U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • My Bibliography
  • Collections
  • Citation manager

Save citation to file

Email citation, add to collections.

  • Create a new collection
  • Add to an existing collection

Add to My Bibliography

Your saved search, create a file for external citation management software, your rss feed.

  • Search in PubMed
  • Search in NLM Catalog
  • Add to Search

How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses

Affiliations.

  • 1 Behavioural Science Centre, Stirling Management School, University of Stirling, Stirling FK9 4LA, United Kingdom; email: [email protected].
  • 2 Department of Psychological and Behavioural Science, London School of Economics and Political Science, London WC2A 2AE, United Kingdom.
  • 3 Department of Statistics, Northwestern University, Evanston, Illinois 60208, USA; email: [email protected].
  • PMID: 30089228
  • DOI: 10.1146/annurev-psych-010418-102803

Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question. The best reviews synthesize studies to draw broad theoretical conclusions about what a literature means, linking theory to evidence and evidence to theory. This guide describes how to plan, conduct, organize, and present a systematic review of quantitative (meta-analysis) or qualitative (narrative review, meta-synthesis) information. We outline core standards and principles and describe commonly encountered problems. Although this guide targets psychological scientists, its high level of abstraction makes it potentially relevant to any subject area or discipline. We argue that systematic reviews are a key methodology for clarifying whether and how research findings replicate and for explaining possible inconsistencies, and we call for researchers to conduct systematic reviews to help elucidate whether there is a replication crisis.

Keywords: evidence; guide; meta-analysis; meta-synthesis; narrative; systematic review; theory.

PubMed Disclaimer

Similar articles

  • The future of Cochrane Neonatal. Soll RF, Ovelman C, McGuire W. Soll RF, et al. Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12. Early Hum Dev. 2020. PMID: 33036834
  • Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Aromataris E, et al. Int J Evid Based Healthc. 2015 Sep;13(3):132-40. doi: 10.1097/XEB.0000000000000055. Int J Evid Based Healthc. 2015. PMID: 26360830
  • RAMESES publication standards: meta-narrative reviews. Wong G, Greenhalgh T, Westhorp G, Buckingham J, Pawson R. Wong G, et al. BMC Med. 2013 Jan 29;11:20. doi: 10.1186/1741-7015-11-20. BMC Med. 2013. PMID: 23360661 Free PMC article.
  • A Primer on Systematic Reviews and Meta-Analyses. Nguyen NH, Singh S. Nguyen NH, et al. Semin Liver Dis. 2018 May;38(2):103-111. doi: 10.1055/s-0038-1655776. Epub 2018 Jun 5. Semin Liver Dis. 2018. PMID: 29871017 Review.
  • Publication Bias and Nonreporting Found in Majority of Systematic Reviews and Meta-analyses in Anesthesiology Journals. Hedin RJ, Umberham BA, Detweiler BN, Kollmorgen L, Vassar M. Hedin RJ, et al. Anesth Analg. 2016 Oct;123(4):1018-25. doi: 10.1213/ANE.0000000000001452. Anesth Analg. 2016. PMID: 27537925 Review.
  • The Association between Emotional Intelligence and Prosocial Behaviors in Children and Adolescents: A Systematic Review and Meta-Analysis. Cao X, Chen J. Cao X, et al. J Youth Adolesc. 2024 Aug 28. doi: 10.1007/s10964-024-02062-y. Online ahead of print. J Youth Adolesc. 2024. PMID: 39198344
  • The impact of chemical pollution across major life transitions: a meta-analysis on oxidative stress in amphibians. Martin C, Capilla-Lasheras P, Monaghan P, Burraco P. Martin C, et al. Proc Biol Sci. 2024 Aug;291(2029):20241536. doi: 10.1098/rspb.2024.1536. Epub 2024 Aug 28. Proc Biol Sci. 2024. PMID: 39191283 Free PMC article.
  • Target mechanisms of mindfulness-based programmes and practices: a scoping review. Maloney S, Kock M, Slaghekke Y, Radley L, Lopez-Montoyo A, Montero-Marin J, Kuyken W. Maloney S, et al. BMJ Ment Health. 2024 Aug 24;27(1):e300955. doi: 10.1136/bmjment-2023-300955. BMJ Ment Health. 2024. PMID: 39181568 Free PMC article. Review.
  • Bridging disciplines-key to success when implementing planetary health in medical training curricula. Malmqvist E, Oudin A. Malmqvist E, et al. Front Public Health. 2024 Aug 6;12:1454729. doi: 10.3389/fpubh.2024.1454729. eCollection 2024. Front Public Health. 2024. PMID: 39165783 Free PMC article. Review.
  • Strength of evidence for five happiness strategies. Puterman E, Zieff G, Stoner L. Puterman E, et al. Nat Hum Behav. 2024 Aug 12. doi: 10.1038/s41562-024-01954-0. Online ahead of print. Nat Hum Behav. 2024. PMID: 39134738 No abstract available.
  • Search in MeSH

LinkOut - more resources

Full text sources.

  • Ingenta plc
  • Ovid Technologies, Inc.

Other Literature Sources

  • scite Smart Citations

Miscellaneous

  • NCI CPTAC Assay Portal
  • Citation Manager

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Key Steps in the Research Process - A Comprehensive Guide

Harish M

Embarking on a research journey can be both thrilling and challenging. Whether you're a student, journalist, or simply inquisitive about a subject, grasping the research process steps is vital for conducting thorough and efficient research. In this all-encompassing guide, we'll navigate you through the pivotal stages of what is the research process, from pinpointing your topic to showcasing your discoveries.

We'll delve into how to formulate a robust research question, undertake preliminary research, and devise a structured research plan. You'll acquire strategies for gathering and scrutinizing data, along with advice for effectively disseminating your findings. By adhering to these steps in the research process, you'll be fully prepared to confront any research endeavor that presents itself.

Step 1: Identify and Develop Your Topic

Identifying and cultivating a research topic is the foundational first step in the research process. Kick off by brainstorming potential subjects that captivate your interest, as this will fuel your enthusiasm throughout the endeavor. 

Employ the following tactics to spark ideas and understand what is the first step in the research process:

  • Review course materials, lecture notes, and assigned readings for inspiration
  • Engage in discussions with peers, professors, or experts in the field
  • Investigate current events, news pieces, or social media trends pertinent to your field of study to uncover valuable market research insights.
  • Reflect on personal experiences or observations that have sparked your curiosity

Once you've compiled a roster of possible topics, engage in preliminary research to evaluate the viability and breadth of each concept. This initial probe may encompass various research steps and procedures to ensure a comprehensive understanding of the topics at hand.

  • Scanning Wikipedia articles or other general reference sources for an overview
  • Searching for scholarly articles, books, or media related to your topic
  • Identifying key concepts, theories, or debates within the field
  • Considering the availability of primary sources or data for analysis

While amassing background knowledge, begin to concentrate your focus and hone your topic. Target a subject that is specific enough to be feasible within your project's limits, yet expansive enough to permit substantial analysis. Mull over the following inquiries to steer your topic refinement and address the research problem effectively:

  • What aspect of the topic am I most interested in exploring?
  • What questions or problems related to this topic remain unanswered or unresolved?
  • How can I contribute new insights or perspectives to the existing body of knowledge?
  • What resources and methods will I need to investigate this topic effectively?

Step 2: Conduct Preliminary Research

Having pinpointed a promising research topic, it's time to plunge into preliminary research. This essential phase enables you to deepen your grasp of the subject and evaluate the practicality of your project. Here are some pivotal tactics for executing effective preliminary research using various library resources:

  • Literature Review

To effectively embark on your scholarly journey, it's essential to consult a broad spectrum of sources, thereby enriching your understanding with the breadth of academic research available on your topic. This exploration may encompass a variety of materials.

  • Online catalogs of libraries (local, regional, national, and special)
  • Meta-catalogs and subject-specific online article databases
  • Digital institutional repositories and open access resources
  • Works cited in scholarly books and articles
  • Print bibliographies and internet sources
  • Websites of major nonprofit organizations, research institutes, museums, universities, and government agencies
  • Trade and scholarly publishers
  • Discussions with fellow scholars and peers
  • Identify Key Debates

Engaging with the wealth of recently published materials and seminal works in your field is a pivotal part of the research process definition. Focus on discerning the core ideas, debates, and arguments that define your topic, which will in turn sharpen your research focus and guide you toward formulating pertinent research questions.

  • Narrow Your Focus

Hone your topic by leveraging your initial findings to tackle a specific issue or facet within the larger subject, a fundamental step in the research process steps. Consider various factors that could influence the direction and scope of your inquiry.

  • Subtopics and specific issues
  • Key debates and controversies
  • Timeframes and geographical locations
  • Organizations or groups of people involved

A thorough evaluation of existing literature and a comprehensive assessment of the information at hand will pinpoint the exact dimensions of the issue you aim to explore. This methodology ensures alignment with prior research, optimizes resources, and can bolster your case when seeking research funding by demonstrating a well-founded approach.

Step 3: Establish Your Research Question

Having completed your preliminary research and topic refinement, the next vital phase involves formulating a precise and focused research question. This question, a cornerstone among research process steps, will steer your investigation, keeping it aligned with relevant data and insights. When devising your research question, take into account these critical factors:

Initiate your inquiry by defining the requirements and goals of your study, a key step in the research process steps. Whether you're testing a hypothesis, analyzing data, or constructing and supporting an argument, grasping the intent of your research is crucial for framing your question effectively.

Ensure that your research question is feasible, given your constraints in time and word count, an important consideration in the research process steps. Steer clear of questions that are either too expansive or too constricted, as they may impede your capacity to conduct a comprehensive analysis.

Your research question should transcend a mere 'yes' or 'no' response, prompting a thorough engagement with the research process steps. It should foster a comprehensive exploration of the topic, facilitating the analysis of issues or problems beyond just a basic description.

  • Researchability

Ensure that your research question opens the door to quality research materials, including academic books and refereed journal articles. It's essential to weigh the accessibility of primary data and secondary data that will bolster your investigative efforts.

When establishing your research question, take the following steps:

  • Identify the specific aspect of your general topic that you want to explore
  • Hypothesize the path your answer might take, developing a hypothesis after formulating the question
  • Steer clear of certain types of questions in your research process steps, such as those that are deceptively simple, fictional, stacked, semantic, impossible-to-answer, opinion or ethical, and anachronistic, to maintain the integrity of your inquiry.
  • Conduct a self-test on your research question to confirm it adheres to the research process steps, ensuring it is flexible, testable, clear, precise, and underscores a distinct reason for its importance.

By meticulously formulating your research question, you're establishing a solid groundwork for the subsequent research process steps, guaranteeing that your efforts are directed, efficient, and yield productive outcomes.

Step 4: Develop a Research Plan

Having formulated a precise research question, the ensuing phase involves developing a detailed research plan. This plan, integral to the research process steps, acts as a navigational guide for your project, keeping you organized, concentrated, and on a clear path to accomplishing your research objectives. When devising your research plan, consider these pivotal components:

  • Project Goals and Objectives

Articulate the specific aims and objectives of your research project with clarity. These should be in harmony with your research question and provide a structured framework for your investigation, ultimately aligning with your overarching business goals.

  • Research Methods

Select the most appropriate research tools and statistical methods to address your question effectively. This may include a variety of qualitative and quantitative approaches to ensure comprehensive analysis.

  • Quantitative methods (e.g., surveys, experiments)
  • Qualitative methods (e.g., interviews, focus groups)
  • Mixed methods (combining quantitative and qualitative approaches)
  • Access to databases, archives, or special collections
  • Specialized equipment or software
  • Funding for travel, materials, or participant compensation
  • Assistance from research assistants, librarians, or subject matter experts
  • Participant Recruitment

If your research involves human subjects, develop a strategic plan for recruiting participants. Consider factors such as the inclusion of diverse ethnic groups and the use of user interviews to gather rich, qualitative data.

  • Target population and sample size
  • Inclusion and exclusion criteria
  • Recruitment strategies (e.g., flyers, social media, snowball sampling)
  • Informed consent procedures
  • Instruments or tools for gathering data (e.g., questionnaires, interview guides)
  • Data storage and management protocols
  • Statistical or qualitative analysis techniques
  • Software or tools for data analysis (e.g., SPSS, NVivo)

Create a realistic project strategy for your research project, breaking it down into manageable stages or milestones. Consider factors such as resource availability and potential bottlenecks.

  • Literature review and background research
  • IRB approval (if applicable)
  • Participant recruitment and data collection
  • Data analysis and interpretation
  • Writing and revising your findings
  • Dissemination of results (e.g., presentations, publications)

By developing a comprehensive research plan, incorporating key research process steps, you'll be better equipped to anticipate challenges, allocate resources effectively, and ensure the integrity and rigor of your research process. Remember to remain flexible and adaptable to navigate unexpected obstacles or opportunities that may arise.

Step 5: Conduct the Research

With your research plan in place, it's time to dive into the data collection phase. As you conduct your research, adhere to the established research process steps to ensure the integrity and quality of your findings.

Conduct your research in accordance with federal regulations, state laws, institutional SOPs, and policies. Familiarize yourself with the IRB-approved protocol and follow it diligently, as part of the essential research process steps.

  • Roles and Responsibilities

Understand and adhere to the roles and responsibilities of the principal investigator and other research team members. Maintain open communication lines with all stakeholders, including the sponsor and IRB, to foster cross-functional collaboration.

  • Data Management

Develop and maintain an effective system for data collection and storage, utilizing advanced research tools. Ensure that each member of the research team has seamless access to the most up-to-date documents, including the informed consent document, protocol, and case report forms.

  • Quality Assurance

Implement comprehensive quality assurance measures to verify that the study adheres strictly to the IRB-approved protocol, institutional policy, and all required regulations. Confirm that all study activities are executed as planned and that any deviations are addressed with precision and appropriateness.

  • Participant Eligibility

As part of the essential research process steps, verify that potential study subjects meet all eligibility criteria and none of the ineligibility criteria before advancing with the research.

To maintain the highest standards of academic integrity and ethical conduct:

  • Conduct research with unwavering honesty in all facets, including experimental design, data generation, and analysis, as well as the publication of results, as these are critical research process steps.
  • Maintain a climate conducive to conducting research in strict accordance with good research practices, ensuring each step of the research process is meticulously observed.
  • Provide appropriate supervision and training for researchers.
  • Encourage open discussion of ideas and the widest dissemination of results possible.
  • Keep clear and accurate records of research methods and results.
  • Exercise a duty of care to all those involved in the research.

When collecting and assimilating data:

  • Use professional online data analysis tools to streamline the process.
  • Use metadata for context
  • Assign codes or labels to facilitate grouping or comparison
  • Convert data into different formats or scales for compatibility
  • Organize documents in both the study participant and investigator's study regulatory files, creating a central repository for easy access and reference, as this organization is a pivotal step in the research process.

By adhering to these guidelines and upholding a commitment to ethical and rigorous research practices, you'll be well-equipped to conduct your research effectively and contribute meaningful insights to your field of study, thereby enhancing the integrity of the research process steps.

Step 6: Analyze and Interpret Data

Embarking on the research process steps, once you have gathered your research data, the subsequent critical phase is to delve into analysis and interpretation. This stage demands a meticulous examination of the data, spotting trends, and forging insightful conclusions that directly respond to your research question. Reflect on these tactics for a robust approach to data analysis and interpretation:

  • Organize and Clean Your Data

A pivotal aspect of the research process steps is to start by structuring your data in an orderly and coherent fashion. This organizational task may encompass:

  • Creating a spreadsheet or database to store your data
  • Assigning codes or labels to facilitate grouping or comparison
  • Cleaning the data by removing any errors, inconsistencies, or missing values
  • Converting data into different formats or scales for compatibility
  • Calculating measures of central tendency (mean, median, mode)
  • Determining measures of variability (range, standard deviation)
  • Creating frequency tables or histograms to visualize the distribution of your data
  • Identifying any outliers or unusual patterns in your data
  • Perform Inferential Analysis

Integral to the research process steps, you might engage in inferential analysis to evaluate hypotheses or extrapolate findings to a broader demographic, contingent on your research design and query. This analytical step may include:

  • Selecting appropriate statistical tests (e.g., t-tests, ANOVA, regression analysis)
  • As part of the research process steps, establishing a significance threshold (e.g., p < 0.05) is essential to gauge the likelihood of your results being a random occurrence rather than a significant finding.
  • Interpreting the results of your statistical tests in the context of your research question
  • Considering the practical significance of your findings, in addition to statistical significance

When interpreting your data, it's essential to:

  • Look for relationships, patterns, and trends in your data
  • Consider alternative explanations for your findings
  • Acknowledge any limitations or potential biases in your research design or data collection
  • Leverage data visualization techniques such as graphs, charts, and infographics to articulate your research findings with clarity and impact, thereby enhancing the communicative value of your data.
  • Seek feedback from peers, mentors, or subject matter experts to validate your interpretations

It's important to recognize that data interpretation is a cyclical process that hinges on critical thinking, inventiveness, and the readiness to refine your conclusions with emerging insights. By tackling data analysis and interpretation with diligence and openness, you're setting the stage to derive meaningful and justifiable inferences from your research, in line with the research process steps.

Step 7: Present the Findings

After meticulous analysis and interpretation of your research findings, as dictated by the research process steps, the moment arrives to disseminate your insights. Effectively presenting your research is key to captivating your audience and conveying the importance of your findings. Employ these strategies to create an engaging and persuasive presentation:

  • Organize Your Findings : 

Use the PEEL method to structure your presentation:

  • Point: Clearly state your main argument or finding
  • Evidence: Present the data and analysis that support your point
  • Explanation: Provide context and interpret the significance of your evidence
  • Link: Connect your findings to the broader research question or field
  • Tailor Your Message

Understanding your audience is crucial to effective communication. When presenting your research, it's important to tailor your message to their background, interests, and level of expertise, effectively employing user personas to guide your approach.

  • Use clear, concise language and explain technical terms
  • Highlight what makes your research unique and impactful
  • Craft a compelling narrative with a clear structure and hook
  • Share the big picture, emphasizing the significance of your findings
  • Engage Your Audience : Make your presentation enjoyable and memorable by incorporating creative elements:
  • Use visual aids, such as tables, charts, and graphs, to communicate your findings effectively
  • To vividly convey your research journey, consider employing storytelling techniques, such as UX comics or storyboards, which can make complex information more accessible and engaging.
  • Injecting humor and personality into your presentation can be a powerful tool for communication. Utilize funny messages or GIFs to lighten the mood, breaking up tension and refocusing attention, thereby enhancing the effectiveness of humor in communication.

By adhering to these strategies, you'll be well-prepared to present your research findings in a manner that's both clear and captivating. Ensure you follow research process steps such as citing your sources accurately and discussing the broader implications of your work, providing actionable recommendations, and delineating the subsequent phases for integrating your findings into broader practice or policy frameworks.

The research process is an intricate journey that demands meticulous planning, steadfast execution, and incisive analysis. By adhering to the fundamental research process steps outlined in this guide, from pinpointing your topic to showcasing your findings, you're setting yourself up for conducting research that's both effective and influential. Keep in mind that the research journey is iterative, often necessitating revisits to certain stages as fresh insights surface or unforeseen challenges emerge.

As you commence your research journey, seize the chance to contribute novel insights to your field and forge a positive global impact. By tackling your research with curiosity, integrity, and a dedication to excellence, you're paving the way towards attaining your research aspirations and making a substantial difference with your work, all while following the critical research process steps.

Sign up for more like this.

University of Maryland Libraries Logo

Systematic Review

  • Library Help
  • What is a Systematic Review (SR)?

Steps of a Systematic Review

  • Framing a Research Question
  • Developing a Search Strategy
  • Searching the Literature
  • Managing the Process
  • Meta-analysis
  • Publishing your Systematic Review

Forms and templates

Logos of MS Word and MS Excel

Image: David Parmenter's Shop

  • PICO Template
  • Inclusion/Exclusion Criteria
  • Database Search Log
  • Review Matrix
  • Cochrane Tool for Assessing Risk of Bias in Included Studies

   • PRISMA Flow Diagram  - Record the numbers of retrieved references and included/excluded studies. You can use the Create Flow Diagram tool to automate the process.

   •  PRISMA Checklist - Checklist of items to include when reporting a systematic review or meta-analysis

PRISMA 2020 and PRISMA-S: Common Questions on Tracking Records and the Flow Diagram

  • PROSPERO Template
  • Manuscript Template
  • Steps of SR (text)
  • Steps of SR (visual)
  • Steps of SR (PIECES)

Image by

from the UMB HSHSL Guide. (26 min) on how to conduct and write a systematic review from RMIT University  from the VU Amsterdam . , (1), 6–23. https://doi.org/10.3102/0034654319854352

. (1), 49-60. . (4), 471-475.

 (2020)  (2020) - Methods guide for effectiveness and comparative effectiveness reviews (2017)  - Finding what works in health care: Standards for systematic reviews (2011)  - Systematic reviews: CRD’s guidance for undertaking reviews in health care (2008)

entify your research question. Formulate a clear, well-defined research question of appropriate scope. Define your terminology. Find existing reviews on your topic to inform the development of your research question, identify gaps, and confirm that you are not duplicating the efforts of previous reviews. Consider using a framework like  or to define you question scope. Use to record search terms under each concept. 

 It is a good idea to register your protocol in a publicly accessible way. This will help avoid other people completing a review on your topic. Similarly, before you start doing a systematic review, it's worth checking the different registries that nobody else has already registered a protocol on the same topic.

- Systematic reviews of health care and clinical interventions  - Systematic reviews of the effects of social interventions (Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies) - The protocol is published immediately and subjected to open peer review. When two reviewers approve it, the paper is sent to Medline, Embase and other databases for indexing. - upload a protocol for your scoping review - Systematic reviews of healthcare practices to assist in the improvement of healthcare outcomes globally - Registry of a protocol on OSF creates a frozen, time-stamped record of the protocol, thus ensuring a level of transparency and accountability for the research. There are no limits to the types of protocols that can be hosted on OSF.  - International prospective register of systematic reviews. This is the primary database for registering systematic review protocols and searching for published protocols. . PROSPERO accepts protocols from all disciplines (e.g., psychology, nutrition) with the stipulation that they must include health-related outcomes.  - Similar to PROSPERO. Based in the UK, fee-based service, quick turnaround time. - Submit a pre-print, or a protocol for a scoping review.   - Share your search strategy and research protocol. No limit on the format, size, access restrictions or license.

outlining the details and documentation necessary for conducting a systematic review:

, (1), 28.
Clearly state the criteria you will use to determine whether or not a study will be included in your search. Consider study populations, study design, intervention types, comparison groups, measured outcomes. Use some database-supplied limits such as language, dates, humans, female/male, age groups, and publication/study types (randomized controlled trials, etc.).
Run your searches in the to your topic. Work with to help you design comprehensive search strategies across a variety of databases. Approach the grey literature methodically and purposefully. Collect ALL of the retrieved records from each search into , such as  , or , and prior to screening. using the  and .
- export your Endnote results in this screening software Start with a title/abstract screening to remove studies that are clearly not related to your topic. Use your to screen the full-text of studies. It is highly recommended that two independent reviewers screen all studies, resolving areas of disagreement by consensus.
Use , or systematic review software (e.g. , ), to extract all relevant data from each included study. It is recommended that you pilot your data extraction tool, to determine if other fields should be included or existing fields clarified.
Risk of Bias (Quality) Assessment -  (download the Excel spreadsheet to see all data) Use a Risk of Bias tool (such as the ) to assess the potential biases of studies in regards to study design and other factors. Read the to learn about the topic of assessing risk of bias in included studies. You can adapt  ( ) to best meet the needs of your review, depending on the types of studies included.

-

-

Clearly present your findings, including detailed methodology (such as search strategies used, selection criteria, etc.) such that your review can be easily updated in the future with new research findings. Perform a meta-analysis, if the studies allow. Provide recommendations for practice and policy-making if sufficient, high quality evidence exists, or future directions for research to fill existing gaps in knowledge or to strengthen the body of evidence.

For more information, see: 

. (2), 217–226. https://doi.org/10.2450/2012.0247-12  - Get some inspiration and find some terms and phrases for writing your manuscript - Automated high-quality spelling, grammar and rephrasing corrections using artificial intelligence (AI) to improve the flow of your writing. Free and subscription plans available.

8. Find the best journal to publish your work. Identifying the best journal to submit your research to can be a difficult process. To help you make the choice of where to submit, simply insert your title and abstract in any of the listed under the tab. 

Adapted from  A Guide to Conducting Systematic Reviews: Steps in a Systematic Review by Cornell University Library

This diagram illustrates in a visual way and in plain language what review authors actually do in the process of undertaking a systematic review.

This diagram illustrates what is actually in a published systematic review and gives examples from the relevant parts of a systematic review housed online on The Cochrane Library. It will help you to read or navigate a systematic review.

Source: Cochrane Consumers and Communications  (infographics are free to use and licensed under Creative Commons )

Check the following visual resources titled " What Are Systematic Reviews?"

  • Video  with closed captions available
  • Animated Storyboard

 

Image:   

-  the methods of the systematic review are generally decided before conducting it.  
- searching for studies which match the preset criteria in a systematic manner
- sort all retrieved articles (included or  excluded) and assess the risk of bias for each included study
- each study is coded with preset form, either qualitatively or quantitatively synthesize data.
- place results of synthesis into context, strengths and weaknesses of the studies 
- report provides description of methods and results in a clear and transparent manner

 

Source: Foster, M. (2018). Systematic reviews service: Introduction to systematic reviews. Retrieved September 18, 2018, from

  • << Previous: What is a Systematic Review (SR)?
  • Next: Framing a Research Question >>
  • Last Updated: Aug 26, 2024 12:37 PM
  • URL: https://lib.guides.umd.edu/SR

Conducting a Systematic Review: A Practical Guide

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

systematic plan of conducting research

  • Freya MacMillan 2 ,
  • Kate A. McBride 3 ,
  • Emma S. George 4 &
  • Genevieve Z. Steiner 5  

2911 Accesses

2 Citations

It can be challenging to conduct a systematic review with limited experience and skills in undertaking such a task. This chapter provides a practical guide to undertaking a systematic review, providing step-by-step instructions to guide the individual through the process from start to finish. The chapter begins with defining what a systematic review is, reviewing its various components, turning a research question into a search strategy, developing a systematic review protocol, followed by searching for relevant literature and managing citations. Next, the chapter focuses on documenting the characteristics of included studies and summarizing findings, extracting data, methods for assessing risk of bias and considering heterogeneity, and undertaking meta-analyses. Last, the chapter explores creating a narrative and interpreting findings. Practical tips and examples from existing literature are utilized throughout the chapter to assist readers in their learning. By the end of this chapter, the reader will have the knowledge to conduct their own systematic review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

systematic plan of conducting research

Systematic Reviews and Meta-Analysis: A Guide for Beginners

Barbour RS. Checklists for improving rigour in qualitative research: a case of the tail wagging the dog? BMJ. 2001;322(7294):1115–7.

Article   Google Scholar  

Butler A, Hall H, Copnell B. A guide to writing a qualitative systematic review protocol to enhance evidence-based practice in nursing and health care. Worldviews Evid-Based Nurs. 2016;13(3):241–9.

Cook DJ, Mulrow CD, Haynes RB. Systematic reviews: synthesis of best evidence for clinical decisions. Ann Intern Med. 1997;126(5):376–80.

Dixon-Woods M, Bonas S, Booth A, Jones DR, Miller T, Sutton AJ, … Young B. How can systematic reviews incorporate qualitative research? A critical perspective. Qual Res. 2006;6(1):27–44. https://doi.org/10.1177/1468794106058867 .

Greenhalgh T. How to read a paper: the basics of evidence-based medicine. 4th ed. Chichester/Hoboken: Wiley-Blackwell; 2010.

Google Scholar  

Hannes K, Lockwood C, Pearson A. A comparative analysis of three online appraisal instruments’ ability to assess validity in qualitative research. Qual Health Res. 2010;20(12):1736–43. https://doi.org/10.1177/1049732310378656 .

Higgins JPT, Green S. Cochrane handbook for systematic reviews of interventions (Version 5.1.0 [updated March 2011]). The Cochrane Collaboration; 2011.  http://handbook-5-1.cochrane.org/

Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, … Sterne JAC. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343. https://doi.org/10.1136/bmj.d5928 .

Hillier S, Grimmer-Somers K, Merlin T, Middleton P, Salisbury J, Tooher R, Weston A. FORM: an Australian method for formulating and grading recommendations in evidence-based clinical guidelines. BMC Med Res Methodol. 2011;11:23. https://doi.org/10.1186/1471-2288-11-23 .

Humphreys DK, Panter J, Ogilvie D. Questioning the application of risk of bias tools in appraising evidence from natural experimental studies: critical reflections on Benton et al., IJBNPA 2016. Int J Behav Nutr Phys Act. 2017; 14 (1):49. https://doi.org/10.1186/s12966-017-0500-4 .

King R, Hooper B, Wood W. Using bibliographic software to appraise and code data in educational systematic review research. Med Teach. 2011;33(9):719–23. https://doi.org/10.3109/0142159x.2011.558138 .

Koelemay MJ, Vermeulen H. Quick guide to systematic reviews and meta-analysis. Eur J Vasc Endovasc Surg. 2016;51(2):309. https://doi.org/10.1016/j.ejvs.2015.11.010 .

Lucas PJ, Baird J, Arai L, Law C, Roberts HM. Worked examples of alternative methods for the synthesis of qualitative and quantitative research in systematic reviews. BMC Med Res Methodol. 2007;7:4–4. https://doi.org/10.1186/1471-2288-7-4 .

MacMillan F, Kirk A, Mutrie N, Matthews L, Robertson K, Saunders DH. A systematic review of physical activity and sedentary behavior intervention studies in youth with type 1 diabetes: study characteristics, intervention design, and efficacy. Pediatr Diabetes. 2014;15(3):175–89. https://doi.org/10.1111/pedi.12060 .

MacMillan F, Karamacoska D, El Masri A, McBride KA, Steiner GZ, Cook A, … George ES. A systematic review of health promotion intervention studies in the police force: study characteristics, intervention design and impacts on health. Occup Environ Med. 2017. https://doi.org/10.1136/oemed-2017-104430 .

Matthews L, Kirk A, MacMillan F, Mutrie N. Can physical activity interventions for adults with type 2 diabetes be translated into practice settings? A systematic review using the RE-AIM framework. Transl Behav Med. 2014;4(1):60–78. https://doi.org/10.1007/s13142-013-0235-y .

Moher D, Schulz KF, Altman DG. The CONSORT statement: revised recommendations for improving the quality of reports of parallel group randomized trials. BMC Med Res Methodol. 2001;1:2. https://doi.org/10.1186/1471-2288-1-2 .

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. https://doi.org/10.1371/journal.pmed.1000097 .

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1. https://doi.org/10.1186/2046-4053-4-1 .

Mulrow CD, Cook DJ, Davidoff F. Systematic reviews: critical links in the great chain of evidence. Ann Intern Med. 1997;126(5):389–91.

Peters MDJ. Managing and coding references for systematic reviews and scoping reviews in EndNote. Med Ref Serv Q. 2017;36(1):19–31. https://doi.org/10.1080/02763869.2017.1259891 .

Steiner GZ, Mathersul DC, MacMillan F, Camfield DA, Klupp NL, Seto SW, … Chang DH. A systematic review of intervention studies examining nutritional and herbal therapies for mild cognitive impairment and dementia using neuroimaging methods: study characteristics and intervention efficacy. Evid Based Complement Alternat Med. 2017;2017:21. https://doi.org/10.1155/2017/6083629 .

Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, … Higgins JP. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355. https://doi.org/10.1136/bmj.i4919 .

Tong A, Sainsbury P, Craig J. Consolidated criteria for reporting qualitative research (COREQ): a 32-item checklist for interviews and focus groups. Int J Qual Health Care. 2007;19(6):349–57. https://doi.org/10.1093/intqhc/mzm042 .

Tong A, Palmer S, Craig JC, Strippoli GFM. A guide to reading and using systematic reviews of qualitative research. Nephrol Dial Transplant. 2016;31(6):897–903. https://doi.org/10.1093/ndt/gfu354 .

Uman LS. Systematic reviews and meta-analyses. J Can Acad Child Adolesc Psychiatry. 2011;20(1):57–9.

Download references

Author information

Authors and affiliations.

School of Science and Health and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia

Freya MacMillan

School of Medicine and Translational Health Research Institute, Western Sydney University, Sydney, NSW, Australia

Kate A. McBride

School of Science and Health, Western Sydney University, Sydney, NSW, Australia

Emma S. George

NICM and Translational Health Research Institute (THRI), Western Sydney University, Penrith, NSW, Australia

Genevieve Z. Steiner

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Freya MacMillan .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

MacMillan, F., McBride, K.A., George, E.S., Steiner, G.Z. (2019). Conducting a Systematic Review: A Practical Guide. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_113

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_113

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research
  • Privacy Policy

Research Method

Home » Research Process – Steps, Examples and Tips

Research Process – Steps, Examples and Tips

Table of Contents

Research Process

Research Process

Definition:

Research Process is a systematic and structured approach that involves the collection, analysis, and interpretation of data or information to answer a specific research question or solve a particular problem.

Research Process Steps

Research Process Steps are as follows:

Identify the Research Question or Problem

This is the first step in the research process. It involves identifying a problem or question that needs to be addressed. The research question should be specific, relevant, and focused on a particular area of interest.

Conduct a Literature Review

Once the research question has been identified, the next step is to conduct a literature review. This involves reviewing existing research and literature on the topic to identify any gaps in knowledge or areas where further research is needed. A literature review helps to provide a theoretical framework for the research and also ensures that the research is not duplicating previous work.

Formulate a Hypothesis or Research Objectives

Based on the research question and literature review, the researcher can formulate a hypothesis or research objectives. A hypothesis is a statement that can be tested to determine its validity, while research objectives are specific goals that the researcher aims to achieve through the research.

Design a Research Plan and Methodology

This step involves designing a research plan and methodology that will enable the researcher to collect and analyze data to test the hypothesis or achieve the research objectives. The research plan should include details on the sample size, data collection methods, and data analysis techniques that will be used.

Collect and Analyze Data

This step involves collecting and analyzing data according to the research plan and methodology. Data can be collected through various methods, including surveys, interviews, observations, or experiments. The data analysis process involves cleaning and organizing the data, applying statistical and analytical techniques to the data, and interpreting the results.

Interpret the Findings and Draw Conclusions

After analyzing the data, the researcher must interpret the findings and draw conclusions. This involves assessing the validity and reliability of the results and determining whether the hypothesis was supported or not. The researcher must also consider any limitations of the research and discuss the implications of the findings.

Communicate the Results

Finally, the researcher must communicate the results of the research through a research report, presentation, or publication. The research report should provide a detailed account of the research process, including the research question, literature review, research methodology, data analysis, findings, and conclusions. The report should also include recommendations for further research in the area.

Review and Revise

The research process is an iterative one, and it is important to review and revise the research plan and methodology as necessary. Researchers should assess the quality of their data and methods, reflect on their findings, and consider areas for improvement.

Ethical Considerations

Throughout the research process, ethical considerations must be taken into account. This includes ensuring that the research design protects the welfare of research participants, obtaining informed consent, maintaining confidentiality and privacy, and avoiding any potential harm to participants or their communities.

Dissemination and Application

The final step in the research process is to disseminate the findings and apply the research to real-world settings. Researchers can share their findings through academic publications, presentations at conferences, or media coverage. The research can be used to inform policy decisions, develop interventions, or improve practice in the relevant field.

Research Process Example

Following is a Research Process Example:

Research Question : What are the effects of a plant-based diet on athletic performance in high school athletes?

Step 1: Background Research Conduct a literature review to gain a better understanding of the existing research on the topic. Read academic articles and research studies related to plant-based diets, athletic performance, and high school athletes.

Step 2: Develop a Hypothesis Based on the literature review, develop a hypothesis that a plant-based diet positively affects athletic performance in high school athletes.

Step 3: Design the Study Design a study to test the hypothesis. Decide on the study population, sample size, and research methods. For this study, you could use a survey to collect data on dietary habits and athletic performance from a sample of high school athletes who follow a plant-based diet and a sample of high school athletes who do not follow a plant-based diet.

Step 4: Collect Data Distribute the survey to the selected sample and collect data on dietary habits and athletic performance.

Step 5: Analyze Data Use statistical analysis to compare the data from the two samples and determine if there is a significant difference in athletic performance between those who follow a plant-based diet and those who do not.

Step 6 : Interpret Results Interpret the results of the analysis in the context of the research question and hypothesis. Discuss any limitations or potential biases in the study design.

Step 7: Draw Conclusions Based on the results, draw conclusions about whether a plant-based diet has a significant effect on athletic performance in high school athletes. If the hypothesis is supported by the data, discuss potential implications and future research directions.

Step 8: Communicate Findings Communicate the findings of the study in a clear and concise manner. Use appropriate language, visuals, and formats to ensure that the findings are understood and valued.

Applications of Research Process

The research process has numerous applications across a wide range of fields and industries. Some examples of applications of the research process include:

  • Scientific research: The research process is widely used in scientific research to investigate phenomena in the natural world and develop new theories or technologies. This includes fields such as biology, chemistry, physics, and environmental science.
  • Social sciences : The research process is commonly used in social sciences to study human behavior, social structures, and institutions. This includes fields such as sociology, psychology, anthropology, and economics.
  • Education: The research process is used in education to study learning processes, curriculum design, and teaching methodologies. This includes research on student achievement, teacher effectiveness, and educational policy.
  • Healthcare: The research process is used in healthcare to investigate medical conditions, develop new treatments, and evaluate healthcare interventions. This includes fields such as medicine, nursing, and public health.
  • Business and industry : The research process is used in business and industry to study consumer behavior, market trends, and develop new products or services. This includes market research, product development, and customer satisfaction research.
  • Government and policy : The research process is used in government and policy to evaluate the effectiveness of policies and programs, and to inform policy decisions. This includes research on social welfare, crime prevention, and environmental policy.

Purpose of Research Process

The purpose of the research process is to systematically and scientifically investigate a problem or question in order to generate new knowledge or solve a problem. The research process enables researchers to:

  • Identify gaps in existing knowledge: By conducting a thorough literature review, researchers can identify gaps in existing knowledge and develop research questions that address these gaps.
  • Collect and analyze data : The research process provides a structured approach to collecting and analyzing data. Researchers can use a variety of research methods, including surveys, experiments, and interviews, to collect data that is valid and reliable.
  • Test hypotheses : The research process allows researchers to test hypotheses and make evidence-based conclusions. Through the systematic analysis of data, researchers can draw conclusions about the relationships between variables and develop new theories or models.
  • Solve problems: The research process can be used to solve practical problems and improve real-world outcomes. For example, researchers can develop interventions to address health or social problems, evaluate the effectiveness of policies or programs, and improve organizational processes.
  • Generate new knowledge : The research process is a key way to generate new knowledge and advance understanding in a given field. By conducting rigorous and well-designed research, researchers can make significant contributions to their field and help to shape future research.

Tips for Research Process

Here are some tips for the research process:

  • Start with a clear research question : A well-defined research question is the foundation of a successful research project. It should be specific, relevant, and achievable within the given time frame and resources.
  • Conduct a thorough literature review: A comprehensive literature review will help you to identify gaps in existing knowledge, build on previous research, and avoid duplication. It will also provide a theoretical framework for your research.
  • Choose appropriate research methods: Select research methods that are appropriate for your research question, objectives, and sample size. Ensure that your methods are valid, reliable, and ethical.
  • Be organized and systematic: Keep detailed notes throughout the research process, including your research plan, methodology, data collection, and analysis. This will help you to stay organized and ensure that you don’t miss any important details.
  • Analyze data rigorously: Use appropriate statistical and analytical techniques to analyze your data. Ensure that your analysis is valid, reliable, and transparent.
  • I nterpret results carefully : Interpret your results in the context of your research question and objectives. Consider any limitations or potential biases in your research design, and be cautious in drawing conclusions.
  • Communicate effectively: Communicate your research findings clearly and effectively to your target audience. Use appropriate language, visuals, and formats to ensure that your findings are understood and valued.
  • Collaborate and seek feedback : Collaborate with other researchers, experts, or stakeholders in your field. Seek feedback on your research design, methods, and findings to ensure that they are relevant, meaningful, and impactful.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Research Techniques

Research Techniques – Methods, Types and Examples

Ethical Considerations

Ethical Considerations – Types, Examples and...

Informed Consent in Research

Informed Consent in Research – Types, Templates...

Data collection

Data Collection – Methods Types and Examples

Purpose of Research

Purpose of Research – Objectives and Applications

Tables in Research Paper

Tables in Research Paper – Types, Creating Guide...

FLEET LIBRARY | Research Guides

Rhode island school of design, create a research plan: research plan.

  • Research Plan
  • Literature Review
  • Ulrich's Global Serials Directory
  • Related Guides

A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan

1. Research conceptualization - introduces your research question

2. Research methodology - describes your approach to the research question

3. Literature review, critical evaluation and synthesis - systematic approach to locating,

    reviewing and evaluating the work (text, exhibitions, critiques, etc) relating to your topic

4. Communication - geared toward an intended audience, shows evidence of your inquiry

Research conceptualization refers to the ability to identify specific research questions, problems or opportunities that are worthy of inquiry. Research conceptualization also includes the skills and discipline that go beyond the initial moment of conception, and which enable the researcher to formulate and develop an idea into something researchable ( Newbury 373).

Research methodology refers to the knowledge and skills required to select and apply appropriate methods to carry through the research project ( Newbury 374) .

Method describes a single mode of proceeding; methodology describes the overall process.

Method - a way of doing anything especially according to a defined and regular plan; a mode of procedure in any activity

Methodology - the study of the direction and implications of empirical research, or the sustainability of techniques employed in it; a method or body of methods used in a particular field of study or activity *Browse a list of research methodology books  or this guide on Art & Design Research

Literature Review, critical evaluation & synthesis

A literature review is a systematic approach to locating, reviewing, and evaluating the published work and work in progress of scholars, researchers, and practitioners on a given topic.

Critical evaluation and synthesis is the ability to handle (or process) existing sources. It includes knowledge of the sources of literature and contextual research field within which the person is working ( Newbury 373).

Literature reviews are done for many reasons and situations. Here's a short list:

to learn about a field of study

to understand current knowledge on a subject

to formulate questions & identify a research problem

to focus the purpose of one's research

to contribute new knowledge to a field

personal knowledge

intellectual curiosity

to prepare for architectural program writing

academic degrees

grant applications

proposal writing

academic research

planning

funding

Sources to consult while conducting a literature review:

Online catalogs of local, regional, national, and special libraries

meta-catalogs such as worldcat , Art Discovery Group , europeana , world digital library or RIBA

subject-specific online article databases (such as the Avery Index, JSTOR, Project Muse)

digital institutional repositories such as Digital Commons @RISD ; see Registry of Open Access Repositories

Open Access Resources recommended by RISD Research LIbrarians

works cited in scholarly books and articles

print bibliographies

the internet-locate major nonprofit, research institutes, museum, university, and government websites

search google scholar to locate grey literature & referenced citations

trade and scholarly publishers

fellow scholars and peers

Communication                              

Communication refers to the ability to

  • structure a coherent line of inquiry
  • communicate your findings to your intended audience
  • make skilled use of visual material to express ideas for presentations, writing, and the creation of exhibitions ( Newbury 374)

Research plan framework: Newbury, Darren. "Research Training in the Creative Arts and Design." The Routledge Companion to Research in the Arts . Ed. Michael Biggs and Henrik Karlsson. New York: Routledge, 2010. 368-87. Print.

About the author

Except where otherwise noted, this guide is subject to a Creative Commons Attribution license

source document

  Routledge Companion to Research in the Arts

  • Next: Literature Review >>
  • Last Updated: Aug 15, 2024 1:29 AM
  • URL: https://risd.libguides.com/researchplan
  • A-Z Publications

Annual Review of Psychology

Volume 70, 2019, review article, how to do a systematic review: a best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses.

  • Andy P. Siddaway 1 , Alex M. Wood 2 , and Larry V. Hedges 3
  • View Affiliations Hide Affiliations Affiliations: 1 Behavioural Science Centre, Stirling Management School, University of Stirling, Stirling FK9 4LA, United Kingdom; email: [email protected] 2 Department of Psychological and Behavioural Science, London School of Economics and Political Science, London WC2A 2AE, United Kingdom 3 Department of Statistics, Northwestern University, Evanston, Illinois 60208, USA; email: [email protected]
  • Vol. 70:747-770 (Volume publication date January 2019) https://doi.org/10.1146/annurev-psych-010418-102803
  • First published as a Review in Advance on August 08, 2018
  • Copyright © 2019 by Annual Reviews. All rights reserved

Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question. The best reviews synthesize studies to draw broad theoretical conclusions about what a literature means, linking theory to evidence and evidence to theory. This guide describes how to plan, conduct, organize, and present a systematic review of quantitative (meta-analysis) or qualitative (narrative review, meta-synthesis) information. We outline core standards and principles and describe commonly encountered problems. Although this guide targets psychological scientists, its high level of abstraction makes it potentially relevant to any subject area or discipline. We argue that systematic reviews are a key methodology for clarifying whether and how research findings replicate and for explaining possible inconsistencies, and we call for researchers to conduct systematic reviews to help elucidate whether there is a replication crisis.

Article metrics loading...

Full text loading...

Literature Cited

  • APA Publ. Commun. Board Work. Group J. Artic. Rep. Stand. 2008 . Reporting standards for research in psychology: Why do we need them? What might they be?. Am. Psychol . 63 : 848– 49 [Google Scholar]
  • Baumeister RF 2013 . Writing a literature review. The Portable Mentor: Expert Guide to a Successful Career in Psychology MJ Prinstein, MD Patterson 119– 32 New York: Springer, 2nd ed.. [Google Scholar]
  • Baumeister RF , Leary MR 1995 . The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117 : 497– 529 [Google Scholar]
  • Baumeister RF , Leary MR 1997 . Writing narrative literature reviews. Rev. Gen. Psychol. 3 : 311– 20 Presents a thorough and thoughtful guide to conducting narrative reviews. [Google Scholar]
  • Bem DJ 1995 . Writing a review article for Psychological Bulletin. Psychol . Bull 118 : 172– 77 [Google Scholar]
  • Borenstein M , Hedges LV , Higgins JPT , Rothstein HR 2009 . Introduction to Meta-Analysis New York: Wiley Presents a comprehensive introduction to meta-analysis. [Google Scholar]
  • Borenstein M , Higgins JPT , Hedges LV , Rothstein HR 2017 . Basics of meta-analysis: I 2 is not an absolute measure of heterogeneity. Res. Synth. Methods 8 : 5– 18 [Google Scholar]
  • Braver SL , Thoemmes FJ , Rosenthal R 2014 . Continuously cumulating meta-analysis and replicability. Perspect. Psychol. Sci. 9 : 333– 42 [Google Scholar]
  • Bushman BJ 1994 . Vote-counting procedures. The Handbook of Research Synthesis H Cooper, LV Hedges 193– 214 New York: Russell Sage Found. [Google Scholar]
  • Cesario J 2014 . Priming, replication, and the hardest science. Perspect. Psychol. Sci. 9 : 40– 48 [Google Scholar]
  • Chalmers I 2007 . The lethal consequences of failing to make use of all relevant evidence about the effects of medical treatments: the importance of systematic reviews. Treating Individuals: From Randomised Trials to Personalised Medicine PM Rothwell 37– 58 London: Lancet [Google Scholar]
  • Cochrane Collab. 2003 . Glossary Rep., Cochrane Collab. London: http://community.cochrane.org/glossary Presents a comprehensive glossary of terms relevant to systematic reviews. [Google Scholar]
  • Cohn LD , Becker BJ 2003 . How meta-analysis increases statistical power. Psychol. Methods 8 : 243– 53 [Google Scholar]
  • Cooper HM 2003 . Editorial. Psychol. Bull. 129 : 3– 9 [Google Scholar]
  • Cooper HM 2016 . Research Synthesis and Meta-Analysis: A Step-by-Step Approach Thousand Oaks, CA: Sage, 5th ed.. Presents a comprehensive introduction to research synthesis and meta-analysis. [Google Scholar]
  • Cooper HM , Hedges LV , Valentine JC 2009 . The Handbook of Research Synthesis and Meta-Analysis New York: Russell Sage Found, 2nd ed.. [Google Scholar]
  • Cumming G 2014 . The new statistics: why and how. Psychol. Sci. 25 : 7– 29 Discusses the limitations of null hypothesis significance testing and viable alternative approaches. [Google Scholar]
  • Earp BD , Trafimow D 2015 . Replication, falsification, and the crisis of confidence in social psychology. Front. Psychol. 6 : 621 [Google Scholar]
  • Etz A , Vandekerckhove J 2016 . A Bayesian perspective on the reproducibility project: psychology. PLOS ONE 11 : e0149794 [Google Scholar]
  • Ferguson CJ , Brannick MT 2012 . Publication bias in psychological science: prevalence, methods for identifying and controlling, and implications for the use of meta-analyses. Psychol. Methods 17 : 120– 28 [Google Scholar]
  • Fleiss JL , Berlin JA 2009 . Effect sizes for dichotomous data. The Handbook of Research Synthesis and Meta-Analysis H Cooper, LV Hedges, JC Valentine 237– 53 New York: Russell Sage Found, 2nd ed.. [Google Scholar]
  • Garside R 2014 . Should we appraise the quality of qualitative research reports for systematic reviews, and if so, how. Innovation 27 : 67– 79 [Google Scholar]
  • Hedges LV , Olkin I 1980 . Vote count methods in research synthesis. Psychol. Bull. 88 : 359– 69 [Google Scholar]
  • Hedges LV , Pigott TD 2001 . The power of statistical tests in meta-analysis. Psychol. Methods 6 : 203– 17 [Google Scholar]
  • Higgins JPT , Green S 2011 . Cochrane Handbook for Systematic Reviews of Interventions, Version 5.1.0 London: Cochrane Collab. Presents comprehensive and regularly updated guidelines on systematic reviews. [Google Scholar]
  • John LK , Loewenstein G , Prelec D 2012 . Measuring the prevalence of questionable research practices with incentives for truth telling. Psychol. Sci. 23 : 524– 32 [Google Scholar]
  • Juni P , Witschi A , Bloch R , Egger M 1999 . The hazards of scoring the quality of clinical trials for meta-analysis. JAMA 282 : 1054– 60 [Google Scholar]
  • Klein O , Doyen S , Leys C , Magalhães de Saldanha da Gama PA , Miller S et al. 2012 . Low hopes, high expectations: expectancy effects and the replicability of behavioral experiments. Perspect. Psychol. Sci. 7 : 6 572– 84 [Google Scholar]
  • Lau J , Antman EM , Jimenez-Silva J , Kupelnick B , Mosteller F , Chalmers TC 1992 . Cumulative meta-analysis of therapeutic trials for myocardial infarction. N. Engl. J. Med. 327 : 248– 54 [Google Scholar]
  • Light RJ , Smith PV 1971 . Accumulating evidence: procedures for resolving contradictions among different research studies. Harvard Educ. Rev. 41 : 429– 71 [Google Scholar]
  • Lipsey MW , Wilson D 2001 . Practical Meta-Analysis London: Sage Comprehensive and clear explanation of meta-analysis. [Google Scholar]
  • Matt GE , Cook TD 1994 . Threats to the validity of research synthesis. The Handbook of Research Synthesis H Cooper, LV Hedges 503– 20 New York: Russell Sage Found. [Google Scholar]
  • Maxwell SE , Lau MY , Howard GS 2015 . Is psychology suffering from a replication crisis? What does “failure to replicate” really mean?. Am. Psychol. 70 : 487– 98 [Google Scholar]
  • Moher D , Hopewell S , Schulz KF , Montori V , Gøtzsche PC et al. 2010 . CONSORT explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ 340 : c869 [Google Scholar]
  • Moher D , Liberati A , Tetzlaff J , Altman DG PRISMA Group. 2009 . Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339 : 332– 36 Comprehensive reporting guidelines for systematic reviews. [Google Scholar]
  • Morrison A , Polisena J , Husereau D , Moulton K , Clark M et al. 2012 . The effect of English-language restriction on systematic review-based meta-analyses: a systematic review of empirical studies. Int. J. Technol. Assess. Health Care 28 : 138– 44 [Google Scholar]
  • Nelson LD , Simmons J , Simonsohn U 2018 . Psychology's renaissance. Annu. Rev. Psychol. 69 : 511– 34 [Google Scholar]
  • Noblit GW , Hare RD 1988 . Meta-Ethnography: Synthesizing Qualitative Studies Newbury Park, CA: Sage [Google Scholar]
  • Olivo SA , Macedo LG , Gadotti IC , Fuentes J , Stanton T , Magee DJ 2008 . Scales to assess the quality of randomized controlled trials: a systematic review. Phys. Ther. 88 : 156– 75 [Google Scholar]
  • Open Sci. Collab. 2015 . Estimating the reproducibility of psychological science. Science 349 : 943 [Google Scholar]
  • Paterson BL , Thorne SE , Canam C , Jillings C 2001 . Meta-Study of Qualitative Health Research: A Practical Guide to Meta-Analysis and Meta-Synthesis Thousand Oaks, CA: Sage [Google Scholar]
  • Patil P , Peng RD , Leek JT 2016 . What should researchers expect when they replicate studies? A statistical view of replicability in psychological science. Perspect. Psychol. Sci. 11 : 539– 44 [Google Scholar]
  • Rosenthal R 1979 . The “file drawer problem” and tolerance for null results. Psychol. Bull. 86 : 638– 41 [Google Scholar]
  • Rosnow RL , Rosenthal R 1989 . Statistical procedures and the justification of knowledge in psychological science. Am. Psychol. 44 : 1276– 84 [Google Scholar]
  • Sanderson S , Tatt ID , Higgins JP 2007 . Tools for assessing quality and susceptibility to bias in observational studies in epidemiology: a systematic review and annotated bibliography. Int. J. Epidemiol. 36 : 666– 76 [Google Scholar]
  • Schreiber R , Crooks D , Stern PN 1997 . Qualitative meta-analysis. Completing a Qualitative Project: Details and Dialogue JM Morse 311– 26 Thousand Oaks, CA: Sage [Google Scholar]
  • Shrout PE , Rodgers JL 2018 . Psychology, science, and knowledge construction: broadening perspectives from the replication crisis. Annu. Rev. Psychol. 69 : 487– 510 [Google Scholar]
  • Stroebe W , Strack F 2014 . The alleged crisis and the illusion of exact replication. Perspect. Psychol. Sci. 9 : 59– 71 [Google Scholar]
  • Stroup DF , Berlin JA , Morton SC , Olkin I , Williamson GD et al. 2000 . Meta-analysis of observational studies in epidemiology (MOOSE): a proposal for reporting. JAMA 283 : 2008– 12 [Google Scholar]
  • Thorne S , Jensen L , Kearney MH , Noblit G , Sandelowski M 2004 . Qualitative meta-synthesis: reflections on methodological orientation and ideological agenda. Qual. Health Res. 14 : 1342– 65 [Google Scholar]
  • Tong A , Flemming K , McInnes E , Oliver S , Craig J 2012 . Enhancing transparency in reporting the synthesis of qualitative research: ENTREQ. BMC Med. Res. Methodol. 12 : 181– 88 [Google Scholar]
  • Trickey D , Siddaway AP , Meiser-Stedman R , Serpell L , Field AP 2012 . A meta-analysis of risk factors for post-traumatic stress disorder in children and adolescents. Clin. Psychol. Rev. 32 : 122– 38 [Google Scholar]
  • Valentine JC , Biglan A , Boruch RF , Castro FG , Collins LM et al. 2011 . Replication in prevention science. Prev. Sci. 12 : 103– 17 [Google Scholar]
  • Article Type: Review Article

Most Read This Month

Most cited most cited rss feed, job burnout, executive functions, social cognitive theory: an agentic perspective, on happiness and human potentials: a review of research on hedonic and eudaimonic well-being, sources of method bias in social science research and recommendations on how to control it, mediation analysis, missing data analysis: making it work in the real world, grounded cognition, personality structure: emergence of the five-factor model, motivational beliefs, values, and goals.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

Research Methods | Definitions, Types, Examples

Research methods are specific procedures for collecting and analyzing data. Developing your research methods is an integral part of your research design . When planning your methods, there are two key decisions you will make.

First, decide how you will collect data . Your methods depend on what type of data you need to answer your research question :

  • Qualitative vs. quantitative : Will your data take the form of words or numbers?
  • Primary vs. secondary : Will you collect original data yourself, or will you use data that has already been collected by someone else?
  • Descriptive vs. experimental : Will you take measurements of something as it is, or will you perform an experiment?

Second, decide how you will analyze the data .

  • For quantitative data, you can use statistical analysis methods to test relationships between variables.
  • For qualitative data, you can use methods such as thematic analysis to interpret patterns and meanings in the data.

Table of contents

Methods for collecting data, examples of data collection methods, methods for analyzing data, examples of data analysis methods, other interesting articles, frequently asked questions about research methods.

Data is the information that you collect for the purposes of answering your research question . The type of data you need depends on the aims of your research.

Qualitative vs. quantitative data

Your choice of qualitative or quantitative data collection depends on the type of knowledge you want to develop.

For questions about ideas, experiences and meanings, or to study something that can’t be described numerically, collect qualitative data .

If you want to develop a more mechanistic understanding of a topic, or your research involves hypothesis testing , collect quantitative data .

Qualitative to broader populations. .
Quantitative .

You can also take a mixed methods approach , where you use both qualitative and quantitative research methods.

Primary vs. secondary research

Primary research is any original data that you collect yourself for the purposes of answering your research question (e.g. through surveys , observations and experiments ). Secondary research is data that has already been collected by other researchers (e.g. in a government census or previous scientific studies).

If you are exploring a novel research question, you’ll probably need to collect primary data . But if you want to synthesize existing knowledge, analyze historical trends, or identify patterns on a large scale, secondary data might be a better choice.

Primary . methods.
Secondary

Descriptive vs. experimental data

In descriptive research , you collect data about your study subject without intervening. The validity of your research will depend on your sampling method .

In experimental research , you systematically intervene in a process and measure the outcome. The validity of your research will depend on your experimental design .

To conduct an experiment, you need to be able to vary your independent variable , precisely measure your dependent variable, and control for confounding variables . If it’s practically and ethically possible, this method is the best choice for answering questions about cause and effect.

Descriptive . .
Experimental

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

systematic plan of conducting research

Research methods for collecting data
Research method Primary or secondary? Qualitative or quantitative? When to use
Primary Quantitative To test cause-and-effect relationships.
Primary Quantitative To understand general characteristics of a population.
Interview/focus group Primary Qualitative To gain more in-depth understanding of a topic.
Observation Primary Either To understand how something occurs in its natural setting.
Secondary Either To situate your research in an existing body of work, or to evaluate trends within a research topic.
Either Either To gain an in-depth understanding of a specific group or context, or when you don’t have the resources for a large study.

Your data analysis methods will depend on the type of data you collect and how you prepare it for analysis.

Data can often be analyzed both quantitatively and qualitatively. For example, survey responses could be analyzed qualitatively by studying the meanings of responses or quantitatively by studying the frequencies of responses.

Qualitative analysis methods

Qualitative analysis is used to understand words, ideas, and experiences. You can use it to interpret data that was collected:

  • From open-ended surveys and interviews , literature reviews , case studies , ethnographies , and other sources that use text rather than numbers.
  • Using non-probability sampling methods .

Qualitative analysis tends to be quite flexible and relies on the researcher’s judgement, so you have to reflect carefully on your choices and assumptions and be careful to avoid research bias .

Quantitative analysis methods

Quantitative analysis uses numbers and statistics to understand frequencies, averages and correlations (in descriptive studies) or cause-and-effect relationships (in experiments).

You can use quantitative analysis to interpret data that was collected either:

  • During an experiment .
  • Using probability sampling methods .

Because the data is collected and analyzed in a statistically valid way, the results of quantitative analysis can be easily standardized and shared among researchers.

Research methods for analyzing data
Research method Qualitative or quantitative? When to use
Quantitative To analyze data collected in a statistically valid manner (e.g. from experiments, surveys, and observations).
Meta-analysis Quantitative To statistically analyze the results of a large collection of studies.

Can only be applied to studies that collected data in a statistically valid manner.

Qualitative To analyze data collected from interviews, , or textual sources.

To understand general themes in the data and how they are communicated.

Either To analyze large volumes of textual or visual data collected from surveys, literature reviews, or other sources.

Can be quantitative (i.e. frequencies of words) or qualitative (i.e. meanings of words).

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Chi square test of independence
  • Statistical power
  • Descriptive statistics
  • Degrees of freedom
  • Pearson correlation
  • Null hypothesis
  • Double-blind study
  • Case-control study
  • Research ethics
  • Data collection
  • Hypothesis testing
  • Structured interviews

Research bias

  • Hawthorne effect
  • Unconscious bias
  • Recall bias
  • Halo effect
  • Self-serving bias
  • Information bias

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Is this article helpful?

Other students also liked, writing strong research questions | criteria & examples.

  • What Is a Research Design | Types, Guide & Examples
  • Data Collection | Definition, Methods & Examples

More interesting articles

  • Between-Subjects Design | Examples, Pros, & Cons
  • Cluster Sampling | A Simple Step-by-Step Guide with Examples
  • Confounding Variables | Definition, Examples & Controls
  • Construct Validity | Definition, Types, & Examples
  • Content Analysis | Guide, Methods & Examples
  • Control Groups and Treatment Groups | Uses & Examples
  • Control Variables | What Are They & Why Do They Matter?
  • Correlation vs. Causation | Difference, Designs & Examples
  • Correlational Research | When & How to Use
  • Critical Discourse Analysis | Definition, Guide & Examples
  • Cross-Sectional Study | Definition, Uses & Examples
  • Descriptive Research | Definition, Types, Methods & Examples
  • Ethical Considerations in Research | Types & Examples
  • Explanatory and Response Variables | Definitions & Examples
  • Explanatory Research | Definition, Guide, & Examples
  • Exploratory Research | Definition, Guide, & Examples
  • External Validity | Definition, Types, Threats & Examples
  • Extraneous Variables | Examples, Types & Controls
  • Guide to Experimental Design | Overview, Steps, & Examples
  • How Do You Incorporate an Interview into a Dissertation? | Tips
  • How to Do Thematic Analysis | Step-by-Step Guide & Examples
  • How to Write a Literature Review | Guide, Examples, & Templates
  • How to Write a Strong Hypothesis | Steps & Examples
  • Inclusion and Exclusion Criteria | Examples & Definition
  • Independent vs. Dependent Variables | Definition & Examples
  • Inductive Reasoning | Types, Examples, Explanation
  • Inductive vs. Deductive Research Approach | Steps & Examples
  • Internal Validity in Research | Definition, Threats, & Examples
  • Internal vs. External Validity | Understanding Differences & Threats
  • Longitudinal Study | Definition, Approaches & Examples
  • Mediator vs. Moderator Variables | Differences & Examples
  • Mixed Methods Research | Definition, Guide & Examples
  • Multistage Sampling | Introductory Guide & Examples
  • Naturalistic Observation | Definition, Guide & Examples
  • Operationalization | A Guide with Examples, Pros & Cons
  • Population vs. Sample | Definitions, Differences & Examples
  • Primary Research | Definition, Types, & Examples
  • Qualitative vs. Quantitative Research | Differences, Examples & Methods
  • Quasi-Experimental Design | Definition, Types & Examples
  • Questionnaire Design | Methods, Question Types & Examples
  • Random Assignment in Experiments | Introduction & Examples
  • Random vs. Systematic Error | Definition & Examples
  • Reliability vs. Validity in Research | Difference, Types and Examples
  • Reproducibility vs Replicability | Difference & Examples
  • Reproducibility vs. Replicability | Difference & Examples
  • Sampling Methods | Types, Techniques & Examples
  • Semi-Structured Interview | Definition, Guide & Examples
  • Simple Random Sampling | Definition, Steps & Examples
  • Single, Double, & Triple Blind Study | Definition & Examples
  • Stratified Sampling | Definition, Guide & Examples
  • Structured Interview | Definition, Guide & Examples
  • Survey Research | Definition, Examples & Methods
  • Systematic Review | Definition, Example, & Guide
  • Systematic Sampling | A Step-by-Step Guide with Examples
  • Textual Analysis | Guide, 3 Approaches & Examples
  • The 4 Types of Reliability in Research | Definitions & Examples
  • The 4 Types of Validity in Research | Definitions & Examples
  • Transcribing an Interview | 5 Steps & Transcription Software
  • Triangulation in Research | Guide, Types, Examples
  • Types of Interviews in Research | Guide & Examples
  • Types of Research Designs Compared | Guide & Examples
  • Types of Variables in Research & Statistics | Examples
  • Unstructured Interview | Definition, Guide & Examples
  • What Is a Case Study? | Definition, Examples & Methods
  • What Is a Case-Control Study? | Definition & Examples
  • What Is a Cohort Study? | Definition & Examples
  • What Is a Conceptual Framework? | Tips & Examples
  • What Is a Controlled Experiment? | Definitions & Examples
  • What Is a Double-Barreled Question?
  • What Is a Focus Group? | Step-by-Step Guide & Examples
  • What Is a Likert Scale? | Guide & Examples
  • What Is a Prospective Cohort Study? | Definition & Examples
  • What Is a Retrospective Cohort Study? | Definition & Examples
  • What Is Action Research? | Definition & Examples
  • What Is an Observational Study? | Guide & Examples
  • What Is Concurrent Validity? | Definition & Examples
  • What Is Content Validity? | Definition & Examples
  • What Is Convenience Sampling? | Definition & Examples
  • What Is Convergent Validity? | Definition & Examples
  • What Is Criterion Validity? | Definition & Examples
  • What Is Data Cleansing? | Definition, Guide & Examples
  • What Is Deductive Reasoning? | Explanation & Examples
  • What Is Discriminant Validity? | Definition & Example
  • What Is Ecological Validity? | Definition & Examples
  • What Is Ethnography? | Definition, Guide & Examples
  • What Is Face Validity? | Guide, Definition & Examples
  • What Is Non-Probability Sampling? | Types & Examples
  • What Is Participant Observation? | Definition & Examples
  • What Is Peer Review? | Types & Examples
  • What Is Predictive Validity? | Examples & Definition
  • What Is Probability Sampling? | Types & Examples
  • What Is Purposive Sampling? | Definition & Examples
  • What Is Qualitative Observation? | Definition & Examples
  • What Is Qualitative Research? | Methods & Examples
  • What Is Quantitative Observation? | Definition & Examples
  • What Is Quantitative Research? | Definition, Uses & Methods

Get unlimited documents corrected

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

  • Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

Scientific Method Steps in Psychology Research

Steps, Uses, and Key Terms

Verywell / Theresa Chiechi

How do researchers investigate psychological phenomena? They utilize a process known as the scientific method to study different aspects of how people think and behave.

When conducting research, the scientific method steps to follow are:

  • Observe what you want to investigate
  • Ask a research question and make predictions
  • Test the hypothesis and collect data
  • Examine the results and draw conclusions
  • Report and share the results 

This process not only allows scientists to investigate and understand different psychological phenomena but also provides researchers and others a way to share and discuss the results of their studies.

Generally, there are five main steps in the scientific method, although some may break down this process into six or seven steps. An additional step in the process can also include developing new research questions based on your findings.

What Is the Scientific Method?

What is the scientific method and how is it used in psychology?

The scientific method consists of five steps. It is essentially a step-by-step process that researchers can follow to determine if there is some type of relationship between two or more variables.

By knowing the steps of the scientific method, you can better understand the process researchers go through to arrive at conclusions about human behavior.

Scientific Method Steps

While research studies can vary, these are the basic steps that psychologists and scientists use when investigating human behavior.

The following are the scientific method steps:

Step 1. Make an Observation

Before a researcher can begin, they must choose a topic to study. Once an area of interest has been chosen, the researchers must then conduct a thorough review of the existing literature on the subject. This review will provide valuable information about what has already been learned about the topic and what questions remain to be answered.

A literature review might involve looking at a considerable amount of written material from both books and academic journals dating back decades.

The relevant information collected by the researcher will be presented in the introduction section of the final published study results. This background material will also help the researcher with the first major step in conducting a psychology study: formulating a hypothesis.

Step 2. Ask a Question

Once a researcher has observed something and gained some background information on the topic, the next step is to ask a question. The researcher will form a hypothesis, which is an educated guess about the relationship between two or more variables

For example, a researcher might ask a question about the relationship between sleep and academic performance: Do students who get more sleep perform better on tests at school?

In order to formulate a good hypothesis, it is important to think about different questions you might have about a particular topic.

You should also consider how you could investigate the causes. Falsifiability is an important part of any valid hypothesis. In other words, if a hypothesis was false, there needs to be a way for scientists to demonstrate that it is false.

Step 3. Test Your Hypothesis and Collect Data

Once you have a solid hypothesis, the next step of the scientific method is to put this hunch to the test by collecting data. The exact methods used to investigate a hypothesis depend on exactly what is being studied. There are two basic forms of research that a psychologist might utilize: descriptive research or experimental research.

Descriptive research is typically used when it would be difficult or even impossible to manipulate the variables in question. Examples of descriptive research include case studies, naturalistic observation , and correlation studies. Phone surveys that are often used by marketers are one example of descriptive research.

Correlational studies are quite common in psychology research. While they do not allow researchers to determine cause-and-effect, they do make it possible to spot relationships between different variables and to measure the strength of those relationships. 

Experimental research is used to explore cause-and-effect relationships between two or more variables. This type of research involves systematically manipulating an independent variable and then measuring the effect that it has on a defined dependent variable .

One of the major advantages of this method is that it allows researchers to actually determine if changes in one variable actually cause changes in another.

While psychology experiments are often quite complex, a simple experiment is fairly basic but does allow researchers to determine cause-and-effect relationships between variables. Most simple experiments use a control group (those who do not receive the treatment) and an experimental group (those who do receive the treatment).

Step 4. Examine the Results and Draw Conclusions

Once a researcher has designed the study and collected the data, it is time to examine this information and draw conclusions about what has been found.  Using statistics , researchers can summarize the data, analyze the results, and draw conclusions based on this evidence.

So how does a researcher decide what the results of a study mean? Not only can statistical analysis support (or refute) the researcher’s hypothesis; it can also be used to determine if the findings are statistically significant.

When results are said to be statistically significant, it means that it is unlikely that these results are due to chance.

Based on these observations, researchers must then determine what the results mean. In some cases, an experiment will support a hypothesis, but in other cases, it will fail to support the hypothesis.

So what happens if the results of a psychology experiment do not support the researcher's hypothesis? Does this mean that the study was worthless?

Just because the findings fail to support the hypothesis does not mean that the research is not useful or informative. In fact, such research plays an important role in helping scientists develop new questions and hypotheses to explore in the future.

After conclusions have been drawn, the next step is to share the results with the rest of the scientific community. This is an important part of the process because it contributes to the overall knowledge base and can help other scientists find new research avenues to explore.

Step 5. Report the Results

The final step in a psychology study is to report the findings. This is often done by writing up a description of the study and publishing the article in an academic or professional journal. The results of psychological studies can be seen in peer-reviewed journals such as  Psychological Bulletin , the  Journal of Social Psychology ,  Developmental Psychology , and many others.

The structure of a journal article follows a specified format that has been outlined by the  American Psychological Association (APA) . In these articles, researchers:

  • Provide a brief history and background on previous research
  • Present their hypothesis
  • Identify who participated in the study and how they were selected
  • Provide operational definitions for each variable
  • Describe the measures and procedures that were used to collect data
  • Explain how the information collected was analyzed
  • Discuss what the results mean

Why is such a detailed record of a psychological study so important? By clearly explaining the steps and procedures used throughout the study, other researchers can then replicate the results. The editorial process employed by academic and professional journals ensures that each article that is submitted undergoes a thorough peer review, which helps ensure that the study is scientifically sound.

Once published, the study becomes another piece of the existing puzzle of our knowledge base on that topic.

Before you begin exploring the scientific method steps, here's a review of some key terms and definitions that you should be familiar with:

  • Falsifiable : The variables can be measured so that if a hypothesis is false, it can be proven false
  • Hypothesis : An educated guess about the possible relationship between two or more variables
  • Variable : A factor or element that can change in observable and measurable ways
  • Operational definition : A full description of exactly how variables are defined, how they will be manipulated, and how they will be measured

Uses for the Scientific Method

The  goals of psychological studies  are to describe, explain, predict and perhaps influence mental processes or behaviors. In order to do this, psychologists utilize the scientific method to conduct psychological research. The scientific method is a set of principles and procedures that are used by researchers to develop questions, collect data, and reach conclusions.

Goals of Scientific Research in Psychology

Researchers seek not only to describe behaviors and explain why these behaviors occur; they also strive to create research that can be used to predict and even change human behavior.

Psychologists and other social scientists regularly propose explanations for human behavior. On a more informal level, people make judgments about the intentions, motivations , and actions of others on a daily basis.

While the everyday judgments we make about human behavior are subjective and anecdotal, researchers use the scientific method to study psychology in an objective and systematic way. The results of these studies are often reported in popular media, which leads many to wonder just how or why researchers arrived at the conclusions they did.

Examples of the Scientific Method

Now that you're familiar with the scientific method steps, it's useful to see how each step could work with a real-life example.

Say, for instance, that researchers set out to discover what the relationship is between psychotherapy and anxiety .

  • Step 1. Make an observation : The researchers choose to focus their study on adults ages 25 to 40 with generalized anxiety disorder.
  • Step 2. Ask a question : The question they want to answer in their study is: Do weekly psychotherapy sessions reduce symptoms in adults ages 25 to 40 with generalized anxiety disorder?
  • Step 3. Test your hypothesis : Researchers collect data on participants' anxiety symptoms . They work with therapists to create a consistent program that all participants undergo. Group 1 may attend therapy once per week, whereas group 2 does not attend therapy.
  • Step 4. Examine the results : Participants record their symptoms and any changes over a period of three months. After this period, people in group 1 report significant improvements in their anxiety symptoms, whereas those in group 2 report no significant changes.
  • Step 5. Report the results : Researchers write a report that includes their hypothesis, information on participants, variables, procedure, and conclusions drawn from the study. In this case, they say that "Weekly therapy sessions are shown to reduce anxiety symptoms in adults ages 25 to 40."

Of course, there are many details that go into planning and executing a study such as this. But this general outline gives you an idea of how an idea is formulated and tested, and how researchers arrive at results using the scientific method.

Erol A. How to conduct scientific research ? Noro Psikiyatr Ars . 2017;54(2):97-98. doi:10.5152/npa.2017.0120102

University of Minnesota. Psychologists use the scientific method to guide their research .

Shaughnessy, JJ, Zechmeister, EB, & Zechmeister, JS. Research Methods In Psychology . New York: McGraw Hill Education; 2015.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Systematic Review
  • Open access
  • Published: 07 September 2024

Assessing the effectiveness of greater occipital nerve block in chronic migraine: a systematic review and meta-analysis

  • Muhamad Saqlain Mustafa 1 , 7 ,
  • Shafin bin Amin 2 , 8 ,
  • Aashish Kumar 2 , 8 ,
  • Muhammad Ashir Shafique 1 , 7 ,
  • Syeda Mahrukh Fatima Zaidi 3 , 9 ,
  • Syed Ali Arsal 2 , 8 ,
  • Burhanudin Sohail Rangwala 1 , 7 ,
  • Muhammad Faheem Iqbal 3 , 9 ,
  • Adarsh Raja 2 , 8 ,
  • Abdul Haseeb 1 , 7 ,
  • Inshal Jawed 3 , 9 ,
  • Khabab Abbasher Hussien Mohamed Ahmed   ORCID: orcid.org/0000-0003-4608-5321 5 ,
  • Syed Muhammad Sinaan Ali 6 , 10 &
  • Giustino Varrassi 4  

BMC Neurology volume  24 , Article number:  330 ( 2024 ) Cite this article

Metrics details

Background & aims

Chronic migraine poses a global health burden, particularly affecting young women, and has substantial societal implications. This study aimed to assess the efficacy of Greater Occipital Nerve Block (GONB) in individuals with chronic migraine, focusing on the impact of local anesthetics compared with placebo.

A meta-analysis and systematic review were conducted following the PRISMA principles and Cochrane Collaboration methods. Eligible studies included case-control, cohort, and randomized control trials in adults with chronic migraine, adhering to the International Classification of Headache Disorders, third edition (ICHD3). Primary efficacy outcomes included headache frequency, duration, and intensity along with safety assessments.

Literature searches across multiple databases yielded eight studies for qualitative analysis, with five included in the final quantitative analysis. A remarkable reduction in headache intensity and frequency during the first and second months of treatment with GONB using local anesthetics compared to placebo has been reported. The incidence of adverse events did not differ significantly between the intervention and placebo groups.

The analysis emphasized the safety and efficacy of GONB, albeit with a cautious interpretation due to the limited number of studies and relatively small sample size. This study advocates for further research exploring various drugs, frequencies, and treatment plans to enhance the robustness and applicability of GONB for chronic migraine management.

Peer Review reports

Introduction

Among headache disorders, migraine is particularly ranked second worldwide in terms of disability and is the leading cause of disability among young women, according to the Global Burden of Disease 2019 data [ 1 ]. Recent findings indicate that the global prevalence of migraine is approximately 15%, which translates to 4.9% of all ill health measured in years lived with disability (YLDs) [ 2 ]. Women are more likely to experience migraine than men, particularly those aged 15–49 years [ 3 ]. Migraine has a substantial societal and financial impact owing to both direct and indirect costs resulting from decreased productivity and missed work [ 4 ].

Migraine is a complex neurovascular disorder that affects sensory processing and is characterized by a range of symptoms, with headache being the most common symptom [ 5 ]. Chronic migraine (CM) is defined as the frequent occurrence of headache episodes, with at least 15 or more episodes (which, on at least 8 days/month, have the features of migraine headache) occurring per month for more than three months [ 6 ]. Several medications are available for the preventive treatment of migraine, including anticonvulsants, antidepressants, beta-blockers, calcium channel blockers, botulinum toxin A, and more recently, drugs that block the calcitonin gene-related peptide (CGRP) pathway (i.e., monoclonal antibodies and antagonists) [ 7 ]. Despite the potential of anti-CGRP monoclonal antibodies (mAbs) in managing chronic migraine, a remarkable proportion of patients do not respond to this treatment [ 8 ]. Approximately 25% of patients are unresponsive to anti-CGRP monoclonal antibodies [ 9 ].

An important component of the brainstem, the Trigeminocervical Complex (TCC) acts as a central processing unit for pain and sensory data from the head and neck. This is the point of convergence of the upper cervical spinal nerves and the trigeminal nerve, which supplies feeling to the face, head, and some regions of the neck [ 10 , 11 ].

One of the TCC’s primary functions is the confluence of the occipital and trigeminal nerves there. The trigeminal nerve transmits sensory data from the face, scalp, and meninges through its three main branches (ophthalmic, maxillary, and mandibular). In the meanwhile, feelings from the back of the head are transmitted by the occipital nerves, which originate from the upper cervical spinal roots [ 10 , 11 ]. Wide-ranging integration of sensory inputs from the head and neck is made possible by the network formed when these neurons converge at the TCC. The brainstem area known as the trigeminocervical complex is crucial to migraine pain processing since it is responsible for processing pain signals originating from the head and neck. [ 10 , 11 ]. The face, head, and neck region’s sensory data—especially pain—are integrated by the TCC. Because of this integration, the TCC is an important piece of the migraine jigsaw when it comes to interpreting the location and degree of pain. The trigeminal, occipital, and TCC nerves are intricately intertwined with one another. A series of neurological events are set off during a migraine episode, beginning with the stimulation of the trigeminal nerve. This activation increases pain signals by causing the production of inflammatory chemicals around the TCC and blood arteries in the brain [ 10 , 11 ]. Accompanying this, the occipital nerves may also be affected, particularly if the headache radiates to the rear of the head. Because of its connection, the TCC is further stimulated by pain signals from the occipital area, worsening the migraine sensation (it produces a feedback loop) [ 10 , 11 ].

The main sensory nerve that serves the occipital region is the Greater Occipital Nerve (GON), which predominantly originates from the C2 dorsal root. The GON block is used in acute and preventive headache treatments as it targets the anatomical and functional connections between the trigeminal and cervical fibers within the trigemino-cervical complex (TCC). The rationale for using GON blocks is based on the integration of sensory neurons from C2 in the upper cervical spinal cord with neurons in the trigeminal nucleus caudalis (TNC). However, the precise mechanisms by which GON blocks may affect the TCC and potentially reduce its activity are still being researched [ 12 ]. However, there is currently no standard protocol for GONB. Local anesthetics function by preventing the activation of voltage-gated sodium channels, which reduce the transmission of sensory signals originating from areas innervated by the greater occipital nerve, such as the medial region of the posterior scalp [ 13 , 14 ], thereby preventing the activation of convergent neurons in the trigeminal-cervical complex. Combination therapy with corticosteroids may reduce inflammation, thereby attenuating pain, however, this role of corticosteroids also seems to be under debate.

The current management of chronic migraines is inadequate, as it lacks clear guidelines despite the various treatment options available. The evidence supporting the efficacy of GONB in preventing chronic migraines is limited and not recent [ 15 , 16 , 17 ]. However, the emergence of new clinical trials offers a promising opportunity for this study to provide valuable insights to healthcare providers. This study aims to fill the knowledge gaps by conducting a comprehensive systematic review and meta-analysis, providing healthcare professionals with a more complete understanding of the collective results of this approach for the treatment of chronic migraines.

A meta-analysis and a comprehensive systematic review were conducted to assess the efficacy of GONB in patients with CM, adhering to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [ 18 ]. The PICO framework, a cornerstone of evidence-based medicine, organizes clinical questions and study designs into Population, Intervention, Comparison, and Outcome. In our research on chronic migraine treatment, we examine the efficacy of greater occipital nerve block (Intervention) with local anesthetics alone versus a placebo (Comparison) among adults with chronic migraine (Population), focusing on changes in migraine intensity measured by VAS, frequency, and adverse effects (Outcome).

Eligibility criteria

Inclusion criteria for studies considered in this meta-analysis encompassed randomized controlled trials (RCTs) evaluating the efficacy of greater occipital nerve block (GONB) with local anesthetics alone compared to a placebo in adult individuals diagnosed with chronic migraine. Studies were required to report outcomes including changes in migraine intensity measured by Visual Analog Scale (VAS), frequency of migraine episodes, and documentation of adverse effects. Exclusion criteria comprised studies that incorporated corticosteroids in conjunction with local anesthetics for GONB, non-randomized or non-controlled trials, studies with insufficient data for outcome assessment, and those involving populations other than adults with chronic migraine.

The primary efficacy endpoints were the change in headache intensity as measured by any scale, the frequency of headache (days per month) in the intervention group compared to the placebo group at a specific point in time, and the intensity of headache in the intervention group compared to the placebo group. To assess safety, the analysis focused on the number of participants who experienced at least one adverse event (AE) and the total number of participants who experienced AEs.

Literature search and study selection

A systematic search of PubMed, Medline, Scopus, Embase, Cochrane, Web of Science, and PsycINFO was performed as of June 2023 by two authors AR and AH. All languages and publication dates were considered and the search strategy involved both free and restricted terms pertaining to migraine and GONB, using key word ‘Chronic migraine’ or Migraine’ or ‘Greater Occipital Nerve Block’. Duplicates were eliminated and the titles and abstracts of the remaining articles were assessed to identify relevant studies. Subsequently, a full-text assessment was performed by two independent investigators (AK and BSR) and any discrepancies were resolved by a third investigator (MSM). The PRISMA flowchart (Fig.  1 ) illustrates the selection process.

figure 1

Prisma flow chart

Data extraction

We utilized a standard Microsoft Excel 2021 spreadsheet to gather data from each study included in a predetermined format. Two unbiased investigators (MAS and SMFZ) collected the following information from each study: author, year of publication, population, intervention and comparison drugs, techniques, primary and secondary outcomes, funding and potential conflicts of interest. If a disagreement arose, a third investigator made the final decision (GV).

Statistical analysis

Statistical analysis was conducted using Review Manager 5.3.22 and Comprehensive Meta-analysis. In order to account for anticipated between-study heterogeneity, we employed random-effects models in our meta-analysis of continuous outcomes. We reported the effect sizes as weighted mean differences (MD) with 95% confidence intervals (CI) for trials with similar results. The I 2 statistics were used to assess the statistical heterogeneity of the pooled estimates. While recognizing that statistical heterogeneity may not be significant when I 2 is < 40%, we performed this test. Regrettably, due to the limited number of included papers, we were unable to carry out a subgroup analysis or funnel plot assessment of publication bias.

Studies selection

The initial literature search yielded 3174 studies. After a detailed review of the selected studies and removal of duplicate entries, 1964 articles remained. These articles were then evaluated based on their titles and abstracts to determine whether they met the inclusion criteria for our study and those that did not were excluded. A comprehensive screening of the full text was performed in the remaining 30 studies. Studies which did not meet the inclusion criteria were excluded. The final quantitative analysis included five studies and 3 studies were included in the qualitative assessment as these studies used other drugs like corticosteroids thus with different interventions. A visual representation of the PRISMA flowchart effectively illustrated the study selection process (Fig.  1 ).

Quality assessment

In assessing the quality of RCTs, we extensively utilized the Cochrane Risk of Bias tool which categorizes studies into three risk levels: high, uncertain, and low, across seven specific domains encompassing aspects of selection, comparability, and outcome. Following rigorous evaluation, all studies included in our analysis were consistently classified as having low risk across these domains. A detailed presentation of the Risk of Bias assessment is shown in Fig.  2 .

figure 2

Risk of bias Assessment ( A ) Qualitative ( B ) Quantitative

Study and patient characteristics

All the included studies assessed outcomes in patients aged 18–75 years. The intervention group in three studies [ 19 , 20 , 21 ] used bupivacaine 0.5% 1.5 ml with or without 1 ml of saline (0.9%); one study [ 22 ] used lidocaine 2% 1 ml with 1 ml of saline solution (0.9%); and lastly, one study [ 23 ] used lidocaine 2% 2 ml as the interventional group. In the control groups, a saline solution of 0.9% (1.5, 2, or 2.5 ml) was used as a placebo. A total of 268 patients were included in all studies, ranging in age from 18 to 75 years. The studies differed in their follow-up procedures. Two studies were followed up at 4 weeks, one study was followed up for up to 2 months, and two studies were checked every month for up to 3 months A summary of patients’ baseline characteristics is provided in Table  1 .

Effect of GONB on headache intensity

In the initial month following GONB treatment, the meta-analysis of three studies showed a significant reduction in headache intensity as measured by the Visual Analog Scale (VAS). The standardized mean difference (SMD) was − 0.653, with a 95% confidence interval (CI) of -0.996 to -0.311 and a p-value of 0.0001. This indicates that the local anesthetic group experienced a greater reduction in headache intensity compared to the placebo group. Importantly, the I² value of 0% suggests that there was no observed heterogeneity among the studies, indicating consistent results across the studies analyzed. (Fig.  3 )

figure 3

Forest plot illustrating the effect of GONB on headache intensity, evaluated using VAS within the initial month

In the second month, an analysis of five studies continued to show a significant reduction in headache intensity with an SMD of -0.628 (95% CI -1.148 to -0.107; p  = 0.018). However, the I² value increased to 74%, indicating substantial heterogeneity among the studies. This heterogeneity was primarily due to one study (Inan et al.), which had an outlier SMD of 0.136. (Fig.  4 ) A leave-one-out analysis was conducted to address this issue and is shown in Fig.  5 .

figure 4

Forest plot illustrating the impact of GONB on headache intensity, evaluated using VAS during the second month

figure 5

Forest plot illustrating the effect of GONB on headache frequency within the initial month

Headache frequency

Within the initial month, the analysis of two studies showed a significant reduction in headache frequency, with an SMD of -0.755 (95% CI -1.133 to -0.377; p  = 0.0001). The results indicate a notable decrease in headache frequency in the local anesthetic group compared to the placebo group. The I² value of 0% indicates no heterogeneity between the studies, suggesting that the results were consistent. (Fig.  6 )

figure 6

Forest plot illustrating the impact of GONB on headache frequency during the second month

At the two-month mark, the analysis of four studies also showed a significant reduction in headache frequency with an SMD of -0.577 (95% CI -0.887 to -0.266; p  = 0.0001). The low I² value of 8.9% indicates minimal heterogeneity among the studies, reinforcing the consistency of the observed effect (Fig.  7 ).

figure 7

Forest plot displaying adverse events associated with the use of GONB

Adverse events

The meta-analysis of two studies on adverse events revealed no significant difference between the GONB treatment and placebo groups. The odds ratio (OR) was 1.379 with a 95% CI of 0.599 to 3.177 and a p-value of 0.450. The confidence interval crosses one, indicating that there is no clear increased risk of adverse events associated with GONB treatment. Additionally, the I² value of 0% suggests no heterogeneity between the studies, indicating consistent findings regarding the safety profile of GONB (Fig.  7 ).

We conducted an updated meta-analysis of GONB in patients with CM, incorporating findings from five RCTs. All RCTs used local anesthetics for GONB, while 0.9% saline served as the placebo. Our study focused on evaluating the impact of GONB on headache frequency, intensity, and associated adverse effects. The results demonstrated the beneficial effects of local anesthetics in reducing both the frequency and intensity of headaches during the first and second months of treatment. However, the outcomes related to adverse effects did not reach statistical significance. This meta-analysis included studies employing two distinct local anesthetics: 0.5% bupivacaine and 2% lidocaine. This suggests that the use of any local anesthetic could yield positive outcomes when compared with the effects of a placebo. Despite the positive results observed, we approached the evidence with caution because of the assessment of low certainty. Therefore, additional studies are warranted to further substantiate our findings and to enhance the reliability of the conclusions drawn from our meta-analysis.

Our meta-analysis demonstrated that GONB treatment significantly reduces both headache intensity and frequency in the initial and subsequent months post-treatment compared to placebo. During the first month, the studies consistently showed a marked reduction in headache intensity with no observed heterogeneity, indicating uniform results across the studies analyzed. In the second month, while the reduction in headache intensity remained remarkable, some heterogeneity was noted due to an outlier study. Similarly, the analysis revealed a notable decrease in headache frequency within the first month, again with consistent findings and no heterogeneity between the studies. By the second month, the reduction in headache frequency continued to be noteworthy, with minimal heterogeneity observed, reinforcing the consistency of the treatment effect. Furthermore, the analysis of adverse events indicated no significant difference between the GONB treatment and placebo groups, suggesting that GONB does not increase the risk of adverse events. The studies consistently supported the safety profile of GONB, with no observed heterogeneity. In terms of both safety and efficacy, our findings suggest that the use of local anesthetics in GONB is generally safe, as we did not identify any notable adverse effects in our intervention group. However, the certainty of our evidence is moderate, primarily because our results did not reach statistical significance, potentially influenced by the limited number of studies and relatively short follow-up phase. In our updated meta-analysis, building upon the original study by Velezquez et al. [ 24 ], we included an additional randomized RCT, contributing to a more comprehensive quantitative analysis. Although most of our study findings align with Velezquez’s findings [ 24 ], demonstrating the safety and effectiveness of GONB in treating chronic migraine, it is important to acknowledge some variations. Velezquez highlighted occasional negative effects associated with local anesthetics but found no remarkable side effects. In contrast, our study did not yield statistically significant outcomes in defining these results. A noteworthy distinction lies in the consideration of adjuvants: while our study did not account for steroids or other adjuvants, Velezquez considered steroids for every study outcome. This discrepancy underscores the need for further exploration and standardization of variables in future research to establish a more definitive understanding of the safety and efficacy of GONB in the management of chronic migraine.

Our findings strongly suggest that GONB is a safe and effective method for treating migraine. This assertion is consistent with existing research that characterizes GONB as a highly effective and safe therapy with minimal adverse effects, recommending its consideration when alternative treatments are unsuccessful [ 21 ]. This viewpoint is further supported by another study that affirms our findings, emphasizing a preference for GONB in cases of resistant migraine [ 22 ]. Moreover, evidence suggests the potential applicability of GONB in the treatment of various types of headaches [ 23 , 25 ]. A retrospective cohort study also indicated that GONB may be beneficial in addressing acute migraine episodes, albeit with a cautionary note regarding the potential negative effects occurring during the procedure rather than during the follow-up period [ 26 ]. Additional observational studies [ 25 , 27 ] reinforce our findings. However, a study comparing the effectiveness of GONB with placebo in preventing migraine revealed that while there was no marked change in headache frequency, GONB still played a remarkable role in lowering intensity [ 28 ]. Notably, these studies underscored the benefits of GONB, often involving the adjunct use of steroids. In a randomized controlled trial that focused on patients treated with bilateral GONB, the results indicated that the administration of a local anesthetic was associated with lower frequency, reduced intensity, and increased pressure thresholds. However, it is important to note that this study predominantly involved female participants [ 29 ]. However, it is essential to acknowledge that trials exclusively assessing the independent use of local anesthetics in GONB are currently lacking, as steroids are commonly employed as adjuvants in the majority of studies. This finding suggests the need for further investigation to delineate the unique contributions of local anesthetics to GONB outcomes.

Prior research has emphasized the necessity of comparing various treatment plans for GONB, incorporating diverse anesthetics and adjuncts to comprehensively evaluate its effectiveness, the need for additional intervention, and safety considerations, it is crucial to note that we did not incorporate any adjuncts, preventing us from commenting on their potential impact on the treatment outcomes. The absence of adjunct utilization in our study underscores the need for further exploration of how these additions may influence the overall efficacy and safety of GONB. Most trials in our analysis used weekly injections, resulting in a lack of comprehensive data for comparing various frequencies. Nevertheless, some studies have suggested the potential advantages associated with monthly use [ 26 ]. The American Headache Society also suggests and has shown interest in the efficacy of nerve blocks for headache treatment. Their endorsement highlights the growing recognition of nerve blocks as a valuable therapeutic option for managing headaches [ 30 , 31 ].

Included studies present diverse methodologies in terms of dosage, injection sites, duration and timing of the intervention, and primary endpoints for the evaluation of GONB efficacy in migraine treatment. The administration and makeup of the GONB differed substantially across the studies. For example, Gul et al. [ 20 ] used 0.5% bupivacaine diluted in 1 ml, while Inan et al. [ 19 ] used a slightly larger volume of the same concentration. Ozer et al. [ 22 ] combined 2% lidocaine with saline, and Ashkenazi et al. [ 32 ] mixed lidocaine and bupivacaine. These variations could lead to differences in efficacy and side effects. The addition of corticosteroids, as observed in Dilli et al. [ 33 ], introduces another variable that may enhance the anti-inflammatory effects but could also influence the outcome independently of the nerve block’s anesthetic action. Although the studies targeted the GON, the exact injection sites varied slightly. Most studies, such as those by Gul et al. [ 20 ], Inan et al. [ 19 ], and Cuadrado et al. [ 34 ], selected a site approximately 2 cm lateral and 2 cm inferior to the external occipital protuberance. Palamar et al. [ 21 ] used ultrasound guidance, which might improve accuracy and potential efficacy. Ashkenazi et al. [ 32 ] included additional trigger point injections (TPIs), which could complicate the specific effects of the GONB.

The administration of GONB varied in frequency and duration among different studies. While some research, such as that conducted by Gul et al. [ 20 ] and Inan et al. [ 19 ], administered the blocks weekly for four weeks, others like Chowdury et al. [ 23 ] extended the injections over a period of 12 weeks. On the other hand, Cuadrado et al. [ 34 ] and Dilli et al. [ 33 ] examined single-time administrations. These discrepancies in timing may affect both short-term and long-term outcomes, with more frequent administrations potentially leading to more sustained relief, but also increasing the risks of cumulative side effects. The primary endpoints of the studies varied but generally included measures of headache frequency and intensity. For instance, Gul et al. [ 20 ] and Palamar et al. [ 21 ] focused on the number of headache days per month, while Inan et al. assessed both frequency and intensity. Ozer et al. [ 22 ] and Cuadrado et al. [ 34 ] emphasized the reduction in headache frequency, while Dilli et al. [ 33 ] sought a 50% reduction in migraine frequency as a measure of success. The variation in endpoints underscores the multifaceted nature of migraine impact and the significance of selecting appropriate, consistent measures for evaluating the efficacy of treatments.

Despite the differences in methodology, the studies collectively indicate that GONB can effectively decrease the frequency and severity of migraines. The consistent reporting of substantial improvements across a range of dosages, injection techniques, and primary outcomes reinforces the potential usefulness of GONB in clinical practice. However, the variation in methodologies highlights the need for standardized protocols to improve the comparability and generalizability of the findings. While the reviewed studies indicate promising outcomes for GONB in migraine treatment, the variability in dosage, injection sites, administration timing, and primary endpoints necessitates caution.

Examining these frequencies is particularly vital because of the invasive nature of the procedure, which offers valuable insights into its safety profile. An essential aspect of chronic migraine management is patient adherence, which markedly contributes to treatment success. It is imperative to assess the level of adherence to GONB. Unfortunately, we could not find relevant research on participants discontinuing their medication owing to side effects, hindering our ability to determine the tolerability of the treatment. Another unresolved concern revolves around the choice between unilateral and bilateral GONB and their relative efficacy. A retrospective cohort study comparing patients who underwent bilateral versus unilateral GONB demonstrated equal effectiveness [ 35 ]. However, a definitive conclusion remains elusive as additional evidence from diverse studies is lacking. Addressing these gaps in research would contribute substantially to refining our understanding of GONB’s optimal parameters for improved outcomes in chronic migraine management. Longitudinal studies and studies on the frequency of nerve block use are needed to assess long-term efficacy.

Limitations

Although this meta-analysis offers valuable insights, it is crucial to acknowledge its limitations. First, the small sample size resulting from the limited availability of new studies may compromise the reliability and accuracy of our findings. Although incorporating more studies could alleviate this concern, the scarcity of available data remains an issue. Second, the absence of sufficient data from recent trials prevented consideration of baseline characteristics, hindering our ability to perform meta-regression. This limitation underscores the importance of comprehensive data collection in future studies to increase the depth of our analyses. Third, oversight of not accounting for pretreatment medications taken by patients during the procedure might introduce a confounding factor. Although the existing data may be insufficient to draw definitive conclusions, recognizing and addressing this aspect in future research is essential for a more nuanced understanding. Moreover, this meta-analysis did not explicitly address patient comorbidities. These factors could potentially influence the safety of the procedure in patients with various comorbidities. Future studies should delve into these aspects to provide a more comprehensive assessment of the safety profile of the procedure in diverse patient populations. In conclusion, although this meta-analysis provides valuable insights, researchers must remain cognizant of these limitations. Addressing these concerns in future studies will enhance the robustness and applicability of these findings in clinical settings.

Based on our investigation, we ascertained that the administration of Greater Occipital Nerve Blocks (GONB) with local anesthetic leads to a notable reduction in both the intensity and frequency of headaches when compared to placebo. Additionally, our research underscores the effectiveness of GONBs and affirms their satisfactory safety profile. However, it is important to acknowledge that our confidence in these findings is somewhat tempered by the limited number of studies and relatively modest sample size that underpins our conclusions. Therefore, we advocate that future studies should broaden their scope by incorporating larger and more diverse sample sizes. These studies should also explore a range of drugs, frequencies, and treatment plans to augment the robustness and applicability of the results, thereby providing a more comprehensive understanding of the potential benefits of GONBs for headache management.

Data availability

The data are available within the article and supplementary files. The authors confirm that data supporting the findings of this study are available in the article and supplementary files.

Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z. Migraine remains second among the world’s causes of disability, and first among young women: findings from GBD2019. J Headache Pain. 2020;21(1):137.

Article   PubMed   PubMed Central   Google Scholar  

Steiner TJ, Stovner LJ. Global epidemiology of migraine and its implications for public health and health policy. Nat Rev Neurol. 2023;19(2):109–17.

Article   PubMed   Google Scholar  

Stovner LJ, Nichols E, Steiner TJ, Abd-Allah F, Abdelalim A, Al-Raddadi RM, et al. Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the global burden of Disease Study 2016. Lancet Neurol. 2018;17(11):954–76.

Article   Google Scholar  

Ferrari MD. The economic burden of migraine to society. PharmacoEconomics. 1998;13(6):667–76.

Goadsby PJ, Holland PR. An update: pathophysiology of Migraine. Neurol Clin. 2019;37(4):651–71.

The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.

Urits I, Yilmaz M, Bahrun E, Merley C, Scoon L, Lassiter G, et al. Utilization of B12 for the treatment of chronic migraine. Best Pract Res Clin Anaesthesiol. 2020;34(3):479–91.

Hong JB, Lange KS, Overeem LH, Triller P, Raffaelli B, Reuter U. A scoping review and Meta-analysis of Anti-CGRP monoclonal antibodies: Predicting Response. Pharmaceuticals (Basel). 2023;16(7).

Han L, Liu Y, Xiong H, Hong P. CGRP monoclonal antibody for preventive treatment of chronic migraine: an update of meta-analysis. Brain Behav. 2019;9(2):e01215.

Al-Khazali HM, Krøll LS, Ashina H, Melo-Carrillo A, Burstein R, Amin FM et al. Neck pain and headache: Pathophysiology, treatments and future directions. Musculoskeletal Science and Practice [Internet]. 2023;66:102804. https://doi.org/10.1016/j.msksp.2023.102804

Bartsch T, Goadsby PJ. The trigeminocervical complex and migraine: current concepts and synthesis. Curr Sci Inc. 2003;7:371–6. https://doi.org/10.1007/s11916-003-0036-y .

Chowdhury D, Datta D, Mundra A. Role of Greater Occipital nerve Block in Headache disorders: a narrative review. Neurol India. 2021;69(Supplement):S228–56.

Anthony M. Headache and the greater occipital nerve. Clin Neurol Neurosurg. 1992;94(4):297–301.

Selekler MH. [Greater occipital nerve blockade: trigeminicervical system and clinical applications in primary headaches]. Agri. 2008;20(3):6–13.

PubMed   Google Scholar  

Shauly O, Gould DJ, Sahai-Srivastava S, Patel KM. Greater Occipital nerve block for the treatment of chronic migraine headaches: a systematic review and Meta-analysis. Plast Reconstr Surg. 2019;144(4):943–52.

Tang Y, Kang J, Zhang Y, Zhang X. Influence of greater occipital nerve block on pain severity in migraine patients: a systematic review and meta-analysis. Am J Emerg Med. 2017;35(11):1750–4.

Zhang H, Yang X, Lin Y, Chen L, Ye H. The efficacy of greater occipital nerve block for the treatment of migraine: a systematic review and meta-analysis. Clin Neurol Neurosurg. 2018;165:129–33.

Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

Inan LE, Inan N, Karadaş Ö, Gül HL, Erdemoğlu AK, Türkel Y, et al. Greater occipital nerve blockade for the treatment of chronic migraine: a randomized, multicenter, double-blind, and placebo-controlled study. Acta Neurol Scand. 2015;132(4):270–7.

Gul HL, Ozon AO, Karadas O, Koc G, Inan LE. The efficacy of greater occipital nerve blockade in chronic migraine: a placebo-controlled study. Acta Neurol Scand. 2017;136(2):138–44.

Palamar D, Uluduz D, Saip S, Erden G, Unalan H, Akarirmak U. Ultrasound-guided greater occipital nerve block: an efficient technique in chronic refractory migraine without aura? Pain Physician. 2015;18(2):153–62.

Özer D, Bölük C, Türk Börü Ü, Altun D, Taşdemir M, Köseoğlu Toksoy C. Greater occipital and supraorbital nerve blockade for the preventive treatment of migraine: a single-blind, randomized, placebo-controlled study. Curr Med Res Opin. 2019;35(5):909–15.

Chowdhury D, Tomar A, Deorari V, Duggal A, Krishnan A, Koul A. Greater occipital nerve blockade for the preventive treatment of chronic migraine: a randomized double-blind placebo-controlled study. Cephalalgia. 2023;43(2):3331024221143541.

Velásquez-Rimachi V, Chachaima-Mar J, Cárdenas-Baltazar EC, Loayza-Vidalon A, Morán-Mariños C, Pacheco-Barrios K, et al. Greater occipital nerve block for chronic migraine patients: a meta-analysis. Acta Neurol Scand. 2022;146(2):101–14.

Bovim G, Sand T. Cervicogenic headache, migraine without aura and tension-type headache. Diagnostic blockade of greater occipital and supra-orbital nerves. Pain. 1992;51(1):43–8.

Allen SM, Mookadam F, Cha SS, Freeman JA, Starling AJ, Mookadam M. Greater Occipital nerve block for Acute Treatment of Migraine Headache: a large Retrospective Cohort Study. J Am Board Fam Med. 2018;31(2):211–8.

Austin M, Hinson MR. Occipital nerve Block. StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Melissa Hinson declares no relevant financial relationships with ineligible companies.: StatPearls Publishing Copyright © 2024. StatPearls Publishing LLC.; 2024.

Afridi SK, Shields KG, Bhola R, Goadsby PJ. Greater occipital nerve injection in primary headache syndromes–prolonged effects from a single injection. Pain. 2006;122(1–2):126–9.

Santos Lasaosa S, Cuadrado Pérez ML, Guerrero Peral AL, Huerta Villanueva M, Porta-Etessam J, Pozo-Rosich P, et al. Consensus recommendations for anaesthetic peripheral nerve block. Neurologia. 2017;32(5):316–30.

Rothrock JF. Occfipital nerve blocks. Headache the Journal of Head and Face Pain [Internet]. 2010;50(5):917–8. https://doi.org/10.1111/j.1526-4610.2010.01668.x

Blumenfeld A, Ashkenazi A, Napchan U, Bender SD, Klein BC, Berliner R et al. Expert Consensus Recommendations for the performance of Peripheral nerve blocks for headaches – A Narrative review. Headache the Journal of Head and Face Pain [Internet]. 2013;53(3):437–46. https://doi.org/10.1111/head.12053

Ashkenazi A, Matro R, Shaw JW, Abbas MA, Silberstein SD. Greater occipital nerve block using local anaesthetics alone or with triamcinolone for transformed migraine: a randomised comparative study. J Neurol Neurosurg Psychiatry. 2008;79(4):415–7.

Dilli E, Halker R, Vargas B, Hentz J, Radam T, Rogers R, et al. Occipital nerve block for the short-term preventive treatment of migraine: a randomized, double-blinded, placebo-controlled study. Cephalalgia. 2015;35(11):959–68.

Cuadrado ML, Aledo-Serrano Á, Navarro P, López-Ruiz P, Fernández-de-Las-Peñas C, González-Suárez I, et al. Short-term effects of greater occipital nerve blocks in chronic migraine: a double-blind, randomised, placebo-controlled clinical trial. Cephalalgia. 2017;37(9):864–72.

Karaoğlan M, Durmuş İE, Küçükçay B, Takmaz SA, İnan LE. Comparison of the clinical efficacy of bilateral and unilateral GON blockade at the C2 level in chronic migraine. Neurol Sci. 2022;43(5):3297–303.

Download references

Acknowledgements

We would like to thank the Paolo Procacci Foundation for their support.

The study was funded by the Paolo Procacci Foundation.

Author information

Authors and affiliations.

Department of Medicine, Jinnah Sindh Medical University, Karachi, 75510, Pakistan

Muhamad Saqlain Mustafa, Muhammad Ashir Shafique, Burhanudin Sohail Rangwala & Abdul Haseeb

Department of Medicine, Shaheed Mohtarma Benazir Bhutto Medical College, Karachi, 75400, Pakistan

Shafin bin Amin, Aashish Kumar, Syed Ali Arsal & Adarsh Raja

Department of Medicine, Dow University of Health Science, Karachi, 74200, Pakistan

Syeda Mahrukh Fatima Zaidi, Muhammad Faheem Iqbal & Inshal Jawed

Fondazione Paolo Procacci, Roma, 00193, Italy

Giustino Varrassi

Faculty of Medicine, University of Khartoum, Khartoum, 11111, Sudan

Khabab Abbasher Hussien Mohamed Ahmed

Department of Medicine, Liaquat National Hospital and Medical College, Karachi, Pakistan

Syed Muhammad Sinaan Ali

Jinnah Sindh Medical University, Rafiqi H J Shaheed Road, Karachi, 75510, Pakistan

Shaheed Mohtarma Benazir Bhutto Medical College, Lyari Hospital Rd, Rangiwara Karachi, Karachi, 75400, Pakistan

Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Pakistan

Liaquat National Hospital & Medical College, Stadium Road, Karachi, 74800, Pakistan

You can also search for this author in PubMed   Google Scholar

Contributions

M.S.M., S.B.A., A.K., M.A.S., S.M.F.Z., S.A.A. and B.S.R. wrote the main manuscript, visualized, validated and analyzed data. M.F.I., A.R., A.H., I.J., K.A.H.M.A., S.M.S.A. and G.V. wrote the main manuscript, conceived, visualized, validated, reviewed and edited.All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Khabab Abbasher Hussien Mohamed Ahmed .

Ethics declarations

Ethics approval and consent to participate.

Not applicable.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Mustafa, M.S., bin Amin, S., Kumar, A. et al. Assessing the effectiveness of greater occipital nerve block in chronic migraine: a systematic review and meta-analysis. BMC Neurol 24 , 330 (2024). https://doi.org/10.1186/s12883-024-03834-6

Download citation

Received : 19 April 2024

Accepted : 28 August 2024

Published : 07 September 2024

DOI : https://doi.org/10.1186/s12883-024-03834-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Chronic migraine
  • Greater occipital nerve block (GONB)
  • Local anesthetics

BMC Neurology

ISSN: 1471-2377

systematic plan of conducting research

Information

  • Author Services

Initiatives

You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader.

All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https://www.mdpi.com/openaccess .

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers.

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Original Submission Date Received: .

  • Active Journals
  • Find a Journal
  • Proceedings Series
  • For Authors
  • For Reviewers
  • For Editors
  • For Librarians
  • For Publishers
  • For Societies
  • For Conference Organizers
  • Open Access Policy
  • Institutional Open Access Program
  • Special Issues Guidelines
  • Editorial Process
  • Research and Publication Ethics
  • Article Processing Charges
  • Testimonials
  • Preprints.org
  • SciProfiles
  • Encyclopedia

sustainability-logo

Article Menu

systematic plan of conducting research

  • Subscribe SciFeed
  • Google Scholar
  • on Google Scholar
  • Table of Contents

Find support for a specific problem in the support section of our website.

Please let us know what you think of our products and services.

Visit our dedicated information section to learn more about MDPI.

JSmol Viewer

Integrating city master plans with sustainable and smart urban development: a systematic literature review.

systematic plan of conducting research

1. Introduction

2. materials and methods, elaboration of the systematic review of the literature, 3. smart cities: concepts, structure, and planning towards sustainability, 4.1. bibliometric analysis, 4.2. models for urban planning and sustainability, 4.3. frameworks for urban planning and sustainability.

  • Social Equity and Inclusivity: While some frameworks touch upon citizen requirements and smart city services, there is often a lack of emphasis on social equity and inclusivity. Sustainable urban development should prioritise the needs of all residents, including marginalised communities, and ensure equitable access to resources and services. Integrating social equity considerations more explicitly into the frameworks would enhance their comprehensiveness and relevance;
  • Environmental Justice: Few frameworks explicitly address environmental justice, which involves the fair distribution of environmental benefits and burdens across different social groups. Urban development initiatives should consider the potential environmental impacts on vulnerable communities and strive to mitigate disparities. Incorporating environmental justice principles into the frameworks would strengthen their sustainability focus and contribute to more equitable outcomes;
  • Resilience to Climate Change: While resilience is a common theme in some frameworks, there is often limited emphasis on resilience to climate change specifically. Due to the increasing frequency and severity of climate-related events, urban planning frameworks should prioritise measures to enhance cities resilience to climate change impacts, such as flooding, extreme heat, and sea-level rise. Integrating climate resilience considerations into the frameworks would enhance their relevance in the face of growing climate risks;
  • Cultural Preservation and Heritage: Many frameworks focus primarily on technical and infrastructural aspects of urban planning, overlooking the importance of cultural preservation and heritage conservation. Sustainable urban development should respect and integrate local cultures, traditions, and heritage assets into planning and design processes. Including cultural preservation considerations in the frameworks would promote more holistic and culturally sensitive approaches to urban development;
  • Long-Term Sustainability Metrics: While some frameworks include evaluation and assessment tools, there is often a lack of emphasis on long-term sustainability metrics and indicators. Sustainable urban development requires monitoring and measuring progress towards sustainability goals over time, using robust indicators that capture social, environmental, and economic dimensions. Enhancing the frameworks with comprehensive sustainability metrics would enable more rigorous monitoring and evaluation of urban sustainability outcomes;
  • Cross-Sectoral Collaboration: While some frameworks acknowledge the importance of interdisciplinary collaboration, there is often limited integration of perspectives from diverse sectors such as public health, education, and governance. Sustainable urban development requires cross-sectoral collaboration and coordination to address complex challenges comprehensively. Strengthening the frameworks’ emphasis on cross-sectoral collaboration would foster more integrated and holistic approaches to urban planning and sustainability.

4.4. City Master Plans in Smart and Sustainable Cities

RegionCountryProjectReferenceNumber of Articles
AsiaChinaFramework that presents the relationship between the e-urban plan and the current reality of new cities.[ ]12
It presents an optimised GLP-ESA-ACO coupling model for landscape pattern allocation, aiming at ecological security and economic coordination.[ ]
SLEUTH model is used to predict the future of land use. Predicts a population prediction model.[ ]
Hybrid weighting model for evaluating urban underground space resources, integrating the classic entropy weighting method with the time dimension method.[ ]
It presents multinomial logistic regression models to explore the relationships between urban growth patterns and urban planning in Shenzhen.[ ]
Framework for planning and designing an urban flood ecosystem.[ ]
Model to characterise the urban spatial structure using data from taxi trips.[ ]
Conceptual framework for illustrating ideas.[ ]
Citizen participation in the development of the Shanghai 2035 Master Plan.[ ]
FUTURES model for simulating urban sprawl and assessing impacts on ecosystem services in Hohhot, China.[ ]
Framework to explain the failure of urban planning in China.[ ]
Differences model to explore the relationship between smart cities and clean energy development. We used panel data from prefecture-level cities in China from 2009 to 2019.[ ]
JordanCriterion to help select the ideal site for a sustainable city in Jordan.[ ]4
SingaporeNew paradigm of integrated urban mobility planning is derived from a different concept of a city centred on accessibility.[ ]
VietnamSmart energy-system model for smart cities.[ ]
Saudi ArabiaWillingness of the public to participate in the urban planning process through technologies applied in Saudi Arabia. Discussion of the implications of these findings for inclusive urban planning.[ ]
South AsiaIndiaDiscusses approaches and solutions for transport planning (GIFT City).[ ] 6
Taxonomy of mixed land-use types presents indicators and practice parameters.[ ]
Typology of smart city approaches based on analysis of smart city policy documents.[ ]
Systems-thinking approach to examine the concept of smart cities, and it proposes a conclusive definition.[ ]
It uses multi-temporal satellite imagery and road network data to examine urban growth and its relationship to the transport network.[ ]
Framework for the development of an index of urban ecological efficiency (UEE) in the metropolitan area of Kolkata, India, from 2000 to 2020.[ ]
Far East of AsiaSouth
Korea
Transit Oriented Development (TOD) and Traditional Neighborhood Development (TND) models as frameworks to plan the urban structure of Sejong City.[ ] 5
Co-creative planning approach based on design thinking for regional innovation in declining industrial areas.[ ]
System dynamics model that analyses the effect of smart city planning in the urban region of Anyang.[ ]
Comparative framework between the smart city services offered by the South Korea National Strategic Smart Cities Program (NSSP) with other regions.[ ]
Gender analysis model is applied in three phases: planning phase, implementation phase, and post-occupation evaluation phase.[ ]
West AsiaAbu DhabiMasdar City is an example of an eco-city. Assessment of its effectiveness in terms of social sustainability.[ ] 1
Central AsiaAfghanistanTravel demand model forecasts using the traditional four-step method to assess the current number of passengers on public transport in 22 districts.[ ]1
Southeast AsiaIranTheoretical framework for the design process.[ ]2
Interviews with different planning actors and public and private sector planners, investigating what they perceive as barriers to employing e-participation in the Iranian planning system.[ ]
Asia and OceaniaIndonesiaParametric simulation as a tool to examine the relationship between lot characters and regulations in a commercial corridor.[ ] 3
Evaluation of six large cities in Indonesia in the development of smart city projects.[ ]
Geotext data-processing framework, which consists of four workflows: data retrieval, data analysis, data evaluation, and data visualisation.[ ]
OceaniaAustraliaGeographically Weighted Regression (GWR) model to identify statistically significant factors influencing UHI intensities in Brisbane.[ ]3
New
Zealand
Theoretical framework that positions spatial decision support tools (SDST) in relation to planning processes and results.[ ]
AustraliaIntroduction of the iHUB platform, Australia’s national urban research and development platform.[ ]
EuropeSpainIntelligenter Method as a model for making smarter urban policies and regulations.[ ]4
GermanyVarious approaches and strategies for improving sustainable urban mobility in German cities.[ ]
HungaryDifferent trends in urban planning based on the use of ICT.[ ]
TürkiyeParticipatory design model for the urban transformation process in Istanbul.[ ]
Northern EuropeFinlandIt discusses the idea of a city as a platform, addressing how cities support innovation by creating smart environments.[ ] 5
It discusses the role of participatory innovation platforms in urban economic development.[ ]
It presents a crowdsourcing model that combines different data sources.[ ]
It presents an exploratory analysis guided by digital urban platforms. It discusses platformization and its impact on urban planning.[ ]
City-planning tool to measure the spatial distribution of urban green space diversity within a city.[ ]
Western EuropeUKConceptual framework for aligning infrastructure assets with citizen requirements in smart cities.[ ] 2
Framework based on habitat–species models to predict bird counts in urban development plans.[ ]
Central EuropeSlovakiaParticipatory integrated model that uses opportunities incorporated in grassroots actions to foster the development of green infrastructure.[ ]1
North AmericaUSAIt discusses the use of a set of highway air rights and transit-oriented development as a smart growth strategy.[ ] 3
Framework Knowledge Product Evaluation (KnoPE) tool to evaluate knowledge products developed to support decision-making.[ ]
Model called emotional data framework for the use of emotional data in the governance of smart cities.[ ]
South AmericaBrazilIt presents the concept of human mobility transition, relating ideas of major changes in mobility dynamics and how these affect the constitution and development of urban settlements.[ ] 4
BrazilIt discusses the importance of articulations in the anti-asylum struggle with participatory master plans in Brazilian cities.[ ]
BrazilProcedural model for understanding e-participation practices and the mechanisms used over time to influence decision-making.[ ]
ChileRayMan model for conducting a parametric study in two urban development schemes: filling and expansion.[ ]
East AfricaEthiopiaIdentification of factors that impede the implementation of the urban structure plan in Nekemte, Ethiopia.[ ]1
  • Cluster 1. Geographic Distribution of Projects: The analysis reveals a diverse geographic distribution of projects related to smart cities and sustainable urban development (SUD). Asia emerges as a significant hub for such projects, with China, India, and South Korea leading in the number of initiatives. Other regions of Asia, including Singapore, Vietnam, Iran, Saudi Arabia, Afghanistan, Jordan, and Abu Dhabi, also contribute to the pool of projects. Europe hosts several projects across countries, such as Finland, Germany, Italy, Spain, the United Kingdom, France, Hungary, and Turkey. North America (USA), South America (Brazil and Chile), and Oceania (Indonesia, Australia, and New Zealand) also have notable representation. Africa, particularly Nigeria, Kenya, and Ethiopia, demonstrates some engagement in smart cities and SUD projects, albeit to a lesser extent compared to other continents;
  • Cluster 2. Emphasis on Developing Countries: A noteworthy observation is the concentration of projects in developing countries, especially in Asia and Africa. This trend aligns with the broader global agenda of promoting sustainable development and inclusive growth, as outlined in the United Nations Sustainable Development Goals (SDGs). The projects contribute to SDG 8 (Decent Work and Economic Growth) and SDG 11 (Sustainable Cities and Communities) by fostering economic growth, creating employment opportunities, and enhancing the sustainability and resilience of cities. Despite the progress made, there remains a significant gap in fully achieving these SDGs, indicating the need for continued efforts and interventions;
  • Cluster 3. Collaborative and Transnational Projects: Several projects exhibit a collaborative and transnational nature, involving partnerships between cities, organisations, and countries across different continents. Examples include the IntelCities project, the EU-GUGLE project, and the project described by [ 74 ], which span multiple countries in Europe, North America, and Africa. These collaborative endeavours leverage shared expertise, resources, and technologies to address common urban challenges and promote knowledge exchanges. Such projects underscore the importance of international cooperation and knowledge sharing in advancing smart cities and sustainable urban development on a global scale;
  • Cluster 4. Technological and Socio-Economic Solutions: The projects encompass a wide range of technological and socio-economic solutions aimed at improving urban sustainability and resilience. These solutions include the use of Information and Communication Technologies (ICT), renewable energy integration, thermal renovation of buildings, and the application of digital tools such as Geographic Information Systems (GIS) and Computer-Aided Design (CAD) programs. The emphasis on both technical and socio-economic aspects reflects a holistic approach to urban development, addressing not only infrastructure needs but also social equity, environmental justice, and economic viability.

5. Discussion

5.1. technological approaches, 5.2. innovative sustainable strategies for e-urban planning in smart cities, 6. conclusions, author contributions, data availability statement, acknowledgments, conflicts of interest.

  • Mahdavinejad, M.; Amini, M. Public participation for sustainable urban planning in case of Iran. Procedia Eng. 2011 , 21 , 405–413. [ Google Scholar ] [ CrossRef ]
  • Trencher, G.P.; Yarime, M.; Kharrazi, A. Co-creating sustainability: Cross-sector university collaborations for driving sustainable urban transformations. J. Clean. Prod. 2013 , 50 , 40–55. [ Google Scholar ] [ CrossRef ]
  • Nummi, P. Social media data analysis in urban e-planning. Int. J. E-Plan. Res. 2017 , 6 , 18–31. [ Google Scholar ] [ CrossRef ]
  • Heaton, J.; Parlikad, A.K. A conceptual framework for the alignment of infrastructure assets to citizen requirements within a Smart Cities framework. Cities 2019 , 90 , 32–41. [ Google Scholar ] [ CrossRef ]
  • Su, L.; Fan, J.; Fu, L. Exploration of smart city construction under new urbanization: A case study of Jinzhou-Huludao Coastal Area. Sustain. Comput. Inform. Syst. 2020 , 27 , 100403. [ Google Scholar ] [ CrossRef ]
  • Mahesa, R.; Yudoko, G.; Anggoro, Y. Dataset on the sustainable smart city development in Indonesia. Data Brief 2019 , 25 , 104098. [ Google Scholar ] [ CrossRef ]
  • Anttiroiko, A.-V. City-as-a-platform: The rise of participatory innovation platforms in finnish cities. Sustainability 2016 , 8 , 922. [ Google Scholar ] [ CrossRef ]
  • Caprotti, F.; Cowley, R.; Datta, A.; Broto, V.C.; Gao, E.; Georgeson, L.; Herrick, C.; Odendaal, N.; Joss, S. The New Urban Agenda: Key opportunities and challenges for policy and practice. Urban Res. Pr. 2017 , 10 , 367–378. [ Google Scholar ] [ CrossRef ]
  • Yigitcanlar, T.; Teriman, S. Rethinking sustainable urban development: Towards an integrated planning and development process. Int. J. Environ. Sci. Technol. 2015 , 12 , 341–352. [ Google Scholar ] [ CrossRef ]
  • Pagani, R.N.; Kovaleski, J.L.; Resende, L.M. Methodi Ordinatio: A proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication. Scientometrics 2015 , 105 , 2109–2135. [ Google Scholar ] [ CrossRef ]
  • Pagani, R.N.; Pedroso, B.; dos Santos, C.B.; Picinin, C.T.; Kovaleski, J.L. Methodi Ordinatio 2.0: Revisited under statistical estimation, and presenting FInder and RankIn. Qual. Quant. 2022 , 57 , 4563–4602. [ Google Scholar ] [ CrossRef ]
  • Kasznar, A.P.P.; Hammad, A.W.A.; Najjar, M.; Qualharini, E.L.; Figueiredo, K.; Soares, C.A.P.; Haddad, A.N. Multiple Dimensions of Smart Cities’ Infrastructure: A Review. Buildings 2021 , 11 , 73. [ Google Scholar ] [ CrossRef ]
  • Marsal-Llacuna, M.-L.; Segal, M.E. The Intelligenter Method (II) for “smarter” urban policy-making and regulation drafting. Cities 2017 , 61 , 83–95. [ Google Scholar ] [ CrossRef ]
  • Singh, M.; G, L. Forecasting of waste-to-energy system: A case study of Faridabad, India. Energy Sources Part A Recovery Util. Environ. Eff. 2020 , 42 , 319–328. [ Google Scholar ] [ CrossRef ]
  • Vadiati, N. Alternatives to Smart Cities: A call for consideration of grassroots digital urbanism. Digit. Geogr. Soc. 2022 , 3 , 100030. [ Google Scholar ] [ CrossRef ]
  • Sharifi, A.; Khavarian-Garmsir, A.R.; Allam, Z.; Asadzadeh, A. Progress and prospects in planning: A bibliometric review of literature in Urban Studies and Regional and Urban Planning, 1956–2022. Prog. Plan. 2023 , 173 , 100740. [ Google Scholar ] [ CrossRef ]
  • Fu, Y.; Zhang, X. Planning for sustainable cities? A comparative content analysis of the master plans of eco, low-carbon and conventional new towns in China. Habitat Int. 2017 , 63 , 55–66. [ Google Scholar ] [ CrossRef ]
  • Anguluri, R.; Narayanan, P. Role of green space in urban planning: Outlook towards Smart Cities. Urban For. Urban Green. 2017 , 25 , 58–65. [ Google Scholar ] [ CrossRef ]
  • Haghani, M.; Sabri, S.; De Gruyter, C.; Ardeshiri, A.; Shahhoseini, Z.; Sanchez, T.W.; Acuto, M. The landscape and evolution of urban planning science. Cities 2023 , 136 , 104261. [ Google Scholar ] [ CrossRef ]
  • Hassan, A.M.; Lee, H. Toward the sustainable development of urban areas: An overview of global trends in trials and policies. Land Use Policy 2015 , 48 , 199–212. [ Google Scholar ] [ CrossRef ]
  • Yigitcanlar, T.; Lee, S.H. Korean ubiquitous-eco-city: A smart-sustainable urban form or a branding hoax? Technol. Forecast. Soc. Chang. 2014 , 89 , 100–114. [ Google Scholar ] [ CrossRef ]
  • Deilami, K.; Kamruzzaman, M. Modelling the urban heat island effect of smart growth policy scenarios in Brisbane. Land Use Policy 2017 , 64 , 38–55. [ Google Scholar ] [ CrossRef ]
  • Prasad, D.; Alizadeh, T.; Alexander, E.R.; Trop, T.; Croce, S.; Vettorato, D.; Huang, Z.; Mendis, T.; Xu, S.S.; Nop, S.; et al. Onward with the Anti-asylum Struggle, occupying city master plans. Cities 2021 , 10 , 27–38. [ Google Scholar ] [ CrossRef ]
  • Zhang, R.; Wang, Y.; Wang, K.; Zhao, H.; Xu, S.; Mu, L.; Zhou, G. An evaluating model for smart growth plan based on BP neural network and set pair analysis. J. Clean. Prod. 2019 , 226 , 928–939. [ Google Scholar ] [ CrossRef ]
  • Liu, D.; Wu, L.; Yang, Y. A hybrid weight assignment model for urban underground space resources evaluation integrated with the weight of time dimension. Appl. Sci. 2020 , 10 , 5152. [ Google Scholar ] [ CrossRef ]
  • Hoang, A.T.; Pham, V.V.; Nguyen, X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 2021 , 305 , 127161. [ Google Scholar ] [ CrossRef ]
  • Lei, Y.; Flacke, J.; Schwarz, N. Does Urban planning affect urban growth pattern? A case study of Shenzhen, China. Land Use Policy 2021 , 101 , 105100. [ Google Scholar ] [ CrossRef ]
  • Gün, A.; Pak, B.; Demir, Y. Responding to the urban transformation challenges in Turkey: A participatory design model for Istanbul. Int. J. Urban Sustain. Dev. 2021 , 13 , 32–55. [ Google Scholar ] [ CrossRef ]
  • Vaňo, S.; Olafsson, A.S.; Mederly, P. Advancing urban green infrastructure through participatory integrated planning: A case from Slovakia. Urban For. Urban Green. 2021 , 58 , 126957. [ Google Scholar ] [ CrossRef ]
  • Zhang, Z.; Shen, Z.; Liu, L.; Zhang, Y.; Yu, C.; Cui, L.; Gao, Y. Integrating ecosystem services conservation into the optimization of urban planning policies in eco-fragile areas: A scenario-based case study. Cities 2023 , 134 , 104200. [ Google Scholar ] [ CrossRef ]
  • Chen, P.; Dagestani, A.A. Urban planning policy and clean energy development Harmony- evidence from smart city pilot policy in China. Renew. Energy 2023 , 210 , 251–257. [ Google Scholar ] [ CrossRef ]
  • Debnath, A.K.; Chin, H.C.; Haque, M.; Yuen, B. A methodological framework for benchmarking smart transport cities. Cities 2014 , 37 , 47–56. [ Google Scholar ] [ CrossRef ]
  • Ernst, K.M.; Preston, B.L. Applying the Knowledge Product Evaluation (KnoPE) Framework to two urban resilience cases in the United States. Environ. Sci. Policy 2020 , 107 , 7–22. [ Google Scholar ] [ CrossRef ]
  • Yang, J.; Kwon, Y.; Kim, D. Regional Smart City Development Focus: The South Korean National Strategic Smart City Program. IEEE Access 2021 , 9 , 7193–7210. [ Google Scholar ] [ CrossRef ]
  • Zhou, Y.; Sharma, A.; Masud, M.; Gaba, G.S.; Dhiman, G.; Ghafoor, K.Z.; AlZain, M.A. Urban rain flood ecosystem design planning and feasibility study for the enrichment of Smart Cities. Sustainability 2021 , 13 , 5205. [ Google Scholar ] [ CrossRef ]
  • Das, M.; Das, A.; Pereira, P. Developing an integrated urban ecological efficiency framework for spatial ecological planning: A case on a tropical mega metropolitan area of the global south. Geosci. Front. 2023 , 14 , 101489. [ Google Scholar ] [ CrossRef ]
  • Liu, F.; Sun, W. Impact of active “organic decentralization population” policy on future urban built-up areas: Beijing case study. Habitat Int. 2020 , 105 , 102262. [ Google Scholar ] [ CrossRef ]
  • Li, H.; Xu, X.; Li, X.; Ma, S.; Zhang, H. Characterizing the urban spatial structure using taxi trip big data and implications for urban planning. Front. Earth Sci. 2021 , 15 , 70–80. [ Google Scholar ] [ CrossRef ]
  • Zhu, W.; Chen, J. The spatial analysis of digital economy and urban development: A case study in Hangzhou, China. Cities 2022 , 123 , 103563. [ Google Scholar ] [ CrossRef ]
  • Qiu, S.; Gao, X.; Yue, W.; Zhang, Q. Government-led and Internet-empowered citizen participation in China’s policymaking: A case study of the Shanghai 2035 Master Plan. Gov. Inf. Q. 2023 , 40 , 101806. [ Google Scholar ] [ CrossRef ]
  • Yin, C.; Xiao, J.; Qian, X. Understanding urban planning failure in China: Identifying practitioners’ perspectives using Q methodology. Cities 2023 , 134 , 104193. [ Google Scholar ] [ CrossRef ]
  • Alkhalidi, A.; Qoaider, L.; Khashman, A.; Al-Alami, A.R.; Jiryes, S. Energy and water as indicators for sustainable city site selection and design in Jordan using smart grid. Sustain. Cities Soc. 2018 , 37 , 125–132. [ Google Scholar ] [ CrossRef ]
  • Alessandrini, A.; Site, P.D.; Filippi, F. A new planning paradigm for urban sustainability. Transp. Res. Procedia 2023 , 69 , 203–210. [ Google Scholar ] [ CrossRef ]
  • Bouregh, A.S.; Maniruzzaman, K.; Abubakar, I.R.; Alshihri, F.S.; Alrawaf, T.I.; Ahmed, S.M.; Boureggah, M.S. Investigating the prospect of e-participation in urban planning in Saudi Arabia. Cities 2023 , 134 , 104186. [ Google Scholar ] [ CrossRef ]
  • Reddy, D.S.; Babu, K.G.; Murthy, D. Transportation Planning Aspects of a Smart City–Case Study of GIFT City, Gujarat. Transp. Res. Procedia 2016 , 17 , 134–144. [ Google Scholar ] [ CrossRef ]
  • Raman, R.; Roy, U.K. Taxonomy of urban mixed land use planning. Land Use Policy 2019 , 88 , 104102. [ Google Scholar ] [ CrossRef ]
  • Prasad, D.; Alizadeh, T. What Makes Indian Cities Smart? A Policy Analysis of Smart Cities Mission. Telemat. Inform. 2020 , 55 , 101466. [ Google Scholar ] [ CrossRef ]
  • Singh, A.; Singla, A. Constructing definition of Smart Cities from systems thinking view. Kybernetes 2020 , 50 , 1919–1950. [ Google Scholar ] [ CrossRef ]
  • Haldar, S.; Mandal, S.; Bhattacharya, S.; Paul, S. Assessing and mapping spatial accessibility of peri-urban and rural neighborhood of Durgapur Municipal Corporation, India: A tool for transport planning. Case Stud. Transp. Policy 2023 , 12 , 100990. [ Google Scholar ] [ CrossRef ]
  • Kwon, Y. Sejong Si (City): Are TOD and TND models effective in planning Korea’s new capital? Cities 2015 , 42 , 242–257. [ Google Scholar ] [ CrossRef ]
  • Lee, T.H.; Hong, S.G.; Jeong, H. A study on design thinking-based co-creation planning applying for the sasang smart city development project. Information 2017 , 20 , 4281–4293. Available online: https://www.proquest.com/openview/cf1693b4fb34bc77f60bf534d183a43c/1?pq-origsite=gscholar&cbl=936334 (accessed on 15 March 2022).
  • Sook, Y.M.; Hyun, Y.K.; Hoon, K.C. The effect analysis of smart city planning on Urban dynamics using system dynamics method—Focused on anyang-city, Korea. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2020 , 38 , 57–67. [ Google Scholar ] [ CrossRef ]
  • Yang, T.; Dong, Z. The effect of sponge city construction on non-point source load reduction: A case study in the Three Gorges Reservoir Area, China. Ecohydrol. Hydrobiol. 2021 , 21 , 223–232. [ Google Scholar ] [ CrossRef ]
  • Chang, J.-I.; Choi, J.; An, H.; Chung, H.-Y. Gendering the smart city: A case study of Sejong City, Korea. Cities 2022 , 120 , 103422. [ Google Scholar ] [ CrossRef ]
  • Randeree, K.; Ahmed, N. The social imperative in sustainable urban development The case of Masdar City in the United Arab Emirates. Smart Sustain. Built Environ. 2019 , 8 , 138–149. [ Google Scholar ] [ CrossRef ]
  • Kakar, K.A.; Prasad, C. Impact of Urban Sprawl on Travel Demand for Public Transport, Private Transport and Walking. Transp. Res. Procedia 2020 , 48 , 1881–1892. [ Google Scholar ] [ CrossRef ]
  • Shahab, S.; Bagheri, B.; Potts, R. Barriers to employing e-participation in the Iranian planning system. Cities 2021 , 116 , 103281. [ Google Scholar ] [ CrossRef ]
  • Dewi, J.; Siahaan, U.; Tobing, R.R. Parametric Simulation as a Tool for Observing Relationships between Parcel and Regulations in Unplanned Commercial Corridor. Procedia—Soc. Behav. Sci. 2016 , 227 , 152–159. [ Google Scholar ] [ CrossRef ]
  • Putra, Z.D.W. The Sentiments of Indonesian Urban Citizens Regarding the Lockdown-Like Policy During the COVID-19 Pandemic. Int. J. E-Plan. Res. 2022 , 11 , 1–20. [ Google Scholar ] [ CrossRef ]
  • de Jesus Dionisio, R.; Schindler, M.; Kingham, S. Tools for sustainable change: How spatial decision-support tools support transformative urban regeneration. Int. J. E-Plan. Res. 2020 , 9 , 21–42. [ Google Scholar ] [ CrossRef ]
  • Newton, P.; Frantzeskaki, N. Creating a national urban research and development platform for advancing urban experimentation. Sustainability 2021 , 13 , 530. [ Google Scholar ] [ CrossRef ]
  • Johnsen, D.; Vorholt, F.; Gieschen, J.-H.; Müller, B.; Randhahn, A. Electric mobility and smart mobility concepts—Restrained uptake in German cities. World Electr. Veh. J. 2019 , 10 , 81. [ Google Scholar ] [ CrossRef ]
  • Benkő, M.; Bene, B.; Pirity, Á.; Szabó, Á.; Egedy, T. Real vs. Virtual city: Planning issues in a discontinuous urban area in budapest’s inner city. Urban Plan. 2021 , 6 , 150–163. [ Google Scholar ] [ CrossRef ]
  • Nummi, P. Crowdsourcing local knowledge with ppgis and social media for urban planning to reveal intangible cultural heritage. Urban Plan. 2018 , 3 , 100–115. [ Google Scholar ] [ CrossRef ]
  • Anttiroiko, A.-V. Digital Urban Planning Platforms: The Interplay of Digital and Local Embeddedness in Urban Planning. Int. J. E-Plan. Res. 2021 , 10 , 35–49. [ Google Scholar ] [ CrossRef ]
  • Resler, M.L.; Mazac, R.; Candy, S.; Kemppainen, T. Transitioning beyond urban green space accessibility indicators: Case illustration of a novel diversity planning tool applied to Vantaa, Finland. Environ. Sustain. Indic. 2023 , 18 , 100232. [ Google Scholar ] [ CrossRef ]
  • Cooper, J.E.; Plummer, K.E.; Siriwardena, G.M. Using species-habitat models to predict bird counts from urban development plans. Landsc. Urban Plan. 2023 , 230 , 104629. [ Google Scholar ] [ CrossRef ]
  • Savvides, A.L. Smart growth through joint highway air rights and transit- oriented development. Int. J. Sustain. Dev. Plan. 2017 , 12 , 1142–1154. [ Google Scholar ] [ CrossRef ]
  • Willis, K.S.; Nold, C. Sense and the city: An Emotion Data Framework for smart city governance. J. Urban Manag. 2022 , 11 , 142–152. [ Google Scholar ] [ CrossRef ]
  • de Sá, T.H.; Edwards, P.; Pereira, R.H.M.; Monteiro, C.A. Right to the city and human mobility transition: The case of São Paulo. Cities 2019 , 87 , 60–67. [ Google Scholar ] [ CrossRef ]
  • Coelho, T.R.; Cunha, M.A.; Pozzebon, M. eParticipation practices and mechanisms of influence: An investigation of public policymaking. Gov. Inf. Q. 2022 , 39 , 101667. [ Google Scholar ] [ CrossRef ]
  • Cárdenas-Jirón, L.A.; Graw, K.; Gangwisch, M.; Matzarakis, A. Influence of street configuration on human thermal comfort and benefits for climate-sensitive urban planning in Santiago de Chile. Urban Clim. 2023 , 47 , 101361. [ Google Scholar ] [ CrossRef ]
  • Negeri, M.D.; Guta, M.S.; Erena, S.H. Determinant factors hinder urban structure plan implementation: The case of Nekemte Town, Ethiopia. Heliyon 2023 , 9 , e13448. [ Google Scholar ] [ CrossRef ] [ PubMed ]
  • Christmann, G.; Schinagl, M. Digitalisation in everyday urban planning activities: Consequences for embodied practices, spatial knowledge, planning processes, and workplaces. J. Urban Manag. 2023 , 12 , 141–150. [ Google Scholar ] [ CrossRef ]
  • Praharaj, S.; Han, J.H.; Hawken, S. Urban innovation through policy integration: Critical perspectives from 100 smart cities mission in India. City Cult. Soc. 2018 , 12 , 35–43. [ Google Scholar ] [ CrossRef ]
  • Croce, S.; Vettorato, D. Urban surface uses for climate resilient and sustainable cities: A catalogue of solutions. Sustain. Cities Soc. 2021 , 75 , 103313. [ Google Scholar ] [ CrossRef ]
  • Son, T.H.; Weedon, Z.; Yigitcanlar, T.; Sanchez, T.; Corchado, J.M.; Mehmood, R. Algorithmic urban planning for smart and sustainable development: Systematic review of the literature. In Sustainable Cities and Society ; Elsevier Ltd.: Amsterdam, The Netherlands, 2023; Volume 94. [ Google Scholar ] [ CrossRef ]
  • Eilola, S.; Jaalama, K.; Kangassalo, P.; Nummi, P.; Staffans, A.; Fagerholm, N. 3D visualisations for communicative urban and landscape planning: What systematic mapping of academic literature can tell us of their potential? In Landscape and Urban Planning ; Elsevier B.V.: Amsterdam, The Netherlands, 2023; Volume 234. [ Google Scholar ] [ CrossRef ]

Click here to enlarge figure

Keyword CombinationScopusWeb of ScienceScience DirectGross Total of Articles
(“e-urban planning” OR “urban e-planning” OR “city master planning”) AND “Cidades Inteligentes”1121438164
ModelApplication/DescriptionAuthors
Geographically Weighted Regression (GWR)Identification of factors influencing Urban Heat Island (UHI) intensities in Brisbane[ ]
Intelligenter MethodElaboration of smarter urban policies and regulations[ ]
Evaluation modelMeasurement of the degree of success of a city’s smart growth plan[ ]
GLP-ESA-ACO coupling modelOptimization of landscape-pattern allocation under the objective of ecological security and economic coordination[ ]
Hybrid weighting modelEvaluation of urban underground space resources using entropy weighting method and time-dimension-weighting method[ ]
Smart energy-system modelDevelopment of smart energy systems for smart cities[ ]
Multinomial logistic regression modelsExploration of relationships between urban growth patterns and urban planning in Shenzhen, China[ ]
Participatory design modelFacilitation of urban transformation process in Istanbul[ ]
Integrated participatory modelUtilisation of grassroots actions to foster the development of green infrastructure[ ]
FUTURES modelSimulation of urban expansion and assessment of impacts on ecosystem services in Hohhot, China[ ]
Panel data modelExploration of relationship between smart cities and clean energy development using data from prefecture-level cities[ ]
FrameworkDescriptionAuthors
Urban Transport Intelligence Indices FrameworkMeasures the intelligence indices of different subsystems of the urban transport system[ ]
Relationship Framework between City Master Plans and New CitiesIllustrates the relationship between city master plans and the current reality of new cities[ ]
Infrastructure Alignment Conceptual Framework for Smart CitiesConceptual framework designed to align infrastructure assets with citizen requirements within smart cities[ ]
Knowledge Product Evaluation (KnoPE) FrameworkTool for evaluating knowledge products developed to support decision-making in urban resilience[ ]
Smart City Services Comparison FrameworkFramework comparing smart city services between the National Strategic Smart Cities Program of South Korea (NSSP) and 15 Smart Cities globally[ ]
Urban Flood Ecosystem Planning and Design FrameworkFramework for planning and designing urban flood ecosystems with the aim of enriching smart cities[ ]
Index of Urban Ecological Efficiency (UEE) Development FrameworkFramework for developing an index of Urban Ecological Efficiency (UEE) in Kolkata, India, from 2000 to 2020[ ]
Sustainable Urban Development FrameworkGeneral framework addressing 10 topics relevant to sustainable urban development[ ]
TechnologyAuthors
Remote sensing[ , ]
ICT, IoT, 5G communication technology, data structure, AI, autonomous vehicles, wireless networks, and renewable energy, among others.[ ]
Renewable energy technologies, integrated systems, and smart grid techniques.[ , , ]
e-participation, digital platforms, ICT decision-making, citizen engagement, urban transformation, internet, smartphones, public participation, and urban planning[ , , ]
Smart cities, digital urbanism, technology, urban infrastructure, technological innovations, job creation, and residents’ quality of life.[ , ]
StrategyAuthors
Innovation hubs.[ , ]
Integration platforms.[ ]
Sponge City and solutions for urban surfaces.[ , ]
AI technologies/digital technologies; smart city planning.[ , ]
3D visualisations and urban simulation.[ ]
Automation of road vehicles.[ ]
Technological ToolsUses and PurposeAuthors
ICT-based solutions.Application of technologies such as IoT, cloud computing, big data, mobile, and AI to improve the efficiency and quality of urban services.[ ]
3D and simulation tools.Use of 3D modelling tools and simulations to plan and visualise urban projects and their impacts.[ ]
5G and advanced connectivity.Deployment of 5G communication networks to support connectivity and real-time data exchange between devices and systems.[ ]
e-participation Tools.Digital platforms that allow citizen participation in the decision-making process and in urban planning.[ , , ]
Sensors and monitoring.Use of sensors to collect real-time data on different urban aspects, such as traffic, air quality, and energy consumption, among others.[ , ]
Integration of systems and regions.Connection and integration of different urban infrastructure systems. Collaborations across different regions for efficiency and sustainability improvements.[ ]
Innovation to solve complex problems.Continuous use of cutting-edge technologies and innovative projects to face increasingly complex urban challenges and search for sustainable solutions.[ , ]
The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

Przybysz, A.L.; Lima, A.D.; Sá, C.P.d.; Resende, D.N.; Pagani, R.N. Integrating City Master Plans with Sustainable and Smart Urban Development: A Systematic Literature Review. Sustainability 2024 , 16 , 7692. https://doi.org/10.3390/su16177692

Przybysz AL, Lima AD, Sá CPd, Resende DN, Pagani RN. Integrating City Master Plans with Sustainable and Smart Urban Development: A Systematic Literature Review. Sustainability . 2024; 16(17):7692. https://doi.org/10.3390/su16177692

Przybysz, André Luiz, Angelica Duarte Lima, Clayton Pereira de Sá, David Nunes Resende, and Regina Negri Pagani. 2024. "Integrating City Master Plans with Sustainable and Smart Urban Development: A Systematic Literature Review" Sustainability 16, no. 17: 7692. https://doi.org/10.3390/su16177692

Article Metrics

Article access statistics, further information, mdpi initiatives, follow mdpi.

MDPI

Subscribe to receive issue release notifications and newsletters from MDPI journals

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Pharmacol Pharmacother
  • v.4(2); Apr-Jun 2013

The critical steps for successful research: The research proposal and scientific writing: (A report on the pre-conference workshop held in conjunction with the 64 th annual conference of the Indian Pharmaceutical Congress-2012)

Pitchai balakumar.

Pharmacology Unit, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong. Kedah Darul Aman, Malaysia

Mohammed Naseeruddin Inamdar

1 Department of Pharmacology, Al-Ameen College of Pharmacy, Bengaluru, Karnataka, India

Gowraganahalli Jagadeesh

2 Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, USA

An interactive workshop on ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing’ was conducted in conjunction with the 64 th Annual Conference of the Indian Pharmaceutical Congress-2012 at Chennai, India. In essence, research is performed to enlighten our understanding of a contemporary issue relevant to the needs of society. To accomplish this, a researcher begins search for a novel topic based on purpose, creativity, critical thinking, and logic. This leads to the fundamental pieces of the research endeavor: Question, objective, hypothesis, experimental tools to test the hypothesis, methodology, and data analysis. When correctly performed, research should produce new knowledge. The four cornerstones of good research are the well-formulated protocol or proposal that is well executed, analyzed, discussed and concluded. This recent workshop educated researchers in the critical steps involved in the development of a scientific idea to its successful execution and eventual publication.

INTRODUCTION

Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society. Hence, the primary objective of research is to produce new knowledge. Research is both theoretical and empirical. It is theoretical because the starting point of scientific research is the conceptualization of a research topic and development of a research question and hypothesis. Research is empirical (practical) because all of the planned studies involve a series of observations, measurements, and analyses of data that are all based on proper experimental design.[ 1 – 9 ]

The subject of this report is to inform readers of the proceedings from a recent workshop organized by the 64 th Annual conference of the ‘ Indian Pharmaceutical Congress ’ at SRM University, Chennai, India, from 05 to 06 December 2012. The objectives of the workshop titled ‘The Critical Steps for Successful Research: The Research Proposal and Scientific Writing,’ were to assist participants in developing a strong fundamental understanding of how best to develop a research or study protocol, and communicate those research findings in a conference setting or scientific journal. Completing any research project requires meticulous planning, experimental design and execution, and compilation and publication of findings in the form of a research paper. All of these are often unfamiliar to naïve researchers; thus, the purpose of this workshop was to teach participants to master the critical steps involved in the development of an idea to its execution and eventual publication of the results (See the last section for a list of learning objectives).

THE STRUCTURE OF THE WORKSHOP

The two-day workshop was formatted to include key lectures and interactive breakout sessions that focused on protocol development in six subject areas of the pharmaceutical sciences. This was followed by sessions on scientific writing. DAY 1 taught the basic concepts of scientific research, including: (1) how to formulate a topic for research and to describe the what, why , and how of the protocol, (2) biomedical literature search and review, (3) study designs, statistical concepts, and result analyses, and (4) publication ethics. DAY 2 educated the attendees on the basic elements and logistics of writing a scientific paper and thesis, and preparation of poster as well as oral presentations.

The final phase of the workshop was the ‘Panel Discussion,’ including ‘Feedback/Comments’ by participants. There were thirteen distinguished speakers from India and abroad. Approximately 120 post-graduate and pre-doctoral students, young faculty members, and scientists representing industries attended the workshop from different parts of the country. All participants received a printed copy of the workshop manual and supporting materials on statistical analyses of data.

THE BASIC CONCEPTS OF RESEARCH: THE KEY TO GETTING STARTED IN RESEARCH

A research project generally comprises four key components: (1) writing a protocol, (2) performing experiments, (3) tabulating and analyzing data, and (4) writing a thesis or manuscript for publication.

Fundamentals in the research process

A protocol, whether experimental or clinical, serves as a navigator that evolves from a basic outline of the study plan to become a qualified research or grant proposal. It provides the structural support for the research. Dr. G. Jagadeesh (US FDA), the first speaker of the session, spoke on ‘ Fundamentals in research process and cornerstones of a research project .’ He discussed at length the developmental and structural processes in preparing a research protocol. A systematic and step-by-step approach is necessary in planning a study. Without a well-designed protocol, there would be a little chance for successful completion of a research project or an experiment.

Research topic

The first and the foremost difficult task in research is to identify a topic for investigation. The research topic is the keystone of the entire scientific enterprise. It begins the project, drives the entire study, and is crucial for moving the project forward. It dictates the remaining elements of the study [ Table 1 ] and thus, it should not be too narrow or too broad or unfocused. Because of these potential pitfalls, it is essential that a good or novel scientific idea be based on a sound concept. Creativity, critical thinking, and logic are required to generate new concepts and ideas in solving a research problem. Creativity involves critical thinking and is associated with generating many ideas. Critical thinking is analytical, judgmental, and involves evaluating choices before making a decision.[ 4 ] Thus, critical thinking is convergent type thinking that narrows and refines those divergent ideas and finally settles to one idea for an in-depth study. The idea on which a research project is built should be novel, appropriate to achieve within the existing conditions, and useful to the society at large. Therefore, creativity and critical thinking assist biomedical scientists in research that results in funding support, novel discovery, and publication.[ 1 , 4 ]

Elements of a study protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g001.jpg

Research question

The next most crucial aspect of a study protocol is identifying a research question. It should be a thought-provoking question. The question sets the framework. It emerges from the title, findings/results, and problems observed in previous studies. Thus, mastering the literature, attendance at conferences, and discussion in journal clubs/seminars are sources for developing research questions. Consider the following example in developing related research questions from the research topic.

Hepatoprotective activity of Terminalia arjuna and Apium graveolens on paracetamol-induced liver damage in albino rats.

How is paracetamol metabolized in the body? Does it involve P450 enzymes? How does paracetamol cause liver injury? What are the mechanisms by which drugs can alleviate liver damage? What biochemical parameters are indicative of liver injury? What major endogenous inflammatory molecules are involved in paracetamol-induced liver damage?

A research question is broken down into more precise objectives. The objectives lead to more precise methods and definition of key terms. The objectives should be SMART-Specific, Measurable, Achievable, Realistic, Time-framed,[ 10 ] and should cover the entire breadth of the project. The objectives are sometimes organized into hierarchies: Primary, secondary, and exploratory; or simply general and specific. Study the following example:

To evaluate the safety and tolerability of single oral doses of compound X in normal volunteers.

To assess the pharmacokinetic profile of compound X following single oral doses.

To evaluate the incidence of peripheral edema reported as an adverse event.

The objectives and research questions are then formulated into a workable or testable hypothesis. The latter forces us to think carefully about what comparisons will be needed to answer the research question, and establishes the format for applying statistical tests to interpret the results. The hypothesis should link a process to an existing or postulated biologic pathway. A hypothesis is written in a form that can yield measurable results. Studies that utilize statistics to compare groups of data should have a hypothesis. Consider the following example:

  • The hepatoprotective activity of Terminalia arjuna is superior to that of Apium graveolens against paracetamol-induced liver damage in albino rats.

All biological research, including discovery science, is hypothesis-driven. However, not all studies need be conducted with a hypothesis. For example, descriptive studies (e.g., describing characteristics of a plant, or a chemical compound) do not need a hypothesis.[ 1 ]

Relevance of the study

Another important section to be included in the protocol is ‘significance of the study.’ Its purpose is to justify the need for the research that is being proposed (e.g., development of a vaccine for a disease). In summary, the proposed study should demonstrate that it represents an advancement in understanding and that the eventual results will be meaningful, contribute to the field, and possibly even impact society.

Biomedical literature

A literature search may be defined as the process of examining published sources of information on a research or review topic, thesis, grant application, chemical, drug, disease, or clinical trial, etc. The quantity of information available in print or electronically (e.g., the internet) is immense and growing with time. A researcher should be familiar with the right kinds of databases and search engines to extract the needed information.[ 3 , 6 ]

Dr. P. Balakumar (Institute of Pharmacy, Rajendra Institute of Technology and Sciences, Sirsa, Haryana; currently, Faculty of Pharmacy, AIMST University, Malaysia) spoke on ‘ Biomedical literature: Searching, reviewing and referencing .’ He schematically explained the basis of scientific literature, designing a literature review, and searching literature. After an introduction to the genesis and diverse sources of scientific literature searches, the use of PubMed, one of the premier databases used for biomedical literature searches world-wide, was illustrated with examples and screenshots. Several companion databases and search engines are also used for finding information related to health sciences, and they include Embase, Web of Science, SciFinder, The Cochrane Library, International Pharmaceutical Abstracts, Scopus, and Google Scholar.[ 3 ] Literature searches using alternative interfaces for PubMed such as GoPubMed, Quertle, PubFocus, Pubget, and BibliMed were discussed. The participants were additionally informed of databases on chemistry, drugs and drug targets, clinical trials, toxicology, and laboratory animals (reviewed in ref[ 3 ]).

Referencing and bibliography are essential in scientific writing and publication.[ 7 ] Referencing systems are broadly classified into two major types, such as Parenthetical and Notation systems. Parenthetical referencing is also known as Harvard style of referencing, while Vancouver referencing style and ‘Footnote’ or ‘Endnote’ are placed under Notation referencing systems. The participants were educated on each referencing system with examples.

Bibliography management

Dr. Raj Rajasekaran (University of California at San Diego, CA, USA) enlightened the audience on ‘ bibliography management ’ using reference management software programs such as Reference Manager ® , Endnote ® , and Zotero ® for creating and formatting bibliographies while writing a manuscript for publication. The discussion focused on the use of bibliography management software in avoiding common mistakes such as incomplete references. Important steps in bibliography management, such as creating reference libraries/databases, searching for references using PubMed/Google scholar, selecting and transferring selected references into a library, inserting citations into a research article and formatting bibliographies, were presented. A demonstration of Zotero®, a freely available reference management program, included the salient features of the software, adding references from PubMed using PubMed ID, inserting citations and formatting using different styles.

Writing experimental protocols

The workshop systematically instructed the participants in writing ‘ experimental protocols ’ in six disciplines of Pharmaceutical Sciences.: (1) Pharmaceutical Chemistry (presented by Dr. P. V. Bharatam, NIPER, Mohali, Punjab); (2) Pharmacology (presented by Dr. G. Jagadeesh and Dr. P. Balakumar); (3) Pharmaceutics (presented by Dr. Jayant Khandare, Piramal Life Sciences, Mumbai); (4) Pharmacy Practice (presented by Dr. Shobha Hiremath, Al-Ameen College of Pharmacy, Bengaluru); (5) Pharmacognosy and Phytochemistry (presented by Dr. Salma Khanam, Al-Ameen College of Pharmacy, Bengaluru); and (6) Pharmaceutical Analysis (presented by Dr. Saranjit Singh, NIPER, Mohali, Punjab). The purpose of the research plan is to describe the what (Specific Aims/Objectives), why (Background and Significance), and how (Design and Methods) of the proposal.

The research plan should answer the following questions: (a) what do you intend to do; (b) what has already been done in general, and what have other researchers done in the field; (c) why is this worth doing; (d) how is it innovative; (e) what will this new work add to existing knowledge; and (f) how will the research be accomplished?

In general, the format used by the faculty in all subjects is shown in Table 2 .

Elements of a research protocol

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g002.jpg

Biostatistics

Biostatistics is a key component of biomedical research. Highly reputed journals like The Lancet, BMJ, Journal of the American Medical Association, and many other biomedical journals include biostatisticians on their editorial board or reviewers list. This indicates that a great importance is given for learning and correctly employing appropriate statistical methods in biomedical research. The post-lunch session on day 1 of the workshop was largely committed to discussion on ‘ Basic biostatistics .’ Dr. R. Raveendran (JIPMER, Puducherry) and Dr. Avijit Hazra (PGIMER, Kolkata) reviewed, in parallel sessions, descriptive statistics, probability concepts, sample size calculation, choosing a statistical test, confidence intervals, hypothesis testing and ‘ P ’ values, parametric and non-parametric statistical tests, including analysis of variance (ANOVA), t tests, Chi-square test, type I and type II errors, correlation and regression, and summary statistics. This was followed by a practice and demonstration session. Statistics CD, compiled by Dr. Raveendran, was distributed to the participants before the session began and was demonstrated live. Both speakers worked on a variety of problems that involved both clinical and experimental data. They discussed through examples the experimental designs encountered in a variety of studies and statistical analyses performed for different types of data. For the benefit of readers, we have summarized statistical tests applied frequently for different experimental designs and post-hoc tests [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g003.jpg

Conceptual framework for statistical analyses of data. Of the two kinds of variables, qualitative (categorical) and quantitative (numerical), qualitative variables (nominal or ordinal) are not normally distributed. Numerical data that come from normal distributions are analyzed using parametric tests, if not; the data are analyzed using non-parametric tests. The most popularly used Student's t -test compares the means of two populations, data for this test could be paired or unpaired. One-way analysis of variance (ANOVA) is used to compare the means of three or more independent populations that are normally distributed. Applying t test repeatedly in pair (multiple comparison), to compare the means of more than two populations, will increase the probability of type I error (false positive). In this case, for proper interpretation, we need to adjust the P values. Repeated measures ANOVA is used to compare the population means if more than two observations coming from same subject over time. The null hypothesis is rejected with a ‘ P ’ value of less than 0.05, and the difference in population means is considered to be statistically significant. Subsequently, appropriate post-hoc tests are used for pairwise comparisons of population means. Two-way or three-way ANOVA are considered if two (diet, dose) or three (diet, dose, strain) independent factors, respectively, are analyzed in an experiment (not described in the Figure). Categorical nominal unmatched variables (counts or frequencies) are analyzed by Chi-square test (not shown in the Figure)

Research and publication ethics

The legitimate pursuit of scientific creativity is unfortunately being marred by a simultaneous increase in scientific misconduct. A disproportionate share of allegations involves scientists of many countries, and even from respected laboratories. Misconduct destroys faith in science and scientists and creates a hierarchy of fraudsters. Investigating misconduct also steals valuable time and resources. In spite of these facts, most researchers are not aware of publication ethics.

Day 1 of the workshop ended with a presentation on ‘ research and publication ethics ’ by Dr. M. K. Unnikrishnan (College of Pharmaceutical Sciences, Manipal University, Manipal). He spoke on the essentials of publication ethics that included plagiarism (attempting to take credit of the work of others), self-plagiarism (multiple publications by an author on the same content of work with slightly different wordings), falsification (manipulation of research data and processes and omitting critical data or results), gift authorship (guest authorship), ghostwriting (someone other than the named author (s) makes a major contribution), salami publishing (publishing many papers, with minor differences, from the same study), and sabotage (distracting the research works of others to halt their research completion). Additionally, Dr. Unnikrishnan pointed out the ‘ Ingelfinger rule ’ of stipulating that a scientist must not submit the same original research in two different journals. He also advised the audience that authorship is not just credit for the work but also responsibility for scientific contents of a paper. Although some Indian Universities are instituting preventive measures (e.g., use of plagiarism detecting software, Shodhganga digital archiving of doctoral theses), Dr. Unnikrishnan argued for a great need to sensitize young researchers on the nature and implications of scientific misconduct. Finally, he discussed methods on how editors and peer reviewers should ethically conduct themselves while managing a manuscript for publication.

SCIENTIFIC COMMUNICATION: THE KEY TO SUCCESSFUL SELLING OF FINDINGS

Research outcomes are measured through quality publications. Scientists must not only ‘do’ science but must ‘write’ science. The story of the project must be told in a clear, simple language weaving in previous work done in the field, answering the research question, and addressing the hypothesis set forth at the beginning of the study. Scientific publication is an organic process of planning, researching, drafting, revising, and updating the current knowledge for future perspectives. Writing a research paper is no easier than the research itself. The lectures of Day 2 of the workshop dealt with the basic elements and logistics of writing a scientific paper.

An overview of paper structure and thesis writing

Dr. Amitabh Prakash (Adis, Auckland, New Zealand) spoke on ‘ Learning how to write a good scientific paper .’ His presentation described the essential components of an original research paper and thesis (e.g., introduction, methods, results, and discussion [IMRaD]) and provided guidance on the correct order, in which data should appear within these sections. The characteristics of a good abstract and title and the creation of appropriate key words were discussed. Dr. Prakash suggested that the ‘title of a paper’ might perhaps have a chance to make a good impression, and the title might be either indicative (title that gives the purpose of the study) or declarative (title that gives the study conclusion). He also suggested that an abstract is a succinct summary of a research paper, and it should be specific, clear, and concise, and should have IMRaD structure in brief, followed by key words. Selection of appropriate papers to be cited in the reference list was also discussed. Various unethical authorships were enumerated, and ‘The International Committee of Medical Journal Editors (ICMJE) criteria for authorship’ was explained ( http://www.icmje.org/ethical_1author.html ; also see Table 1 in reference #9). The session highlighted the need for transparency in medical publication and provided a clear description of items that needed to be included in the ‘Disclosures’ section (e.g., sources of funding for the study and potential conflicts of interest of all authors, etc.) and ‘Acknowledgements’ section (e.g., writing assistance and input from all individuals who did not meet the authorship criteria). The final part of the presentation was devoted to thesis writing, and Dr. Prakash provided the audience with a list of common mistakes that are frequently encountered when writing a manuscript.

The backbone of a study is description of results through Text, Tables, and Figures. Dr. S. B. Deshpande (Institute of Medical Sciences, Banaras Hindu University, Varanasi, India) spoke on ‘ Effective Presentation of Results .’ The Results section deals with the observations made by the authors and thus, is not hypothetical. This section is subdivided into three segments, that is, descriptive form of the Text, providing numerical data in Tables, and visualizing the observations in Graphs or Figures. All these are arranged in a sequential order to address the question hypothesized in the Introduction. The description in Text provides clear content of the findings highlighting the observations. It should not be the repetition of facts in tables or graphs. Tables are used to summarize or emphasize descriptive content in the text or to present the numerical data that are unrelated. Illustrations should be used when the evidence bearing on the conclusions of a paper cannot be adequately presented in a written description or in a Table. Tables or Figures should relate to each other logically in sequence and should be clear by themselves. Furthermore, the discussion is based entirely on these observations. Additionally, how the results are applied to further research in the field to advance our understanding of research questions was discussed.

Dr. Peush Sahni (All-India Institute of Medical Sciences, New Delhi) spoke on effectively ‘ structuring the Discussion ’ for a research paper. The Discussion section deals with a systematic interpretation of study results within the available knowledge. He said the section should begin with the most important point relating to the subject studied, focusing on key issues, providing link sentences between paragraphs, and ensuring the flow of text. Points were made to avoid history, not repeat all the results, and provide limitations of the study. The strengths and novel findings of the study should be provided in the discussion, and it should open avenues for future research and new questions. The Discussion section should end with a conclusion stating the summary of key findings. Dr. Sahni gave an example from a published paper for writing a Discussion. In another presentation titled ‘ Writing an effective title and the abstract ,’ Dr. Sahni described the important components of a good title, such as, it should be simple, concise, informative, interesting and eye-catching, accurate and specific about the paper's content, and should state the subject in full indicating study design and animal species. Dr. Sahni explained structured (IMRaD) and unstructured abstracts and discussed a few selected examples with the audience.

Language and style in publication

The next lecture of Dr. Amitabh Prakash on ‘ Language and style in scientific writing: Importance of terseness, shortness and clarity in writing ’ focused on the actual sentence construction, language, grammar and punctuation in scientific manuscripts. His presentation emphasized the importance of brevity and clarity in the writing of manuscripts describing biomedical research. Starting with a guide to the appropriate construction of sentences and paragraphs, attendees were given a brief overview of the correct use of punctuation with interactive examples. Dr. Prakash discussed common errors in grammar and proactively sought audience participation in correcting some examples. Additional discussion was centered on discouraging the use of redundant and expendable words, jargon, and the use of adjectives with incomparable words. The session ended with a discussion of words and phrases that are commonly misused (e.g., data vs . datum, affect vs . effect, among vs . between, dose vs . dosage, and efficacy/efficacious vs . effective/effectiveness) in biomedical research manuscripts.

Working with journals

The appropriateness in selecting the journal for submission and acceptance of the manuscript should be determined by the experience of an author. The corresponding author must have a rationale in choosing the appropriate journal, and this depends upon the scope of the study and the quality of work performed. Dr. Amitabh Prakash spoke on ‘ Working with journals: Selecting a journal, cover letter, peer review process and impact factor ’ by instructing the audience in assessing the true value of a journal, understanding principles involved in the peer review processes, providing tips on making an initial approach to the editorial office, and drafting an appropriate cover letter to accompany the submission. His presentation defined the metrics that are most commonly used to measure journal quality (e.g., impact factor™, Eigenfactor™ score, Article Influence™ score, SCOPUS 2-year citation data, SCImago Journal Rank, h-Index, etc.) and guided attendees on the relative advantages and disadvantages of using each metric. Factors to consider when assessing journal quality were discussed, and the audience was educated on the ‘green’ and ‘gold’ open access publication models. Various peer review models (e.g., double-blind, single-blind, non-blind) were described together with the role of the journal editor in assessing manuscripts and selecting suitable reviewers. A typical checklist sent to referees was shared with the attendees, and clear guidance was provided on the best way to address referee feedback. The session concluded with a discussion of the potential drawbacks of the current peer review system.

Poster and oral presentations at conferences

Posters have become an increasingly popular mode of presentation at conferences, as it can accommodate more papers per meeting, has no time constraint, provides a better presenter-audience interaction, and allows one to select and attend papers of interest. In Figure 2 , we provide instructions, design, and layout in preparing a scientific poster. In the final presentation, Dr. Sahni provided the audience with step-by-step instructions on how to write and format posters for layout, content, font size, color, and graphics. Attendees were given specific guidance on the format of text on slides, the use of color, font type and size, and the use of illustrations and multimedia effects. Moreover, the importance of practical tips while delivering oral or poster presentation was provided to the audience, such as speak slowly and clearly, be informative, maintain eye contact, and listen to the questions from judges/audience carefully before coming up with an answer.

An external file that holds a picture, illustration, etc.
Object name is JPP-4-130-g004.jpg

Guidelines and design to scientific poster presentation. The objective of scientific posters is to present laboratory work in scientific meetings. A poster is an excellent means of communicating scientific work, because it is a graphic representation of data. Posters should have focus points, and the intended message should be clearly conveyed through simple sections: Text, Tables, and Graphs. Posters should be clear, succinct, striking, and eye-catching. Colors should be used only where necessary. Use one font (Arial or Times New Roman) throughout. Fancy fonts should be avoided. All headings should have font size of 44, and be in bold capital letters. Size of Title may be a bit larger; subheading: Font size of 36, bold and caps. References and Acknowledgments, if any, should have font size of 24. Text should have font size between 24 and 30, in order to be legible from a distance of 3 to 6 feet. Do not use lengthy notes

PANEL DISCUSSION: FEEDBACK AND COMMENTS BY PARTICIPANTS

After all the presentations were made, Dr. Jagadeesh began a panel discussion that included all speakers. The discussion was aimed at what we do currently and could do in the future with respect to ‘developing a research question and then writing an effective thesis proposal/protocol followed by publication.’ Dr. Jagadeesh asked the following questions to the panelists, while receiving questions/suggestions from the participants and panelists.

  • Does a Post-Graduate or Ph.D. student receive adequate training, either through an institutional course, a workshop of the present nature, or from the guide?
  • Are these Post-Graduates self-taught (like most of us who learnt the hard way)?
  • How are these guides trained? How do we train them to become more efficient mentors?
  • Does a Post-Graduate or Ph.D. student struggle to find a method (s) to carry out studies? To what extent do seniors/guides help a post graduate overcome technical difficulties? How difficult is it for a student to find chemicals, reagents, instruments, and technical help in conducting studies?
  • Analyses of data and interpretation: Most students struggle without adequate guidance.
  • Thesis and publications frequently feature inadequate/incorrect statistical analyses and representation of data in tables/graphs. The student, their guide, and the reviewers all share equal responsibility.
  • Who initiates and drafts the research paper? The Post-Graduate or their guide?
  • What kind of assistance does a Post-Graduate get from the guide in finalizing a paper for publication?
  • Does the guide insist that each Post-Graduate thesis yield at least one paper, and each Ph.D. thesis more than two papers, plus a review article?

The panelists and audience expressed a variety of views, but were unable to arrive at a decisive conclusion.

WHAT HAVE THE PARTICIPANTS LEARNED?

At the end of this fast-moving two-day workshop, the participants had opportunities in learning the following topics:

  • Sequential steps in developing a study protocol, from choosing a research topic to developing research questions and a hypothesis.
  • Study protocols on different topics in their subject of specialization
  • Searching and reviewing the literature
  • Appropriate statistical analyses in biomedical research
  • Scientific ethics in publication
  • Writing and understanding the components of a research paper (IMRaD)
  • Recognizing the value of good title, running title, abstract, key words, etc
  • Importance of Tables and Figures in the Results section, and their importance in describing findings
  • Evidence-based Discussion in a research paper
  • Language and style in writing a paper and expert tips on getting it published
  • Presentation of research findings at a conference (oral and poster).

Overall, the workshop was deemed very helpful to participants. The participants rated the quality of workshop from “ satisfied ” to “ very satisfied .” A significant number of participants were of the opinion that the time allotted for each presentation was short and thus, be extended from the present two days to four days with adequate time to ask questions. In addition, a ‘hands-on’ session should be introduced for writing a proposal and manuscript. A large number of attendees expressed their desire to attend a similar workshop, if conducted, in the near future.

ACKNOWLEDGMENT

We gratefully express our gratitude to the Organizing Committee, especially Professors K. Chinnasamy, B. G. Shivananda, N. Udupa, Jerad Suresh, Padma Parekh, A. P. Basavarajappa, Mr. S. V. Veerramani, Mr. J. Jayaseelan, and all volunteers of the SRM University. We thank Dr. Thomas Papoian (US FDA) for helpful comments on the manuscript.

The opinions expressed herein are those of Gowraganahalli Jagadeesh and do not necessarily reflect those of the US Food and Drug Administration

Source of Support: Nil

Conflict of Interest: None declared.

IMAGES

  1. A Step by Step Guide for Conducting a Systematic Review

    systematic plan of conducting research

  2. Systematic process of research.

    systematic plan of conducting research

  3. Research Process: 8 Steps in Research Process

    systematic plan of conducting research

  4. Research Process Steps: What they are + How To Follow

    systematic plan of conducting research

  5. 8 Steps of Research Planning Process You Should Know

    systematic plan of conducting research

  6. Phases of conducting systematic literature review.

    systematic plan of conducting research

VIDEO

  1. Conducting Systematic Literature Search

  2. Guide to conducting Systematic Review and meta-analysis

  3. Introduction to Evidence Synthesis

  4. How to Conduct a Systematic Literature Review from Keenious AI tool

  5. Evaluating Program Growth and Operation

  6. Business Plan-Conducting a Comprehensive Competitive Analysis #shorts

COMMENTS

  1. How to Conduct Scientific Research?

    Scientific method should be neutral, objective, rational, and as a result, should be able to approve or disapprove the hypothesis. The research plan should include the procedure to obtain data and evaluate the variables. It should ensure that analyzable data are obtained. It should also include plans on the statistical analysis to be performed.

  2. How to Do a Systematic Review: A Best Practice Guide for Conducting and

    Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question.

  3. Key Steps in the Research Process

    With your research plan in place, it's time to dive into the data collection phase. As you conduct your research, adhere to the established research process steps to ensure the integrity and quality of your findings. Compliance; Conduct your research in accordance with federal regulations, state laws, institutional SOPs, and policies.

  4. Systematic reviews: Structure, form and content

    Topic selection and planning. In recent years, there has been an explosion in the number of systematic reviews conducted and published (Chalmers & Fox 2016, Fontelo & Liu 2018, Page et al 2015) - although a systematic review may be an inappropriate or unnecessary research methodology for answering many research questions.Systematic reviews can be inadvisable for a variety of reasons.

  5. Steps of a Systematic Review

    Image: https://pixabay.com Steps to conducting a systematic review: PIECES. P: Planning - the methods of the systematic review are generally decided before conducting it. I: Identifying - searching for studies which match the preset criteria in a systematic manner E: Evaluating - sort all retrieved articles (included or excluded) and assess the risk of bias for each included study

  6. Research Methodology

    To guide the research process: Research methodology provides a systematic framework for conducting research. It helps researchers to plan their research, define their research questions, and select appropriate methods and techniques for collecting and analyzing data. To ensure research quality: Research methodology helps researchers to ensure ...

  7. Systematic Review

    Systematic Review | Definition, Example & Guide

  8. An overview of methodological approaches in systematic reviews

    1. INTRODUCTION. Evidence synthesis is a prerequisite for knowledge translation. 1 A well conducted systematic review (SR), often in conjunction with meta‐analyses (MA) when appropriate, is considered the "gold standard" of methods for synthesizing evidence related to a topic of interest. 2 The central strength of an SR is the transparency of the methods used to systematically search ...

  9. Overview of the Research Process

    Research is a rigorous problem-solving process whose ultimate goal is the discovery of new knowledge. Research may include the description of a new phenomenon, definition of a new relationship, development of a new model, or application of an existing principle or procedure to a new context. Research is systematic, logical, empirical, reductive, replicable and transmittable, and generalizable.

  10. Conducting a Systematic Review: A Practical Guide

    Abstract. It can be challenging to conduct a systematic review with limited experience and skills in undertaking such a task. This chapter provides a practical guide to undertaking a systematic review, providing step-by-step instructions to guide the individual through the process from start to finish. The chapter begins with defining what a ...

  11. Research Process

    Research Process is a systematic and structured approach that involves the collection, analysis, and interpretation of data or information to answer a specific research question or solve a particular problem. ... This step involves designing a research plan and methodology that will enable the researcher to collect and analyze data to test the ...

  12. PDF A Six Step Process to Developing an Educational Research Plan

    Education research leads to new knowledge about teaching, learning, and educational administration. The goal of educational research is to generate knowledge that describes, predicts, improves, and explains processes and practices related to education (Gall, Gall, and Borg, 2007). Developing and implementing an educational study plan can lead ...

  13. Research Plan

    A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan. 1. Research conceptualization - introduces your research question.

  14. PDF Conducting a Systematic Review: Methodology and Steps

    guiding reviewers on conducting a systematic review, using examples from published systematic reviews and different types of studies. To illustrate the approach, we use example research questions and elaborate the stepwise proposed methodology for conducting a systematic review. Some of the potential research questions are: 1.

  15. Guidance on Conducting a Systematic Literature Review

    Literature reviews establish the foundation of academic inquires. However, in the planning field, we lack rigorous systematic reviews. In this article, through a systematic search on the methodology of literature review, we categorize a typology of literature reviews, discuss steps in conducting a systematic literature review, and provide suggestions on how to enhance rigor in literature ...

  16. How to Do a Systematic Review: A Best Practice Guide for Conducting and

    Systematic reviews are characterized by a methodical and replicable methodology and presentation. They involve a comprehensive search to locate all relevant published and unpublished work on a subject; a systematic integration of search results; and a critique of the extent, nature, and quality of evidence in relation to a particular research question. The best reviews synthesize studies to ...

  17. Planning Qualitative Research: Design and Decision Making for New

    Qualitative research, conducted thoughtfully, is internally consistent, rigorous, and helps us answer important questions about people and their lives (Lincoln & Guba, 1985). These fundamental epistemological foundations are key for developing the right research mindset before designing and conducting qualitative research.

  18. Research Methods

    Research Methods | Definitions, Types, Examples

  19. Ten Steps to Conduct a Systematic Review

    To conduct a risk of bias in medical research, it is crucial to adhere to a specific sequence: choose tools that are specifically designed for systematic reviews. These tools should have proven acceptable validity and reliability, specifically address items related to methodological quality (internal validity), and ideally be based on empirical ...

  20. PDF Guidance notes on planning a systematic review

    A systematic review is a means of identifying, evaluating and interpreting all available research relevant to a particular research question, or topic area, or phenomenon of interest. Individual studies contributing to a systematic review are called primary studies; a systematic review is a form of secondary study.

  21. The Scientific Method Steps, Uses, and Key Terms

    Scientific Method Steps in Psychology Research

  22. Assessing the effectiveness of greater occipital nerve block in chronic

    This study advocates for further research exploring various drugs, frequencies, and treatment plans to enhance the robustness and applicability of GONB for chronic migraine management. ... This study aims to fill the knowledge gaps by conducting a comprehensive systematic review and meta-analysis, providing healthcare professionals with a more ...

  23. Five steps to conducting a systematic review

    Reasons for inclusion and exclusion should be recorded. Step 3: Assessing the quality of studies. Study quality assessment is relevant to every step of a review. Question formulation (Step 1) and study selection criteria (Step 2) should describe the minimum acceptable level of design.

  24. The Impact of Speed Limit Change on Emissions: A Systematic ...

    In the pursuit of sustainable mobility and the decarbonization of transport systems, public authorities are increasingly scrutinizing the impact of travel speed on emissions within both low-speed and high-speed environments. This study critically examines the evidence concerning emission impacts associated with speed limit changes in different traffic environments by conducting a systematic ...

  25. Integrating City Master Plans with Sustainable and Smart Urban ...

    Urban configurations have substantial impacts on lifestyles, behaviors, and people's daily lives. Elaborating urban plans based on smart and sustainable initiatives is a challenging task as it encompasses numerous multidisciplinary premises due to the dynamics of the urban context. This research aims to conduct a systematic review of the literature in three axes: sustainable urban ...

  26. Radiofrequency vs Steroid Injections for Spinal Facet and Sacroiliac

    Our initial systematic search across various databases yielded a total of 117 studies. After removing duplicate entries, we were left with 46 unique articles. ... blocking neuralgia-conducting nerves for extended periods. ... highlighting the need for further research and standardization in RFA procedures to enhance clarity for clinicians and ...

  27. The critical steps for successful research: The research proposal and

    INTRODUCTION. Creativity and critical thinking are of particular importance in scientific research. Basically, research is original investigation undertaken to gain knowledge and understand concepts in major subject areas of specialization, and includes the generation of ideas and information leading to new or substantially improved scientific insights with relevance to the needs of society.