. “As climate change continues, every decade it gets warmer, the impact is larger and the consequences are greater,” Schmidt said. “So in that sense, we are already in uncharted territory with respect to climate and with every decade we go more further out on a limb.”

Unicef calculates a quarter of the world’s children are already exposed to frequent heatwaves, and this will rise to almost 100 percent by mid-century.

The recent El Ninõ added to global heat pressures. Scientists have also pointed to the fallout from the January 2022  Hunga Tonga-Hunga Ha’apai volcanic eruption in Tonga , the ramping up of solar activity in the run-up to a  predicted solar maximum , and pollution controls that reduced cooling sulfur dioxide particles. But Schmidt said none of these possible causes was sufficient to account for the spike in temperatures.

Schmidt said he hoped a clearer picture would emerge by the time of the  American Geophysical Union meeting in December , when many of the world’s top Earth system scientists will gather in New Orleans.

One of the most worrying theories to emerge is that the Earth is losing its albedo, which is the ability of the planet to reflect heat back into space. This is mainly because there is less white ice in the Arctic, Antarctic and mountain glaciers. Peter Cox, a professor at Exeter University, noted on X that this is “contributing hugely to the acceleration of global warming.” It would also suggest the recent records are not just a freak conjunction of factors.

On 29 July, the total extent of sea ice was at a record low for the date and some 1.5 million square miles—an area bigger than India—below the 1981-2010 average,  according to Zackary Labe , a climate scientist at the US National Oceanic and Atmospheric Administration.

It continues to melt rapidly because temperatures in some parts of Antarctica recently  hit 24 C above the average  for the time of year in the middle of the austral winter.

António Guterres, the secretary-general of the United Nations, warned recently that “Earth is becoming hotter and more dangerous for everyone, everywhere.” He pointed out that scorching conditions killed 1,300 pilgrims during the Hajj in Saudi Arabia, shut down tourist attractions in Europe’s sweatbox cities, and closed schools across Asia and Africa.

Temperatures above 50 C  used to be a rarity confined to two or three global hotspots , but the World Meteorological Organization noted that  at least 10 countries have reported this level of searing heat in the past year : the US, Mexico, Morocco, Algeria, Saudi Arabia, Kuwait, Iran, Pakistan, India and China.

In Iran, the heat index—a measure that also includes humidity— has come perilously close to 60 C , far above the level considered safe for humans.

Heatwaves are now commonplace elsewhere, killing the most vulnerable, worsening inequality and threatening the wellbeing of future generations. Unicef calculates a quarter of the world’s children are already exposed to frequent heatwaves, and this will rise to almost 100 percent by mid-century.

The pace of change is disorienting. Schmidt says there is a 72 percent chance that 2024 will beat last year’s heat record. The likelihood will rise still higher if there is no cooling La Niña by December.

While some argue that the world will soon pass the lower Paris agreement guardrail of 1.5C of heating above the preindustrial average, Schmidt says the more important goal should be to phase out carbon emissions as quickly as possible: “What should be motivating people is that with every tenth of a degree of warming, the impacts will increase. That is the fundamental equation. It doesn’t matter where we are now, but we have to get to net zero. The faster that happens, then the happier we will be.”

At times, he acknowledged that his work puts him in a bind because as a scientist he wants his forecasts about global heating to be accurate, but as a human he would rather they proved an overestimate. “We would all rather be wrong than right on this,” he says. “That is the one thing that skeptics don’t understand.”

an essay of global warming

What Project 2025 Would Mean for America’s Climate Policies

Zoya Teirstein

Man standing on roof, spraying it white.

The Surprisingly Simple Way Cities Could Protect People From Extreme Heat

an essay of global warming

Extreme Heat Is Coming for Your Rail Commute

an essay of global warming

And You Thought That Heat Wave Was Bad?

Michael Mechanic

We Recommend

Kaitlyn Joshua addresses the crowd at the 2024 DNC.

She Was Denied Care for a Miscarriage. Now She’s Campaigning with Kamala Harris.

an essay of global warming

“Do Something!” Michelle Obama’s Big-Hearted, Urgent, Barn-Burner of a Convention Speech

Jamilah King

Delegates at the DNC hold We Love Joe signs on the first night of the convention.

The Vibe Has Shifted Downballot Too

A crowd gathers in front of the US Capitol. A tattered American flag flies in the foreground.

Sponsored Post

The Looming Threat of Christian Nationalism

Americans United for Separation of Church and State

Photo collage featuring Republican Speaker of the House, Mike Johnson in front of green and black warning signs for a radiation area.

People Harmed by Radiation Exposure Can Forget About Any Federal Compensation

Katherine Hapgood

an essay of global warming

Tax Credits From Biden’s Signature Climate Law Go Mainly to Families Earning $100,000-Plus

Dharna Noor

A woman with blonde hair speaking into a microphone, wearing a white blazer over a dark top. She is positioned slightly to the right of center, with her left hand raised as if making a point. The background is a solid yellow, and large white quotation marks are placed on either side of her, framing her in the composition.

Democrats Aren’t Afraid to Say “Abortion” Anymore

Abby Vesoulis

Kamala Harris walking with Barack Obama

Kamala Harris Bet on Barack Obama. Now He’s Returning the Favor.

Nina Martin

Sign up for our free newsletter

Subscribe to the Mother Jones Daily to have our top stories delivered directly to your inbox.

By signing up, you agree to our privacy policy and terms of use , and to receive messages from Mother Jones and our partners.

Get our award-winning magazine

Save big on a full year of investigations, ideas, and insights.

Support our journalism

Help Mother Jones ' reporters dig deep with a tax-deductible donation.

Independent. In print. In your mailbox.

Inexpensive, too! Subscribe today and get a full year of Mother Jones for just $19.95.

Mother Jones Magazine Cover : July + August 2024

Bold. Brave. Beautiful.

Award-winning photojournalism. Stunning video. Fearless conversations.

Looking for news you can trust?

We noticed you have an ad blocker on..

Can you pitch in a few bucks to help fund Mother Jones' investigative journalism? We're a nonprofit (so it's tax-deductible), and reader support makes up about two-thirds of our budget.

We noticed you have an ad blocker on. Can you pitch in a few bucks to help fund Mother Jones' investigative journalism?

Don't let an algorithm decide what news you see.

Sign up for the free Mother Jones Daily newsletter and follow the news that matters.

IMAGES

  1. Persuasive Essay Sample: Global Warming

    an essay of global warming

  2. Global Warming Speech

    an essay of global warming

  3. 😱 Best essay on global warming. Global Warming Essay Examples. 2022-10-18

    an essay of global warming

  4. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    an essay of global warming

  5. 💣 Essay about global warming by student. Climate Change Essay For

    an essay of global warming

  6. Essay on Global Warming with Samples (150

    an essay of global warming

COMMENTS

  1. Global warming

    Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect, a warming of Earth's surface and lower atmosphere caused by the presence of water vapour, carbon dioxide, methane, nitrous oxides, and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and ...

  2. Essay on Global Warming

    Global Warming is a term almost everyone is familiar with. But, its meaning is still not clear to most of us. So, Global warming refers to the gradual rise in the overall temperature of the atmosphere of the Earth. Read Essay on Global Warming here.

  3. Essay on Global Warming

    This blog contains important points to keep in mind while writing an essay on global warming, the causes of global warming and more!

  4. What are the effects of global warming?

    What are the effects of global warming? One of the most concerning impacts of global warming is the effect warmer temperatures will have on Earth's polar regions and mountain glaciers.

  5. Essay on Effects of Global Warming for Students and Children

    Global warming refers to climate change that causes an increase in the average of Earth's temperature. In this Essay on Effects of Global Warming will Discuss Causes, Effects, and Solutions of Global Warming.

  6. Global Warming

    Global warming causes climate change, which poses a serious threat to life on Earth in the forms of widespread flooding and extreme weather. Scientists continue to study global warming and its impact on Earth. carbon dioxide. noun. greenhouse gas produced by animals during respiration and used by plants during photosynthesis.

  7. Global Warming Essay: Causes, Effects, and Prevention

    This example global warming essay discusses the causes of this environmental change along with the effects of the warming of our planet and how to prevent it in the future.

  8. Argumentative Essay on Global Warming

    The consequences of global warming are far-reaching and severe, including more frequent and intense heatwaves, rising sea levels, and changes in weather patterns. In this essay, I will argue that global warming is a pressing issue that requires immediate action from individuals, governments, and businesses worldwide.

  9. Causes and Effects of Climate Change

    Causes and Effects of Climate Change. Fossil fuels - coal, oil and gas - are by far the largest contributor to global climate change, accounting for over 75 per cent of global greenhouse gas ...

  10. How a warming Earth is changing our brains, bodies and minds

    Global average surface temperatures have risen by about 1.1°C (2°F) since the pre-industrial era, with most of this warming occurring in the past 40 years. Ice is melting; seas are steadily rising; storms are - well, you know this story. And yet, most frequently, it is still a story of the world out there: the world outside of us.

  11. Causes of global warming, facts and information

    Many people think of global warming and climate change as synonyms, but scientists prefer to use "climate change" when describing the complex shifts now affecting our planet's weather and ...

  12. Causes and effects of global warming

    global warming, Increase in the global average surface temperature resulting from enhancement of the greenhouse effect, primarily by air pollution.

  13. Essay On Global Warming

    Essay On Global Warming Essay on global warming is an important topic for students to understand. The essay brings to light the plight of the environment and the repercussion of anthropogenic activities. Continue reading to discover tips and tricks for writing an engaging and interesting essay on global warming.

  14. What is global warming, facts and information

    What is global warming, explained. The planet is heating up—and fast. Glaciers are melting, sea levels are rising, cloud forests are dying, and wildlife is scrambling to keep pace. It has become ...

  15. There's a deeper problem hiding beneath global warming

    Deep warming is a problem hiding beneath global warming, but one that will become prominent if and when we manage to solve the more pressing issue of greenhouse gases. It remains just out of sight, which might explain why scientists only became concerned about the 'waste heat' problem around 15 years ago.

  16. Global Warming: Causes And Consequences

    Consequences we are already seeing include: Accelerating rise in global sea level owing to irreversible melting of glacial ice in the European Alps, melting of arctic ice, and of greatest concern, melting of the land ice sheets in Greenland and Antarctica. Large changes in climate patterns that have led to cataclysmic wild fires encouraged by ...

  17. Causes, Effects and Solutions to Global Warming

    This essay explores the causes, effects of global warming and takes a look at potential solutions to the current environmental issues leading to global warming on an unprecedented scale.

  18. The Science of Climate Change Explained: Facts, Evidence and Proof

    Is climate change a part of the planet's natural warming and cooling cycles? How do we know global warming is not because of the sun or volcanoes?

  19. Global Warming Essay

    Look at the Global Warming Essay. Also, find out the causes of rising temperature, what is global warming, what are it's solutions, Effects of Global warming & more!

  20. Global Warming Essay in English (Causes and Solutions)

    Global Warming Essay- Read and learn about the Essay on Global Warming in English 100, 200 and 500 words for students to perform well is shared by subject experts on careers360.com.

  21. Climate Explained: Introductory Essays About Climate Change Topics

    Climate Explained, a part of Yale Climate Connections, is an essay collection that addresses an array of climate change questions and topics, including why it's cold outside if global warming is real, how we know that humans are responsible for global warming, and the relationship between climate change and national security.

  22. What evidence exists that Earth is warming and that humans are the main

    There is overwhelming scientific evidence that Earth is warming and a preponderance of scientific evidence that human activities are the main cause.

  23. Global Warming Definition, Causes, Effects, Impacts, Solutions

    Global Warming is a long-term increase in average global temperature. Read about Global Warming Definition, Causes, Effects, Impact on Climate Change & Solutions for the UPSC exam.

  24. Global Warming Solution Essay (pdf)

    Global Warming Solution Essay Crafting an essay on the subject of global warming solutions is undoubtedly a challenging endeavor. Tackling such a complex and pressing issue demands a comprehensive understanding of the scientific, economic, and political aspects surrounding climate change. The task involves delving into a vast pool of information, ranging from greenhouse gas emissions and ...

  25. Climate Change: Evidence and Causes: Update 2020

    C ONCLUSION. This document explains that there are well-understood physical mechanisms by which changes in the amounts of greenhouse gases cause climate changes. It discusses the evidence that the concentrations of these gases in the atmosphere have increased and are still increasing rapidly, that climate change is occurring, and that most of ...

  26. Let Venice Sink

    It's time to leave the city as a monument to the dangers of global warming—and rethink our relationship to heritage. ... Venice resident Jan Morris with casual mercilessness in a 1971 essay for ...

  27. Climate Scientists Flummoxed by Unexpected Rise in Global Temperatures

    In a remarkably candid essay in the journal Nature this March, one of the world's top climate scientists posited the alarming possibility that global heating may be moving beyond the ability of ...