U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.
  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Quantitative Methods
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques . Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Muijs, Daniel. Doing Quantitative Research in Education with SPSS . 2nd edition. London: SAGE Publications, 2010.

Need Help Locating Statistics?

Resources for locating data and statistics can be found here:

Statistics & Data Research Guide

Characteristics of Quantitative Research

Your goal in conducting quantitative research study is to determine the relationship between one thing [an independent variable] and another [a dependent or outcome variable] within a population. Quantitative research designs are either descriptive [subjects usually measured once] or experimental [subjects measured before and after a treatment]. A descriptive study establishes only associations between variables; an experimental study establishes causality.

Quantitative research deals in numbers, logic, and an objective stance. Quantitative research focuses on numeric and unchanging data and detailed, convergent reasoning rather than divergent reasoning [i.e., the generation of a variety of ideas about a research problem in a spontaneous, free-flowing manner].

Its main characteristics are :

  • The data is usually gathered using structured research instruments.
  • The results are based on larger sample sizes that are representative of the population.
  • The research study can usually be replicated or repeated, given its high reliability.
  • Researcher has a clearly defined research question to which objective answers are sought.
  • All aspects of the study are carefully designed before data is collected.
  • Data are in the form of numbers and statistics, often arranged in tables, charts, figures, or other non-textual forms.
  • Project can be used to generalize concepts more widely, predict future results, or investigate causal relationships.
  • Researcher uses tools, such as questionnaires or computer software, to collect numerical data.

The overarching aim of a quantitative research study is to classify features, count them, and construct statistical models in an attempt to explain what is observed.

  Things to keep in mind when reporting the results of a study using quantitative methods :

  • Explain the data collected and their statistical treatment as well as all relevant results in relation to the research problem you are investigating. Interpretation of results is not appropriate in this section.
  • Report unanticipated events that occurred during your data collection. Explain how the actual analysis differs from the planned analysis. Explain your handling of missing data and why any missing data does not undermine the validity of your analysis.
  • Explain the techniques you used to "clean" your data set.
  • Choose a minimally sufficient statistical procedure ; provide a rationale for its use and a reference for it. Specify any computer programs used.
  • Describe the assumptions for each procedure and the steps you took to ensure that they were not violated.
  • When using inferential statistics , provide the descriptive statistics, confidence intervals, and sample sizes for each variable as well as the value of the test statistic, its direction, the degrees of freedom, and the significance level [report the actual p value].
  • Avoid inferring causality , particularly in nonrandomized designs or without further experimentation.
  • Use tables to provide exact values ; use figures to convey global effects. Keep figures small in size; include graphic representations of confidence intervals whenever possible.
  • Always tell the reader what to look for in tables and figures .

NOTE:   When using pre-existing statistical data gathered and made available by anyone other than yourself [e.g., government agency], you still must report on the methods that were used to gather the data and describe any missing data that exists and, if there is any, provide a clear explanation why the missing data does not undermine the validity of your final analysis.

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Quantitative Research Methods. Writing@CSU. Colorado State University; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Basic Research Design for Quantitative Studies

Before designing a quantitative research study, you must decide whether it will be descriptive or experimental because this will dictate how you gather, analyze, and interpret the results. A descriptive study is governed by the following rules: subjects are generally measured once; the intention is to only establish associations between variables; and, the study may include a sample population of hundreds or thousands of subjects to ensure that a valid estimate of a generalized relationship between variables has been obtained. An experimental design includes subjects measured before and after a particular treatment, the sample population may be very small and purposefully chosen, and it is intended to establish causality between variables. Introduction The introduction to a quantitative study is usually written in the present tense and from the third person point of view. It covers the following information:

  • Identifies the research problem -- as with any academic study, you must state clearly and concisely the research problem being investigated.
  • Reviews the literature -- review scholarship on the topic, synthesizing key themes and, if necessary, noting studies that have used similar methods of inquiry and analysis. Note where key gaps exist and how your study helps to fill these gaps or clarifies existing knowledge.
  • Describes the theoretical framework -- provide an outline of the theory or hypothesis underpinning your study. If necessary, define unfamiliar or complex terms, concepts, or ideas and provide the appropriate background information to place the research problem in proper context [e.g., historical, cultural, economic, etc.].

Methodology The methods section of a quantitative study should describe how each objective of your study will be achieved. Be sure to provide enough detail to enable the reader can make an informed assessment of the methods being used to obtain results associated with the research problem. The methods section should be presented in the past tense.

  • Study population and sampling -- where did the data come from; how robust is it; note where gaps exist or what was excluded. Note the procedures used for their selection;
  • Data collection – describe the tools and methods used to collect information and identify the variables being measured; describe the methods used to obtain the data; and, note if the data was pre-existing [i.e., government data] or you gathered it yourself. If you gathered it yourself, describe what type of instrument you used and why. Note that no data set is perfect--describe any limitations in methods of gathering data.
  • Data analysis -- describe the procedures for processing and analyzing the data. If appropriate, describe the specific instruments of analysis used to study each research objective, including mathematical techniques and the type of computer software used to manipulate the data.

Results The finding of your study should be written objectively and in a succinct and precise format. In quantitative studies, it is common to use graphs, tables, charts, and other non-textual elements to help the reader understand the data. Make sure that non-textual elements do not stand in isolation from the text but are being used to supplement the overall description of the results and to help clarify key points being made. Further information about how to effectively present data using charts and graphs can be found here .

  • Statistical analysis -- how did you analyze the data? What were the key findings from the data? The findings should be present in a logical, sequential order. Describe but do not interpret these trends or negative results; save that for the discussion section. The results should be presented in the past tense.

Discussion Discussions should be analytic, logical, and comprehensive. The discussion should meld together your findings in relation to those identified in the literature review, and placed within the context of the theoretical framework underpinning the study. The discussion should be presented in the present tense.

  • Interpretation of results -- reiterate the research problem being investigated and compare and contrast the findings with the research questions underlying the study. Did they affirm predicted outcomes or did the data refute it?
  • Description of trends, comparison of groups, or relationships among variables -- describe any trends that emerged from your analysis and explain all unanticipated and statistical insignificant findings.
  • Discussion of implications – what is the meaning of your results? Highlight key findings based on the overall results and note findings that you believe are important. How have the results helped fill gaps in understanding the research problem?
  • Limitations -- describe any limitations or unavoidable bias in your study and, if necessary, note why these limitations did not inhibit effective interpretation of the results.

Conclusion End your study by to summarizing the topic and provide a final comment and assessment of the study.

  • Summary of findings – synthesize the answers to your research questions. Do not report any statistical data here; just provide a narrative summary of the key findings and describe what was learned that you did not know before conducting the study.
  • Recommendations – if appropriate to the aim of the assignment, tie key findings with policy recommendations or actions to be taken in practice.
  • Future research – note the need for future research linked to your study’s limitations or to any remaining gaps in the literature that were not addressed in your study.

Black, Thomas R. Doing Quantitative Research in the Social Sciences: An Integrated Approach to Research Design, Measurement and Statistics . London: Sage, 1999; Gay,L. R. and Peter Airasain. Educational Research: Competencies for Analysis and Applications . 7th edition. Upper Saddle River, NJ: Merril Prentice Hall, 2003; Hector, Anestine. An Overview of Quantitative Research in Composition and TESOL . Department of English, Indiana University of Pennsylvania; Hopkins, Will G. “Quantitative Research Design.” Sportscience 4, 1 (2000); "A Strategy for Writing Up Research Results. The Structure, Format, Content, and Style of a Journal-Style Scientific Paper." Department of Biology. Bates College; Nenty, H. Johnson. "Writing a Quantitative Research Thesis." International Journal of Educational Science 1 (2009): 19-32; Ouyang, Ronghua (John). Basic Inquiry of Quantitative Research . Kennesaw State University.

Strengths of Using Quantitative Methods

Quantitative researchers try to recognize and isolate specific variables contained within the study framework, seek correlation, relationships and causality, and attempt to control the environment in which the data is collected to avoid the risk of variables, other than the one being studied, accounting for the relationships identified.

Among the specific strengths of using quantitative methods to study social science research problems:

  • Allows for a broader study, involving a greater number of subjects, and enhancing the generalization of the results;
  • Allows for greater objectivity and accuracy of results. Generally, quantitative methods are designed to provide summaries of data that support generalizations about the phenomenon under study. In order to accomplish this, quantitative research usually involves few variables and many cases, and employs prescribed procedures to ensure validity and reliability;
  • Applying well established standards means that the research can be replicated, and then analyzed and compared with similar studies;
  • You can summarize vast sources of information and make comparisons across categories and over time; and,
  • Personal bias can be avoided by keeping a 'distance' from participating subjects and using accepted computational techniques .

Babbie, Earl R. The Practice of Social Research . 12th ed. Belmont, CA: Wadsworth Cengage, 2010; Brians, Craig Leonard et al. Empirical Political Analysis: Quantitative and Qualitative Research Methods . 8th ed. Boston, MA: Longman, 2011; McNabb, David E. Research Methods in Public Administration and Nonprofit Management: Quantitative and Qualitative Approaches . 2nd ed. Armonk, NY: M.E. Sharpe, 2008; Singh, Kultar. Quantitative Social Research Methods . Los Angeles, CA: Sage, 2007.

Limitations of Using Quantitative Methods

Quantitative methods presume to have an objective approach to studying research problems, where data is controlled and measured, to address the accumulation of facts, and to determine the causes of behavior. As a consequence, the results of quantitative research may be statistically significant but are often humanly insignificant.

Some specific limitations associated with using quantitative methods to study research problems in the social sciences include:

  • Quantitative data is more efficient and able to test hypotheses, but may miss contextual detail;
  • Uses a static and rigid approach and so employs an inflexible process of discovery;
  • The development of standard questions by researchers can lead to "structural bias" and false representation, where the data actually reflects the view of the researcher instead of the participating subject;
  • Results provide less detail on behavior, attitudes, and motivation;
  • Researcher may collect a much narrower and sometimes superficial dataset;
  • Results are limited as they provide numerical descriptions rather than detailed narrative and generally provide less elaborate accounts of human perception;
  • The research is often carried out in an unnatural, artificial environment so that a level of control can be applied to the exercise. This level of control might not normally be in place in the real world thus yielding "laboratory results" as opposed to "real world results"; and,
  • Preset answers will not necessarily reflect how people really feel about a subject and, in some cases, might just be the closest match to the preconceived hypothesis.

Research Tip

Finding Examples of How to Apply Different Types of Research Methods

SAGE publications is a major publisher of studies about how to design and conduct research in the social and behavioral sciences. Their SAGE Research Methods Online and Cases database includes contents from books, articles, encyclopedias, handbooks, and videos covering social science research design and methods including the complete Little Green Book Series of Quantitative Applications in the Social Sciences and the Little Blue Book Series of Qualitative Research techniques. The database also includes case studies outlining the research methods used in real research projects. This is an excellent source for finding definitions of key terms and descriptions of research design and practice, techniques of data gathering, analysis, and reporting, and information about theories of research [e.g., grounded theory]. The database covers both qualitative and quantitative research methods as well as mixed methods approaches to conducting research.

SAGE Research Methods Online and Cases

  • << Previous: Qualitative Methods
  • Next: Insiderness >>
  • Last Updated: Jul 3, 2024 10:07 AM
  • URL: https://libguides.usc.edu/writingguide

A Complete Guide to Quantitative Research Methods

quantitative research methods

Numbers are everywhere and drive our day-to-day lives. We take decisions based on numbers, both at work and in our personal lives. For example, an organization may rely on sales numbers to see if it’s succeeding or failing, and a group of friends planning a vacation may look at ticket prices to pick a place.

In the social domain, numbers are just as important. They help identify what interventions are needed, whether ongoing projects are effective, and more. But how do organizations in the social domain get the numbers they need?

This is where quantitative research comes in. Quantitative research is the process of collecting numerical data through standardized techniques, then applying statistical methods to derive insights from it.

When is quantitative research useful?

The goal of quantitative research methods is to collect numerical data from a group of people, then generalize those results to a larger group of people to explain a phenomenon. Researchers generally use quantitative research when they want get objective, conclusive answers.

For example, a chocolate brand may run a survey among a sample of their target group (teenagers in the United States) to check whether they like the taste of the chocolate. The result of this survey would reveal how all teenagers in the U.S. feel about the chocolate.

quantitative research methods, literacy

Similarly, an organization running a project to improve a village’s literacy rate may look at how many people came to their program, how many people dropped out, and each person’s literacy score before and after the program. They can use these metrics to evaluate the overall success of their program.

Unlike  qualitative research , quantitative research is generally not used in the early stages of research for exploring a question or scoping out a problem. It is generally used to answer clear, pre-defined questions in the advanced stages of a research study.

How can you plan a quantitative research exercise?

  • Identify the research problem . An example would be, how well do New Delhi’s government schools ensure that students complete their education?
  • Prepare the research questions that need to be answered to address the research problem. For example, what percentage of students drop out of government schools in New Delhi?
  • Review existing literature on the research problem and questions to ensure that there is no duplication. If someone has already answered this, you can rely on their results.
  • Develop a research plan . This includes identifying the target group, sample , and method of data collection ; conducting data analysis; collating recommendations; and arriving at a conclusion.

What are the advantages of quantitative research methods?

  • Quantitative research methods provide an relatively conclusive answer to the research questions.
  • When the data is collected and analyzed in accordance with standardized, reputable methodology, the results are usually trustworthy.
  • With statistically significant sample sizes, the results can be generalized to an entire target group.

Samples have to be carefully designed and chosen, else their results can’t be generalized. Learn how to choose the right sampling technique for your survey.

What are the limitations of quantitative research methods?

  • Does not account for people’s thoughts or perceptions about what you’re evaluating.
  • Does not explore the “why” and “how” behind a phenomenon.

What quantitative research methods can you use?

Here are four quantitative research methods that you can use to collect data for a quantitative research study:

Questionnaires

This is the most common way to collect quantitative data. A questionnaire (also called a survey) is a series of questions, usually written on paper or a digital form. Researchers give the questionnaire to their sample, and each participant answers the questions. The questions are designed to gather data that will help researchers answer their research questions.

quantitative research methods, closed-ended question, open-ended question, atlan collect

Typically, a questionnaire has closed-ended questions — that is, the participant chooses an answer from the given options. However, a questionnaire may also have quantitative open-ended questions. In the open-ended example above, the participants could write a simple number like “4”, a range like “I usually go one or two times per week” or a more complex response like “Most weeks I go twice, but this week I went 4 times because I kept forgetting my grocery list. During the winter, I only go once a week.”

Understanding closed and open-ended questions is crucial to designing a great survey and collecting high quality data. Learn more with our complete guide about when and how to use closed and open-ended questions.

A good questionnaire should have clear language, correct grammar and spelling, and a clear objective.

Advantages:

  • Questionnaires are often less time consuming than interviews or other in-person quantitative research methods.
  • They’re a common, fairly simple way to collect data.
  • They can be a cost-effective option for gathering data from a large sample.

Limitations:

  • Responses may lack depth and provide limited information.
  • Respondents may lose interest or quit if the questionnaire is long.
  • Respondents may not understand all questions, which would lead to inaccurate responses.

Response bias — a set of factors that lead participants answer a question incorrectly — can be deadly for data quality. Learn how it happens and how to avoid it.

how to write a research quantitative

An interview for quantitative research involves verbal communication between the participant and researcher, whose goal is to gather numerical data. The interview can be conducted face-to-face or over the phone, and it can be structured or unstructured.

In a structured interview, the researcher asks a fixed set of questions to every participant. The questions and their order are pre-decided by the researcher. The interview follows a formal pattern. Structured interviews are more cost efficient and can be less time consuming.

In an unstructured interview, the researcher thinks of his/her questions as the interview proceeds. This type of interview is conversational in nature and can last a few hours. This type of interview allows the researcher to be flexible and ask questions depending on the participant’s responses. This quantitative research method can provide more in-depth information, since it allows researchers to delve deeper into a participant’s response.

  • Interviews can provide more in-depth information.
  • Interviews are more flexible than questionnaires, since interviewers can adapt their questions to each participant or ask follow-up questions.
  • Interviewers can clarify participants’ questions, which will help them get clearer, more accurate data.
  • Interviewing one person at a time can be time-consuming.
  • Travel, interviewer salaries and other expenses can make interviews an expensive data collection tool.
  • With unstructured interviews, it can be difficult to quantify some responses.

One way to speed up interviews is to conduct them with multiple people at one time in a focus group discussion. Learn more about how to conduct a great FGD.

Observation

Observation is a systematic way to collect data by observing people in natural situations or settings. Though it is mostly used for collecting qualitative data, observation can also be used to collect quantitative data.

Observation can be simple or behavioral. Simple observations are usually numerical, like how many cars pass through a given intersection each hour or how many students are asleep during a class. Behavioral observation, on the other hand, observes and interprets people’s behavior, like how many cars are driving dangerously or how engaging a lecturer is.

Simple observation can be a good way to collect numerical data. This can be done by pre-defining clear numerical variables that can be collected during observation — for example, what time employees leave the office. This data can be collected by observing employees over a period of time and recording when each person leaves.

  • Observation is often an inexpensive way to collect data.
  • Since researchers are recording the data themselves (rather than participants reporting the data), most of the collected data will generally be usable.
  • Data collection can be stopped and started by researchers at any time, making it a flexible data collection tool.
  • Researchers need to be extensively trained to undertake observation and record data correctly.
  • Sometimes the environment or research may bias the data, like when participants know they’re being observed.
  • If the situation to be observed sometimes doesn’t happen, researchers may waste a lot of time during data collection.

Simple vs. behavioral is just one type of observation. Learn more about the 5 different types of observation and when you should use each to collect different types of data.

how to write a research quantitative

Since quantitative research depends on numerical data, records (also known as external data) can provide critical information to answer research questions. Records are numbers and statistics that institutions use to track activities, like attendance in a school or the number of patients admitted in a hospital.

For example, the Government of India conducts the Census every 10 years, which is a record of the country’s population. This data can be used by a researcher who is addressing a population-related research problem.

  • Records often include comprehensive data captured over a long period of time.
  • Data collection time is minimal, since the data has already been collected and recorded by someone else.
  • Records often only provide numerical data, not the reason or cause behind the data.
  • Cleaning badly structured or formatted records can take a long time.
  • If a record is incomplete or inaccurate, there is often no way to fix it.

Summing it up

Quantitative research methods are one of the best tools to identify a problem or phenomenon, how widespread it is, and how it is changing over time. After identifying a problem, quantitative research can also be used to come up with a trustworthy solution, identified using numerical data collected through standardized techniques.

Image credits:  Curtis MacNewton ,  Brijesh Nirmal ,  Charles Deluvio , and Atlan.

' src=

Related Posts

how to write a research quantitative

3 Myths About Paper-Based Data Collection

data validations

18 Data Validations That Will Help You Collect Accurate Data

informed consent

Everything You Need to Know About Informed Consent

14 comments.

' src=

Very useful for research

' src=

Very easy to read and informative book. Well written. Thany thanks for the download.

' src=

It is concise and practical as well as easy to understand.

' src=

Nice book but I kind find a way to download it. Kindly let me know how to download it. Thanks

' src=

Hello Micah Nalianya Greetings! Kindly tell me how to download the book. Simeon

' src=

Hi Micah and Simeon! You can download our data collection ebook here: https://socialcops.com/ebooks/data-collection/

' src=

I have loved reviewing the brief write up. Good revision for me. Thanks

' src=

The text contains concise and important tips on data collection techniques.

' src=

Thanks for an explicit and precise outline of data collection methods.

' src=

thank you very much, this guide is really useful and easy to understand. Specially for students that just have started research.

' src=

Thank you so much for sharing me this very important material.

' src=

I am highly impressed with the simply ways you explain methods of collecting data. I am a Monitoring and Evaluation Specialist and I will like to be receiving your regular publications.

' src=

i have benefited from the work. well organized .thank you

' src=

interview is a qualitative method not quantitative.

Write A Comment Cancel Reply

Save my name, email, and website in this browser for the next time I comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed .

  • The Future of the Modern Data Stack in 2023
  • The Third-Generation Data Catalog Primer
  • The Secrets of a Modern Data Leader
  • The Ultimate Guide to Evaluating Data Lineage
  • How Active Metadata Helps Modern Organizations Embrace the DataOps Way
  • Inside Atlan

Type above and press Enter to search. Press Esc to cancel.

  • (855) 776-7763

Training Maker

All Products

Qualaroo Insights

ProProfs.com

  • Get Started Free

FREE. All Features. FOREVER!

Try our Forever FREE account with all premium features!

How to Write Quantitative Research Questions: Types With Examples

How to Write Quantitative Research Questions: Types With Examples

Has it ever happened that you conducted a quantitative research study and found out the results you were expecting are quite different from the actual results?

This could happen due to many factors like the unpredictable nature of respondents, errors in calculation, research bias, etc. However, your quantitative research usually does not provide reliable results when questions are not written correctly.

We get it! Structuring the quantitative research questions can be a difficult task.

Hence, in this blog, we will share a few bits of advice on how to write good quantitative research questions. We will also look at different types of quantitative research questions along with their examples.

Let’s start:

How to Write Quantitative Research Questions?

When you want to obtain actionable insight into the trends and patterns of the research topic to make sense of it, quantitative research questions are your best bet.

Being objective in nature, these questions provide you with detailed information about the research topic and help in collecting quantifiable data that can be easily analyzed. This data can be generalized to the entire population and help make data-driven and sound decisions.

Respondents find it easier to answer quantitative survey questions than qualitative questions. At the same time, researchers can also analyze them quickly using various statistical models.

However, when it comes to writing the quantitative research questions, one can get a little overwhelmed as the entire study depends on the types of questions used.

There is no “one good way” to prepare these questions. However, to design well-structured quantitative research questions, you can follow the 4-steps approach given below:

1. Select the Type of Quantitative Question

The first step is to determine which type of quantitative question you want to add to your study. There are three types of quantitative questions:

  • Descriptive
  • Comparative 
  • Relationship-based

This will help you choose the correct words and phrases while constructing the question. At the same time, it will also assist readers in understanding the question correctly.

2. Identify the Type of Variable

The second step involves identifying the type of variable you are trying to measure, manipulate, or control. Basically, there are two types of variables:

  • Independent variable (a variable that is being manipulated)
  • Dependent variable (outcome variable)

quantitative questions examples

If you plan to use descriptive research questions, you have to deal with a number of dependent variables. However, where you plan to create comparative or relationship research questions, you will deal with both dependent and independent variables.

3. Select the Suitable Structure

The next step is determining the structure of the research question. It involves:

  • Identifying the components of the question. It involves the type of dependent or independent variable and a group of interest (the group from which the researcher tries to conclude the population).
  • The number of different components used. Like, as to how many variables and groups are being examined.
  • Order in which these are presented. For example, the independent variable before the dependent variable or vice versa.

4. Draft the Complete Research Question

The last step involves identifying the problem or issue that you are trying to address in the form of complete quantitative survey questions . Also, make sure to build an exhaustive list of response options to make sure your respondents select the correct response. If you miss adding important answer options, then the ones chosen by respondents may not be entirely true.

Want to create a quantitative research survey hassle-free? Explore our library of 1,000,000+ readymade questions.

Types of Quantitative Research Questions With Examples

Quantitative research questions are generally used to answer the “who” and “what” of the research topic. For quantitative research to be effective, it is crucial that the respondents are able to answer your questions concisely and precisely. With that in mind, let’s look in greater detail at the three types of formats you can use when preparing quantitative market research questions.

1. Descriptive 

Descriptive research questions are used to collect participants’ opinions about the variable that you want to quantify. It is the most effortless way to measure the particular variable (single or multiple variables) you are interested in on a large scale. Usually, descriptive research questions begin with “ how much,” “how often,” “what percentage,” “what proportion,” etc.

Examples of descriptive research questions include:

Questions Variable  Group
1. How much rice do Indians consume per month? Rice intake monthly Indians
2. How often do you use mobile apps for shopping purposes? Mobile app used a. Smartphone users
b. Shopping enthusiasts
3. What is the preferred choice of cuisine for Americans? Cuisine Americans
4. How often do students aged between 10-15 years use Instagram monthly? Monthly use of Instagram Students aged between 10-15
5. How often do middle-class adults go on vacation yearly? Vacation Middle-class adults 

2. Comparative

Comparative research questions help you identify the difference between two or more groups based on one or more variables. In general, a comparative research question is used to quantify one variable; however, you can use two or more variables depending on your market research objectives.

Comparative research questions examples include:

Questions Variable  Groups
6. What is the difference in duration spent on social media between people aged 15- 20 and 20-25? Time spent on social media Group 1: People within the age group 15-20
Group 2: People within the age group 20-25
7. What is the difference in the daily protein intake between men and women in America? Daily protein intake Group 1: Men based in America
Group 2: Women based in America
8. What is the difference between watching web series weekly between a child and an adult? Watching web series weekly Group 1: Child
Group 2: Adult
9. What is the difference in attitude towards sports between Millennial adults and older people born before 1981?   Attitude towards sports Group 1: Millennial adults
Group 2:  Older people born before 1981
10. What is the difference in the usage of Facebook between male and female American university students? Usage of Facebook Group 1: Male American university students
Group 2: Female American university students

3. Relationship-based

Relationship research questions are used to identify trends, causal relationships, or associations between two or more variables. It is not vital to distinguish between causal relationships, trends, or associations while using these types of questions. These questions begin with “What is the relationship” between independent and dependent variables, amongst or between two or more groups.

Relationship-based quantitative questions examples include:

Questions Independent Variable  Dependent Variable Group
11. What is the relationship between gender and perspective towards comedy movies amongst Americans? Perspective Gender Americans
12. What is the relationship between job motivation and pay level amongst US residents? Job motivation Pay level US residents
13. What is the relationship between salary and shopping habits among the women of Australia? Salary Shopping habits Australia
14. What is the relationship between gender and fast food preference in young adults? Gender Fast food Young Adults
15. What is the relationship between a college degree and a job position in corporates? College degree Job Position Corporates

Ready to Write Your Quantitative Research Questions?

So, there you have it. It was all about quantitative research question types and their examples. By now, you must have figured out a way to write quantitative research questions for your survey to collect actionable customer feedback.

Now, the only thing you need is a good survey maker tool , like ProProfs Survey Maker , that will glide your process of designing and conducting your surveys . You also get access to various survey question types, both qualitative and quantitative, that you can add to any kind of survey along with professionally-designed survey templates .

Emma David

About the author

Emma David is a seasoned market research professional with 8+ years of experience. Having kick-started her journey in research, she has developed rich expertise in employee engagement, survey creation and administration, and data management. Emma believes in the power of data to shape business performance positively. She continues to help brands and businesses make strategic decisions and improve their market standing through her understanding of research methodologies.

Related Posts

how to write a research quantitative

360 Feedback Questions: The Roadmap to Enhanced Employee Performance

how to write a research quantitative

Close Ended Questions: A Complete Guide With Types & Examples

how to write a research quantitative

What Is a Demographic Survey Question: A Guide with 60+ Examples

how to write a research quantitative

Mastering Survey Success: Crafting Effective Introductions

how to write a research quantitative

What is diversity, equity, and inclusion (DEI)? 25+ Survey Questions to Ask

how to write a research quantitative

What is the Purpose of Surveys & What Are Its Benefits?

Logo for Rhode Island College Digital Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Quantitative Data Analysis

9 Presenting the Results of Quantitative Analysis

Mikaila Mariel Lemonik Arthur

This chapter provides an overview of how to present the results of quantitative analysis, in particular how to create effective tables for displaying quantitative results and how to write quantitative research papers that effectively communicate the methods used and findings of quantitative analysis.

Writing the Quantitative Paper

Standard quantitative social science papers follow a specific format. They begin with a title page that includes a descriptive title, the author(s)’ name(s), and a 100 to 200 word abstract that summarizes the paper. Next is an introduction that makes clear the paper’s research question, details why this question is important, and previews what the paper will do. After that comes a literature review, which ends with a summary of the research question(s) and/or hypotheses. A methods section, which explains the source of data, sample, and variables and quantitative techniques used, follows. Many analysts will include a short discussion of their descriptive statistics in the methods section. A findings section details the findings of the analysis, supported by a variety of tables, and in some cases graphs, all of which are explained in the text. Some quantitative papers, especially those using more complex techniques, will include equations. Many papers follow the findings section with a discussion section, which provides an interpretation of the results in light of both the prior literature and theory presented in the literature review and the research questions/hypotheses. A conclusion ends the body of the paper. This conclusion should summarize the findings, answering the research questions and stating whether any hypotheses were supported, partially supported, or not supported. Limitations of the research are detailed. Papers typically include suggestions for future research, and where relevant, some papers include policy implications. After the body of the paper comes the works cited; some papers also have an Appendix that includes additional tables and figures that did not fit into the body of the paper or additional methodological details. While this basic format is similar for papers regardless of the type of data they utilize, there are specific concerns relating to quantitative research in terms of the methods and findings that will be discussed here.

In the methods section, researchers clearly describe the methods they used to obtain and analyze the data for their research. When relying on data collected specifically for a given paper, researchers will need to discuss the sample and data collection; in most cases, though, quantitative research relies on pre-existing datasets. In these cases, researchers need to provide information about the dataset, including the source of the data, the time it was collected, the population, and the sample size. Regardless of the source of the data, researchers need to be clear about which variables they are using in their research and any transformations or manipulations of those variables. They also need to explain the specific quantitative techniques that they are using in their analysis; if different techniques are used to test different hypotheses, this should be made clear. In some cases, publications will require that papers be submitted along with any code that was used to produce the analysis (in SPSS terms, the syntax files), which more advanced researchers will usually have on hand. In many cases, basic descriptive statistics are presented in tabular form and explained within the methods section.

The findings sections of quantitative papers are organized around explaining the results as shown in tables and figures. Not all results are depicted in tables and figures—some minor or null findings will simply be referenced—but tables and figures should be produced for all findings to be discussed at any length. If there are too many tables and figures, some can be moved to an appendix after the body of the text and referred to in the text (e.g. “See Table 12 in Appendix A”).

Discussions of the findings should not simply restate the contents of the table. Rather, they should explain and interpret it for readers, and they should do so in light of the hypothesis or hypotheses that are being tested. Conclusions—discussions of whether the hypothesis or hypotheses are supported or not supported—should wait for the conclusion of the paper.

Creating Effective Tables

When creating tables to display the results of quantitative analysis, the most important goals are to create tables that are clear and concise but that also meet standard conventions in the field. This means, first of all, paring down the volume of information produced in the statistical output to just include the information most necessary for interpreting the results, but doing so in keeping with standard table conventions. It also means making tables that are well-formatted and designed, so that readers can understand what the tables are saying without struggling to find information. For example, tables (as well as figures such as graphs) need clear captions; they are typically numbered and referred to by number in the text. Columns and rows should have clear headings. Depending on the content of the table, formatting tools may need to be used to set off header rows/columns and/or total rows/columns; cell-merging tools may be necessary; and shading may be important in tables with many rows or columns.

Here, you will find some instructions for creating tables of results from descriptive, crosstabulation, correlation, and regression analysis that are clear, concise, and meet normal standards for data display in social science. In addition, after the instructions for creating tables, you will find an example of how a paper incorporating each table might describe that table in the text.

Descriptive Statistics

When presenting the results of descriptive statistics, we create one table with columns for each type of descriptive statistic and rows for each variable. Note, of course, that depending on level of measurement only certain descriptive statistics are appropriate for a given variable, so there may be many cells in the table marked with an — to show that this statistic is not calculated for this variable. So, consider the set of descriptive statistics below, for occupational prestige, age, highest degree earned, and whether the respondent was born in this country.

Table 1. SPSS Ouput: Selected Descriptive Statistics
Statistics
R’s occupational prestige score (2010) Age of respondent
N Valid 3873 3699
Missing 159 333
Mean 46.54 52.16
Median 47.00 53.00
Std. Deviation 13.811 17.233
Variance 190.745 296.988
Skewness .141 .018
Std. Error of Skewness .039 .040
Kurtosis -.809 -1.018
Std. Error of Kurtosis .079 .080
Range 64 71
Minimum 16 18
Maximum 80 89
Percentiles 25 35.00 37.00
50 47.00 53.00
75 59.00 66.00
Statistics
R’s highest degree
N Valid 4009
Missing 23
Median 2.00
Mode 1
Range 4
Minimum 0
Maximum 4
R’s highest degree
Frequency Percent Valid Percent Cumulative Percent
Valid less than high school 246 6.1 6.1 6.1
high school 1597 39.6 39.8 46.0
associate/junior college 370 9.2 9.2 55.2
bachelor’s 1036 25.7 25.8 81.0
graduate 760 18.8 19.0 100.0
Total 4009 99.4 100.0
Missing System 23 .6
Total 4032 100.0
Statistics
Was r born in this country
N Valid 3960
Missing 72
Mean 1.11
Mode 1
Was r born in this country
Frequency Percent Valid Percent Cumulative Percent
Valid yes 3516 87.2 88.8 88.8
no 444 11.0 11.2 100.0
Total 3960 98.2 100.0
Missing System 72 1.8
Total 4032 100.0

To display these descriptive statistics in a paper, one might create a table like Table 2. Note that for discrete variables, we use the value label in the table, not the value.

Table 2. Descriptive Statistics
46.54 52.16 1.11
47 53 1: Associates (9.2%) 1: Yes (88.8%)
2: High School (39.8%)
13.811 17.233
190.745 296.988
0.141 0.018
-0.809 -1.018
64 (16-80) 71 (18-89) Less than High School (0) –  Graduate (4)
35-59 37-66
3873 3699 4009 3960

If we were then to discuss our descriptive statistics in a quantitative paper, we might write something like this (note that we do not need to repeat every single detail from the table, as readers can peruse the table themselves):

This analysis relies on four variables from the 2021 General Social Survey: occupational prestige score, age, highest degree earned, and whether the respondent was born in the United States. Descriptive statistics for all four variables are shown in Table 2. The median occupational prestige score is 47, with a range from 16 to 80. 50% of respondents had occupational prestige scores scores between 35 and 59. The median age of respondents is 53, with a range from 18 to 89. 50% of respondents are between ages 37 and 66. Both variables have little skew. Highest degree earned ranges from less than high school to a graduate degree; the median respondent has earned an associate’s degree, while the modal response (given by 39.8% of the respondents) is a high school degree. 88.8% of respondents were born in the United States.

Crosstabulation

When presenting the results of a crosstabulation, we simplify the table so that it highlights the most important information—the column percentages—and include the significance and association below the table. Consider the SPSS output below.

Table 3. R’s highest degree * R’s subjective class identification Crosstabulation
R’s subjective class identification Total
lower class working class middle class upper class
R’s highest degree less than high school Count 65 106 68 7 246
% within R’s subjective class identification 18.8% 7.1% 3.4% 4.2% 6.2%
high school Count 217 800 551 23 1591
% within R’s subjective class identification 62.9% 53.7% 27.6% 13.9% 39.8%
associate/junior college Count 30 191 144 3 368
% within R’s subjective class identification 8.7% 12.8% 7.2% 1.8% 9.2%
bachelor’s Count 27 269 686 49 1031
% within R’s subjective class identification 7.8% 18.1% 34.4% 29.5% 25.8%
graduate Count 6 123 546 84 759
% within R’s subjective class identification 1.7% 8.3% 27.4% 50.6% 19.0%
Total Count 345 1489 1995 166 3995
% within R’s subjective class identification 100.0% 100.0% 100.0% 100.0% 100.0%
Chi-Square Tests
Value df Asymptotic Significance (2-sided)
Pearson Chi-Square 819.579 12 <.001
Likelihood Ratio 839.200 12 <.001
Linear-by-Linear Association 700.351 1 <.001
N of Valid Cases 3995
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 10.22.
Symmetric Measures
Value Asymptotic Standard Error Approximate T Approximate Significance
Interval by Interval Pearson’s R .419 .013 29.139 <.001
Ordinal by Ordinal Spearman Correlation .419 .013 29.158 <.001
N of Valid Cases 3995
a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Table 4 shows how a table suitable for include in a paper might look if created from the SPSS output in Table 3. Note that we use asterisks to indicate the significance level of the results: * means p < 0.05; ** means p < 0.01; *** means p < 0.001; and no stars mean p > 0.05 (and thus that the result is not significant). Also note than N is the abbreviation for the number of respondents.

 
18.8% 7.1% 3.4% 4.2% 6.2%
62.9% 53.7% 27.6% 13.9% 39.8%
8.7% 12.8% 7.2% 1.8% 9.2%
7.8% 18.1% 34.4% 29.5% 25.8%
1.7% 8.3% 27.4% 50.6% 19.0%
N: 3995 Spearman Correlation 0.419***

If we were going to discuss the results of this crosstabulation in a quantitative research paper, the discussion might look like this:

A crosstabulation of respondent’s class identification and their highest degree earned, with class identification as the independent variable, is significant, with a Spearman correlation of 0.419, as shown in Table 4. Among lower class and working class respondents, more than 50% had earned a high school degree. Less than 20% of poor respondents and less than 40% of working-class respondents had earned more than a high school degree. In contrast, the majority of middle class and upper class respondents had earned at least a bachelor’s degree. In fact, 50% of upper class respondents had earned a graduate degree.

Correlation

When presenting a correlating matrix, one of the most important things to note is that we only present half the table so as not to include duplicated results. Think of the line through the table where empty cells exist to represent the correlation between a variable and itself, and include only the triangle of data either above or below that line of cells. Consider the output in Table 5.

Table 5. SPSS Output: Correlations
Age of respondent R’s occupational prestige score (2010) Highest year of school R completed R’s family income in 1986 dollars
Age of respondent Pearson Correlation 1 .087 .014 .017
Sig. (2-tailed) <.001 .391 .314
N 3699 3571 3683 3336
R’s occupational prestige score (2010) Pearson Correlation .087 1 .504 .316
Sig. (2-tailed) <.001 <.001 <.001
N 3571 3873 3817 3399
Highest year of school R completed Pearson Correlation .014 .504 1 .360
Sig. (2-tailed) .391 <.001 <.001
N 3683 3817 3966 3497
R’s family income in 1986 dollars Pearson Correlation .017 .316 .360 1
Sig. (2-tailed) .314 <.001 <.001
N 3336 3399 3497 3509
**. Correlation is significant at the 0.01 level (2-tailed).

Table 6 shows what the contents of Table 5 might look like when a table is constructed in a fashion suitable for publication.

Table 6. Correlation Matrix
1
0.087*** 1
0.014 0.504*** 1
0.017 0.316*** 0.360*** 1

If we were to discuss the results of this bivariate correlation analysis in a quantitative paper, the discussion might look like this:

Bivariate correlations were run among variables measuring age, occupational prestige, the highest year of school respondents completed, and family income in constant 1986 dollars, as shown in Table 6. Correlations between age and highest year of school completed and between age and family income are not significant. All other correlations are positive and significant at the p<0.001 level. The correlation between age and occupational prestige is weak; the correlations between income and occupational prestige and between income and educational attainment are moderate, and the correlation between education and occupational prestige is strong.

To present the results of a regression, we create one table that includes all of the key information from the multiple tables of SPSS output. This includes the R 2 and significance of the regression, either the B or the beta values (different analysts have different preferences here) for each variable, and the standard error and significance of each variable. Consider the SPSS output in Table 7.

Table 7. SPSS Output: Regression
Model R R Square Adjusted R Square Std. Error of the Estimate
1 .395 .156 .155 36729.04841
a. Predictors: (Constant), Highest year of school R completed, Age of respondent, R’s occupational prestige score (2010)
ANOVA
Model Sum of Squares df Mean Square F Sig.
1 Regression 805156927306.583 3 268385642435.528 198.948 <.001
Residual 4351948187487.015 3226 1349022996.741
Total 5157105114793.598 3229
a. Dependent Variable: R’s family income in 1986 dollars
b. Predictors: (Constant), Highest year of school R completed, Age of respondent, R’s occupational prestige score (2010)
Coefficients
Model Unstandardized Coefficients Standardized Coefficients t Sig. Collinearity Statistics
B Std. Error Beta Tolerance VIF
1 (Constant) -44403.902 4166.576 -10.657 <.001
Age of respondent 9.547 38.733 .004 .246 .805 .993 1.007
R’s occupational prestige score (2010) 522.887 54.327 .181 9.625 <.001 .744 1.345
Highest year of school R completed 3988.545 274.039 .272 14.555 <.001 .747 1.339
a. Dependent Variable: R’s family income in 1986 dollars

The regression output in shown in Table 7 contains a lot of information. We do not include all of this information when making tables suitable for publication. As can be seen in Table 8, we include the Beta (or the B), the standard error, and the significance asterisk for each variable; the R 2 and significance for the overall regression; the degrees of freedom (which tells readers the sample size or N); and the constant; along with the key to p/significance values.

Table 8. Regression Results for Dependent Variable Family Income in 1986 Dollars
Age 0.004
(38.733)
Occupational Prestige Score 0.181***
(54.327)
Highest Year of School Completed 0.272***
(274.039)
Degrees of Freedom 3229
Constant -44,403.902

If we were to discuss the results of this regression in a quantitative paper, the results might look like this:

Table 8 shows the results of a regression in which age, occupational prestige, and highest year of school completed are the independent variables and family income is the dependent variable. The regression results are significant, and all of the independent variables taken together explain 15.6% of the variance in family income. Age is not a significant predictor of income, while occupational prestige and educational attainment are. Educational attainment has a larger effect on family income than does occupational prestige. For every year of additional education attained, family income goes up on average by $3,988.545; for every one-unit increase in occupational prestige score, family income goes up on average by $522.887. [1]
  • Choose two discrete variables and three continuous variables from a dataset of your choice. Produce appropriate descriptive statistics on all five of the variables and create a table of the results suitable for inclusion in a paper.
  • Using the two discrete variables you have chosen, produce an appropriate crosstabulation, with significance and measure of association. Create a table of the results suitable for inclusion in a paper.
  • Using the three continuous variables you have chosen, produce a correlation matrix. Create a table of the results suitable for inclusion in a paper.
  • Using the three continuous variables you have chosen, produce a multivariate linear regression. Create a table of the results suitable for inclusion in a paper.
  • Write a methods section describing the dataset, analytical methods, and variables you utilized in questions 1, 2, 3, and 4 and explaining the results of your descriptive analysis.
  • Write a findings section explaining the results of the analyses you performed in questions 2, 3, and 4.
  • Note that the actual numberical increase comes from the B values, which are shown in the SPSS output in Table 7 but not in the reformatted Table 8. ↵

Social Data Analysis Copyright © 2021 by Mikaila Mariel Lemonik Arthur is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Writing Quantitative Research Studies

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

how to write a research quantitative

  • Ankur Singh 2 ,
  • Adyya Gupta 3 &
  • Karen G. Peres 4  

1732 Accesses

1 Citations

Summarizing quantitative data and its effective presentation and discussion can be challenging for students and researchers. This chapter provides a framework for adequately reporting findings from quantitative analysis in a research study for those contemplating to write a research paper. The rationale underpinning the reporting methods to maintain the credibility and integrity of quantitative studies is outlined. Commonly used terminologies in empirical studies are defined and discussed with suitable examples. Key elements that build consistency between different sections (background, methods, results, and the discussion) of a research study using quantitative methods in a journal article are explicated. Specifically, recommended standard guidelines for randomized controlled trials and observational studies for reporting and discussion of findings from quantitative studies are elaborated. Key aspects of methodology that include describing the study population, sampling strategy, data collection methods, measurements/variables, and statistical analysis which informs the quality of a study from the reviewer’s perspective are described. Effective use of references in the methods section to strengthen the rationale behind specific statistical techniques and choice of measures has been highlighted with examples. Identifying ways in which data can be most succinctly and effectively summarized in tables and graphs according to their suitability and purpose of information is also detailed in this chapter. Strategies to present and discuss the quantitative findings in a structured discussion section are also provided. Overall, the chapter provides the readers with a comprehensive set of tools to identify key strategies to be considered when reporting quantitative research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

how to write a research quantitative

Quantitative Research

how to write a research quantitative

Case Study 3: Application of Quantitative Methodology

Bhaumik S, Arora M, Singh A, Sargent JD. Impact of entertainment media smoking on adolescent smoking behaviours. Cochrane Database Syst Rev. 2015;6:1–12. https://doi.org/10.1002/14651858.CD011720 .

Article   Google Scholar  

Dickersin K, Manheimer E, Wieland S, Robinson KA, Lefebvre C, McDonald S. Development of the Cochrane Collaboration’s CENTRAL register of controlled clinical trials. Eval Health Prof. 2002;25(1):38–64.

Google Scholar  

Docherty M, Smith R. The case for structuring the discussion of scientific papers: much the same as that for structuring abstracts. Br Med J. 1999;318(7193):1224–5.

Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10(1):37–48.

Horton R. The rhetoric of research. Br Med J. 1995;310(6985):985–7.

Kool B, Ziersch A, Robinson P, Wolfenden L, Lowe JB. The ‘Seven deadly sins’ of rejected papers. Aust N Z J Public Health. 2016;40(1):3–4.

Mannocci A, Saulle R, Colamesta V, D’Aguanno S, Giraldi G, Maffongelli E, et al. What is the impact of reporting guidelines on public health journals in Europe? The case of STROBE, CONSORT and PRISMA. J Public Health. 2015;37(4):737–40.

Rothwell PM. External validity of randomised controlled trials: “to whom do the results of this trial apply?”. Lancet. 2005;365(9453):82–93.

Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. PLoS Med. 2010;7(3):e1000251.

Szklo M. Quality of scientific articles. Rev Saude Publica. 2006;40 Spec no:30–5.

Vandenbroucke JP, von Elm E, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4(10):e297.

Weiss NS, Koepsell TD, Psaty BM. Generalizability of the results of randomized trials. Arch Intern Med. 2008;168(2):133–5.

Singh A, Gupta A, Peres MA, Watt RG, Tsakos G, Mathur MR. Association between tooth loss and hypertension among a primarily rural middle aged and older Indian adult population. J Public Health Dent. 2016;76:198–205.

Download references

Author information

Authors and affiliations.

Centre for Health Equity, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia

Ankur Singh

School of Public Health, The University of Adelaide, Adelaide, SA, Australia

Adyya Gupta

Australian Research Centre for Population Oral Health (ARCPOH), Adelaide Dental School, The University of Adelaide, Adelaide, SA, Australia

Karen G. Peres

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Ankur Singh .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Singh, A., Gupta, A., Peres, K.G. (2019). Writing Quantitative Research Studies. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_117

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_117

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

how to write a research quantitative

How To Write The Results/Findings Chapter

For quantitative studies (dissertations & theses).

By: Derek Jansen (MBA) | Expert Reviewed By: Kerryn Warren (PhD) | July 2021

So, you’ve completed your quantitative data analysis and it’s time to report on your findings. But where do you start? In this post, we’ll walk you through the results chapter (also called the findings or analysis chapter), step by step, so that you can craft this section of your dissertation or thesis with confidence. If you’re looking for information regarding the results chapter for qualitative studies, you can find that here .

Overview: Quantitative Results Chapter

  • What exactly the results chapter is
  • What you need to include in your chapter
  • How to structure the chapter
  • Tips and tricks for writing a top-notch chapter
  • Free results chapter template

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

Free template for results section of a dissertation or thesis

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

how to write a research quantitative

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point. 

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

how to write a research quantitative

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

Soo

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

University of Northern Iowa Home

  • Chapter Four: Quantitative Methods (Part 3 - Making Sense of Your Study)

After you have designed your study, collected your data, and analyzed it, you have to figure out what it means and communicate that to potential interested audiences. This section of the chapter is about how to make sense of your study, in terms of data interpretation, data write-up, and data presentation, as seen in the above diagram.

  • Chapter One: Introduction
  • Chapter Two: Understanding the distinctions among research methods
  • Chapter Three: Ethical research, writing, and creative work
  • Chapter Four: Quantitative Methods (Part 1)
  • Chapter Four: Quantitative Methods (Part 2 - Doing Your Study)
  • Chapter Five: Qualitative Methods (Part 1)
  • Chapter Five: Qualitative Data (Part 2)
  • Chapter Six: Critical / Rhetorical Methods (Part 1)
  • Chapter Six: Critical / Rhetorical Methods (Part 2)
  • Chapter Seven: Presenting Your Results

Image removed.

Data Interpretation

Once you have run your statistics, you have to figure out what your findings mean or interpret your data. To do this, you need to tie back your findings to your research questions and/or hypotheses, think about how your findings relate to what you discovered beforehand about the already existing literature, and determine how your findings take the literature or current theory in the field further. Your interpretation of the data you collected will be found in the last section of your paper, what is commonly called the "discussion" section.

Remember Your RQs/Hs

Your research questions and hypotheses, once developed, should guide your study throughout the research process. As you are choosing your research design, choosing how to operationalize your variables, and choosing/conducting your statistical tests, you should always keep your RQs and Hs in mind.

What were you wanting to discover by your study? What were you wanting to test? Make sure you answer these questions clearly for the reader of your study in both the results and discussion section of the paper. (Specific guidelines for these sections will be covered later in this chapter, including the common practice of placing the data as you present it with each research question in the results section.)

Tie Findings to Your Literature Review

As you have seen in chapter 3 and the Appendix, and will see in chapter 7, the literature review is what you use to set up your quantitative study and to show why there is a need for your study. It should start out broad, with the context for your study, and lead into showing what still needs to be known and studied about your topic area, justifying your focus in the study. It will be brought in again in the last section of the paper you write, i.e., the discussion section.

Your paper is like an hourglass – starting out broad and narrowing down in the middle with your actual study and findings, and then moving to broad implications for the larger context of your study near the end.

Image removed.

Think about Relationship of Findings to Theory

One of the things you will write about in your discussion or last section of your paper is the implications of what you found. These implications are both practical and theoretical. Practical implications are how the research can provide practical applications to real-world people and issues. Theoretical implications are how the research takes the current academic literature further, specifically, in relationship to theory-building.

Did any of the research you reviewed for your literature review mention a theory your findings could expand upon? If so, you should think about how your findings related to this theory. If not, then think about the theories you have already studied in your communication classes. Would any of them provide a possible explanation of what you found? Would your findings help expand that theory to a different context, the context you studied? Does a theory need to be developed in the area of your research? If so, then what aspects of that theory could your findings help explain?

Data Write-Up

All quantitative studies, when written, have four parts. The first part is the introduction and literature review, the second part is the methods section, the third section is the results or findings, and the fourth section is the discussion section. This portion of this chapter will explain what elements you will need to include in each of these sections.

Literature Review

The beginning of your paper and first few pages sets the tone for your study. It tells the reader what the context of your study is and what other people who are also interested in your topic have studied about your topic.

There are many ways to organize a literature review, as can be seen in the following website. Literature Reviews — The Writing Center at UNC-Chapel Hill

After you have done a thorough literature search on your topic, then you have to organize your literature into topics of some kind. Your main goal is to show what has been done and what still needs to be done, to show the need for your study, so at the end of each section of your literature review, you should identify what still needs to be known about that particular area.

For quantitative research, you should do your literature review before coming up with your research questions/hypotheses. Your questions and hypotheses should flow from the literature. This is different from the other two research methods discussed in this book, which do not rely so heavily on a literature review to situation the study before conducting it.

In the methods section, you should tell your reader how you conducted your study, from start to finish, explaining why you made the choices you did along the way. A reader should be able to replicate your study from the descriptions you provide in this section of your write-up. Common headings in the methods section include a description of the participants, procedures, and analysis.

Participants

For the participants' subheading of the methods section, you should minimally report the demographics of your sample in terms of biological sex (frequencies/percentages), age (range of ages and mean), and ethnicity (frequencies/percentages). If you collected data on other demographics, such as socioeconomic status, religious affiliation, type of occupation, etc., then you can report data for that also in the participants' sub-section.

For the procedures sub-section, you report everything you did to collect your data: how you recruited your participants, including what type of sampling you used (probability or non-probability) and informed consent procedures; how you operationalized your variables (including your survey questions, which often are explained in the methods section briefly while the whole survey can be found in an appendix of your paper); the validity and reliability of your survey instrument or methods you used; and what type of study design you had (experimental, quasi-experimental, or non-experimental). For each one of these design issues, in this sub-section of the methods part, you need to explain why you made the decisions you did in order to answer your research questions or test your hypotheses.

In this section, you explain how you converted your data for analysis and how you analyzed your data. You need to explain what statistics you chose to run for each of your research questions/hypotheses and why.

In this section of your paper, you organize the results by your research questions/hypotheses. For each research question/hypothesis, you should present any descriptive statistic results first and then your inferential statistics results. You do not make any interpretation of what your results mean or why you think you got the results you did. You merely report your results.

Reporting Significant Results

For each of the inferential statistics, there is a typical template you can follow when reporting significant results: reporting the test statistic value, the degrees of freedom  3 , and the probability level. Examples follow for each of the statistics we have talked about in this text.

T-test results

"T-tests results show there was a significant difference found between men and women on their levels of self-esteem,  t  (df) = t value,  p  < .05, with men's self-esteem being higher (or lower) (men's mean & standard deviation) than women's self-esteem (women's mean & standard deviation)."

ANOVA results

"ANOVA results indicate there was a significant difference found between [levels of independent variable] on [dependent variable],  F  (df) = F value,  p  < .05."

If doing a factorial ANOVA, you would report the above sentence for all of your independent variables (main effects), as well as for the interaction (interaction effect), with language something like: "ANOVA results indicate a significant main effect for [independent variable] on [dependent variable],  F  (df) = F value,  p  < .05. .... ANOVA results indicate a significant interaction effect between [independent variables] on [dependent variable],  F  (df) = F value,  p  < .05."

See example YouTube tutorial for writing up a two-way ANOVA at the following website.

Factorial Design (Part C): Writing Up Results

Chi-square results

For goodness of fit results, your write-up would look something like: "Using a chi-square goodness of fit test, there was a significant difference found between observed and expected values of [variable], χ2 (df) = chi-square value,  p  < .05." For test of independence results, it would like like: "Using a chi-square test of independence, there was a significant interaction between [your two variables], χ2 (df) = chi-square value,  p  < .05."

Correlation results

"Using Pearson's [or Spearman's] correlation coefficient, there was a significant relationship found between [two variables],  r  (df) = r value,  p  < .05." If there are a lot of significant correlation results, these results are often presented in a table form.

For more information on these types of tables, see the following website:  Correlation Tables .

Regression results

Reporting regression results is more complicated, but generally, you want to inform the reader about how much variance is accounted by the regression model, the significance level of the model, and the significance of the predictor variable. For example:

A regression analysis, predicting GPA scores from GRE scores, was statistically significant,  F (1,8) = 10.34,  p  < .05.

Coefficientsa

 Unstandardized 
Coefficients
Standardized 
Coefficients
tSig.
ModelBStd. ErrorBeta  
1 Constant
GRE
.411
.005
.907
.002

.751
.453
3.216
.662
.012

The regression equation is: Ŷ = .411 * .005X. For every one unit increase in GRE score, there is a corresponding increase in GPA of .005 (Walen-Frederick, n.d., p. 4).

For more write-up help on regression and other statistics, see the following website location:

Multiple Regression  (pp. 217-220)

Reporting Non-Significant Results

You can follow a similar template when reporting non-significant results for all of the above inferential statistics. It is the same as provided in the above examples, except the word "non-significant" replaces the word "significant," and the  p  values are adjusted to indicate  p > .05.

Many times readers of articles do not read the whole article, especially if they are afraid of the statistical sections. When this happens, they often read the discussion section, which makes this a very important section in your writing. You should include the following elements in your discussion section: (a) a summary of your findings, (b) implications, (c) limitations, and (d) future research ideas.

Summary of Findings

You should summarize the answers to your research questions or what you found when testing your hypotheses in this sub-section of the discussion section. You should not report any statistical data here, but just put your results into narrative form. What did you find out that you did not know before doing your study? Answer that question in this sub- section.

Implications

You need to indicate why your study was important, both theoretically and practically. For the theoretical implications, you should relate what you found to the already existing literature, as discussed earlier when the "hourglass" format was mentioned as a way of conceptualizing your whole paper. If your study added anything to the existing theory on a particular topic, you talk about this here as well.

For practical implications, you need to identify for the reader how this study can help people in their real-world experiences related to your topic. You do not want your study to just be important to academic researchers, but also to other professionals and persons interested in your topic.

Limitations

As you get through conducting your study, you are going to realize there are things you wish you had done differently. Rather than hide these things from the reader, it is better to forthrightly state these for the reader. Explain why your study is limited and what you wish you had done in this sub-section.

Future Research

The limitations sub-section usually is tied directly to the future research sub-section, as your limitations mean that future research should be done to deal with these limitations. There may also be other things that could be studied, however, as a result of what you have found. What would other people say are the "gaps" your study left unstudied on your topic? These should be identified, with some suggestions on how they might be studied.

Other Aspects of the Paper

There are other parts of the academic paper you should include in your final write-up. We have provided useful resources for you to consider when including these aspects as part of your paper. For an example paper that uses the required APA format for a research paper write-up, see the following source:  Varying Definitions of Online Communication .

Abstract & Titles.

Research Abstracts General Format

Tables, References, & Other Materials.

APA Tables and Figures 1 Reference List: Basic Rules

Data Presentation

You will probably be called upon to present your data in other venues besides in writing. Two of the most common venues are oral presentations such as in class or at conferences, and poster presentations, such as what you might find at conferences. You might also be called upon to not write an academic write-up of your study, but rather to provide an executive summary of the results of your study to the "powers that be," who do not have time to read more than 5 pages or so of a summary. There are good resources for doing all of these online, so we have provided these here.

Oral Presentations

Oral Presentations Delivering Presentations

Poster Presentations

Executive Summary

Executive Summaries Complete the Report Good & Poor Examples of Executive Summaries with the following link: http://unilearning.uow.edu.au/report/4bi1.html

Congratulations! You have learned a great deal about how to go about using quantitative methods for your future research projects. You have learned how to design a quantitative study, conduct a quantitative study, and write about a quantitative study. You have some good resources you can take with you when you leave this class. Now, you just have to apply what you have learned to projects that will come your way in the future.

Remember, just because you may not like one method the best does not mean you should not use it. Your research questions/hypotheses should ALWAYS drive your choice of which method you use. And remember also that you can do quantitative methods!

[NOTE: References are not provided for the websites cited in the text, even though if this was an actual research article, they would need to be cited.]

Baker, E., Baker, W., & Tedesco, J. C. (2007). Organizations respond to phishing: Exploring the public relations tackle box.  Communication Research Reports, 24  (4), 327-339.

Benoit, W. L., & Hansen, G. J. (2004). Presidential debate watching, issue knowledge, character evaluation, and vote choice.  Human Communication Research, 30  (1), 121-144.

Chatham, A. (1991).  Home vs. public schooling: What about relationships in adolescence? Doctoral dissertation, University of Oklahoma.

Cousineau, T. M., Rancourt, D., and Green, T. C. (2006). Web chatter before and after the women's health initiative results: A content analysis of on-line menopause message boards.  Journal of Health Communication, 11 (2), 133-147.

Derlega, V., Winstead, B. A., Mathews, A., and Braitman, A. L. (2008). Why does someone reveal highly personal information?: Attributions for and against self-disclosure in close relationships.  Communication Research Reports, 25 , 115-130.

Fischer, J., & Corcoran, K. (2007).  Measures for clinical practice and research: A sourcebook (volumes 1 & 2) . New York: Oxford University Press.

Guay, S., Boisvert, J.-M., & Freeston, M. H. (2003). Validity of three measures of communication for predicting relationship adjustment and stability among a sample of young couples.  Psychological Assessment , 15(3), 392-398.

Holbert, R. L., Tschida, D. A., Dixon, M., Cherry, K., Steuber, K., & Airne, D. (2005). The  West Wing  and depictions of the American Presidency: Expanding the domains of framing in political communication.  Communication Quarterly, 53  (4), 505-522.

Jensen, J. D. (2008). Scientific uncertainty in news coverage of cancer research: Effects of hedging on scientists' and journalists' credibility.  Human Communication Research, 34 , 347- 369.

Keyton, J. (2011).  Communicating research: Asking questions, finding answers . New York: McGraw Hill.

Lenhart, A., Ling, R., Campbell, S., & Purcell, K. (2010, Apr. 10).  Teens and mobile phones . Report from the Pew Internet and American Life Project, retrieved from  http://www.pewinternet.org/Reports/2010/Teens-and-Mobile-Phones.aspx .

Maddy, T. (2008).  Tests: A comprehensive reference for assessments in psychology, education, and business . Austin, TX: Pro-Ed.

McCollum Jr., J. F., & Bryant, J. (2003). Pacing in children's television programming.  Mass Communication and Society, 6  (2), 115-136.

Medved, C. E., Brogan, S. M., McClanahan, A. M., Morris, J. F., & Shepherd, G. J. (2006). Family and work socializing communication: Messages, gender, and ideological implications.  Journal of Family Communication, 6 (3), 161-180.

Moyer-Gusé, E., & Nabi, R. L. (2010). Explaining the effects of narrative in an entertainment television program: Overcoming resistance to persuasion.  Human Communication Research, 36 , 26-52.

Nabi, R. L. (2009). Cosmetic surgery makeover programs and intentions to undergo cosmetic enhancements: A consideration of three models of media effects.  Human Communication Research, 35 , 1-27.

Pearson, J. C., DeWitt, L., Child, J. T., Kahl Jr., D. H., and Dandamudi, V. (2007). Facing the fear: An analysis of speech-anxiety content in public-speaking textbooks.  Communication Research Reports, 24 (2), 159-168.

Rubin. R. B., Rubin, A. M., Graham, E., Perse, E. M., & Seibold, D. (2009).  Communication research measures II: A sourcebook . New York: Routledge.

Serota, K. B., Levine, T. R., and Boster, F. J. (2010). The prevalence of lying in America: Three studies of reported deception.  Human Communication Research, 36 , 1-24.

Sheldon, P. (2008). The relationship between unwillingness-to-communicate and students' facebook use.  Journal of Media Psychology, 20 (2), 67–75.

Trochim, W. M. K. (2006). Reliability and validity.  Research methods data base , retrieved from  http://www.socialresearchmethods.net/kb/relandval.php .

Walen-Frederick, H. (n.d.).  Help sheet for reading SPSS printouts . Retrieved from  http://www.scribd.com/doc/51982223/help-sheet-for-reading-spss-printouts .

Weaver, A. J., & Wilson, B. J. (2009). The role of graphic and sanitized violence in the enjoyment of television dramas.  Human Communication Research, 35 (3), 442-463.

Weber, K., Corrigan, M., Fornash, B., & Neupauer, N. C. (2003). The effect of interest on recall: An experiment.  Communication Research Reports, 20 (2), 116-123.

Witt, P. L., & Schrodt, P. (2006). The influence of instructional technology use and teacher immediacy on student affect for teacher and course.  Communication Reports, 19 (1), 1-15.

3 Degrees of freedom (df) relate to your sample size and to the number of groups being compared. SPSS always computes the df for your statistics. For more information on degrees of freedom, see the following web-based resources:  http://www.youtube.com/watch?v=wsvfasNpU2s  and  http://www.creative-wisdom.com/pub/df/index.htm .

Back to Previous Spot

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

Methodology

  • What Is a Research Design | Types, Guide & Examples

What Is a Research Design | Types, Guide & Examples

Published on June 7, 2021 by Shona McCombes . Revised on November 20, 2023 by Pritha Bhandari.

A research design is a strategy for answering your   research question  using empirical data. Creating a research design means making decisions about:

  • Your overall research objectives and approach
  • Whether you’ll rely on primary research or secondary research
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, other interesting articles, frequently asked questions about research design.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities—start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach
and describe frequencies, averages, and correlations about relationships between variables

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed-methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types.

  • Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships
  • Descriptive and correlational designs allow you to measure variables and describe relationships between them.
Type of design Purpose and characteristics
Experimental relationships effect on a
Quasi-experimental )
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analyzing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study—plants, animals, organizations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

  • Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalize your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study , your aim is to deeply understand a specific context, not to generalize to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question .

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviors, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews .

Questionnaires Interviews
)

Observation methods

Observational studies allow you to collect data unobtrusively, observing characteristics, behaviors or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what kinds of data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected—for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

how to write a research quantitative

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are high in reliability and validity.

Operationalization

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalization means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in—for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced, while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity
) )

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method , you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample—by mail, online, by phone, or in person?

If you’re using a probability sampling method , it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method , how will you avoid research bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organizing and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymize and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well-organized will save time when it comes to analyzing it. It can also help other researchers validate and add to your findings (high replicability ).

On its own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyze the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarize your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarize your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analyzing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

A research project is an academic, scientific, or professional undertaking to answer a research question . Research projects can take many forms, such as qualitative or quantitative , descriptive , longitudinal , experimental , or correlational . What kind of research approach you choose will depend on your topic.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, November 20). What Is a Research Design | Types, Guide & Examples. Scribbr. Retrieved July 27, 2024, from https://www.scribbr.com/methodology/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, guide to experimental design | overview, steps, & examples, how to write a research proposal | examples & templates, ethical considerations in research | types & examples, what is your plagiarism score.

Writing a quantitative research question

Formulating a quantitative research question can often be a difficult task.  When composing a research question, a researcher needs to determine if they want to describe data, compare differences among groups, assess a relationship, or determine if a set of variables predict another variable.  The type of question the researcher asks will help to determine the type of statistical analysis that needs to be conducted.  It is also important to consider what specific variables need to be assessed when writing a research question.  The researcher must be certain all variables are quantifiable, or measurable. Measuring variables can be as simple as having participants report their age or as involved as having participants answer survey questions that make up a reliable instrument.  Some examples of different types of research questions are presented below:

request a consultation

Discover How We Assist to Edit Your Dissertation Chapters

Aligning theoretical framework, gathering articles, synthesizing gaps, articulating a clear methodology and data plan, and writing about the theoretical and practical implications of your research are part of our comprehensive dissertation editing services.

  • Bring dissertation editing expertise to chapters 1-5 in timely manner.
  • Track all changes, then work with you to bring about scholarly writing.
  • Ongoing support to address committee feedback, reducing revisions.

Descriptive:

Describe the teachers’ perceptions of the newly implemented reading assessment program.

The goal of a  descriptive  research question is to describe the data.  The researcher cannot infer any conclusions from this type of analysis; it simply presents data.  Descriptive questions do not have corresponding null and alternative hypotheses because the researcher is not making inferences.  Descriptive studies can be conducted on categorical or continuous data.

Comparative:

Are there differences in students’ grades by gender (male vs. female)?

Are there differences in job level (entry vs. mid vs. executive) by gender (male vs. female)?

Comparative questions can be assessed using a continuous variable and a categorical grouping variable, as well as with two categorical grouping variables.  They type of analysis will vary depending on the types of data.

Relationship:

Is there a relationship between age and fitness level?

Is there a relationship between ice cream sales and temperature at noon?

Questions that assess relationships do not require a definitive independent and dependent variable, but two variables are required; they can be considered variables of interest as opposed to independent and dependent variables.  Data used for this type of analysis can be dichotomous, ordinal, or continuous.  They type of analysis will vary depending on the types of data.

Predictive:

Do age, gender, and education predict income?

Does a pitcher’s ERA predict the number of wins the team has?

Predictive questions have a definitive independent and dependent variable.  Typically, the independent variable should be continuous or dichotomous, but nominal and ordinal variables can be used.  When nominal and ordinal variables are used as predictors, they must be dummy coded.  Like the independent variable, the dependent variable is typically continuous or dichotomous, but can also be ordinal or nominal.  The type of analysis that is appropriate will vary based upon the type of data.

  • Privacy Policy

Research Method

Home » 500+ Quantitative Research Titles and Topics

500+ Quantitative Research Titles and Topics

Table of Contents

Quantitative Research Topics

Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology , economics , and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas to explore, from analyzing data on a specific population to studying the effects of a particular intervention or treatment. In this post, we will provide some ideas for quantitative research topics that may inspire you and help you narrow down your interests.

Quantitative Research Titles

Quantitative Research Titles are as follows:

Business and Economics

  • “Statistical Analysis of Supply Chain Disruptions on Retail Sales”
  • “Quantitative Examination of Consumer Loyalty Programs in the Fast Food Industry”
  • “Predicting Stock Market Trends Using Machine Learning Algorithms”
  • “Influence of Workplace Environment on Employee Productivity: A Quantitative Study”
  • “Impact of Economic Policies on Small Businesses: A Regression Analysis”
  • “Customer Satisfaction and Profit Margins: A Quantitative Correlation Study”
  • “Analyzing the Role of Marketing in Brand Recognition: A Statistical Overview”
  • “Quantitative Effects of Corporate Social Responsibility on Consumer Trust”
  • “Price Elasticity of Demand for Luxury Goods: A Case Study”
  • “The Relationship Between Fiscal Policy and Inflation Rates: A Time-Series Analysis”
  • “Factors Influencing E-commerce Conversion Rates: A Quantitative Exploration”
  • “Examining the Correlation Between Interest Rates and Consumer Spending”
  • “Standardized Testing and Academic Performance: A Quantitative Evaluation”
  • “Teaching Strategies and Student Learning Outcomes in Secondary Schools: A Quantitative Study”
  • “The Relationship Between Extracurricular Activities and Academic Success”
  • “Influence of Parental Involvement on Children’s Educational Achievements”
  • “Digital Literacy in Primary Schools: A Quantitative Assessment”
  • “Learning Outcomes in Blended vs. Traditional Classrooms: A Comparative Analysis”
  • “Correlation Between Teacher Experience and Student Success Rates”
  • “Analyzing the Impact of Classroom Technology on Reading Comprehension”
  • “Gender Differences in STEM Fields: A Quantitative Analysis of Enrollment Data”
  • “The Relationship Between Homework Load and Academic Burnout”
  • “Assessment of Special Education Programs in Public Schools”
  • “Role of Peer Tutoring in Improving Academic Performance: A Quantitative Study”

Medicine and Health Sciences

  • “The Impact of Sleep Duration on Cardiovascular Health: A Cross-sectional Study”
  • “Analyzing the Efficacy of Various Antidepressants: A Meta-Analysis”
  • “Patient Satisfaction in Telehealth Services: A Quantitative Assessment”
  • “Dietary Habits and Incidence of Heart Disease: A Quantitative Review”
  • “Correlations Between Stress Levels and Immune System Functioning”
  • “Smoking and Lung Function: A Quantitative Analysis”
  • “Influence of Physical Activity on Mental Health in Older Adults”
  • “Antibiotic Resistance Patterns in Community Hospitals: A Quantitative Study”
  • “The Efficacy of Vaccination Programs in Controlling Disease Spread: A Time-Series Analysis”
  • “Role of Social Determinants in Health Outcomes: A Quantitative Exploration”
  • “Impact of Hospital Design on Patient Recovery Rates”
  • “Quantitative Analysis of Dietary Choices and Obesity Rates in Children”

Social Sciences

  • “Examining Social Inequality through Wage Distribution: A Quantitative Study”
  • “Impact of Parental Divorce on Child Development: A Longitudinal Study”
  • “Social Media and its Effect on Political Polarization: A Quantitative Analysis”
  • “The Relationship Between Religion and Social Attitudes: A Statistical Overview”
  • “Influence of Socioeconomic Status on Educational Achievement”
  • “Quantifying the Effects of Community Programs on Crime Reduction”
  • “Public Opinion and Immigration Policies: A Quantitative Exploration”
  • “Analyzing the Gender Representation in Political Offices: A Quantitative Study”
  • “Impact of Mass Media on Public Opinion: A Regression Analysis”
  • “Influence of Urban Design on Social Interactions in Communities”
  • “The Role of Social Support in Mental Health Outcomes: A Quantitative Analysis”
  • “Examining the Relationship Between Substance Abuse and Employment Status”

Engineering and Technology

  • “Performance Evaluation of Different Machine Learning Algorithms in Autonomous Vehicles”
  • “Material Science: A Quantitative Analysis of Stress-Strain Properties in Various Alloys”
  • “Impacts of Data Center Cooling Solutions on Energy Consumption”
  • “Analyzing the Reliability of Renewable Energy Sources in Grid Management”
  • “Optimization of 5G Network Performance: A Quantitative Assessment”
  • “Quantifying the Effects of Aerodynamics on Fuel Efficiency in Commercial Airplanes”
  • “The Relationship Between Software Complexity and Bug Frequency”
  • “Machine Learning in Predictive Maintenance: A Quantitative Analysis”
  • “Wearable Technologies and their Impact on Healthcare Monitoring”
  • “Quantitative Assessment of Cybersecurity Measures in Financial Institutions”
  • “Analysis of Noise Pollution from Urban Transportation Systems”
  • “The Influence of Architectural Design on Energy Efficiency in Buildings”

Quantitative Research Topics

Quantitative Research Topics are as follows:

  • The effects of social media on self-esteem among teenagers.
  • A comparative study of academic achievement among students of single-sex and co-educational schools.
  • The impact of gender on leadership styles in the workplace.
  • The correlation between parental involvement and academic performance of students.
  • The effect of mindfulness meditation on stress levels in college students.
  • The relationship between employee motivation and job satisfaction.
  • The effectiveness of online learning compared to traditional classroom learning.
  • The correlation between sleep duration and academic performance among college students.
  • The impact of exercise on mental health among adults.
  • The relationship between social support and psychological well-being among cancer patients.
  • The effect of caffeine consumption on sleep quality.
  • A comparative study of the effectiveness of cognitive-behavioral therapy and pharmacotherapy in treating depression.
  • The relationship between physical attractiveness and job opportunities.
  • The correlation between smartphone addiction and academic performance among high school students.
  • The impact of music on memory recall among adults.
  • The effectiveness of parental control software in limiting children’s online activity.
  • The relationship between social media use and body image dissatisfaction among young adults.
  • The correlation between academic achievement and parental involvement among minority students.
  • The impact of early childhood education on academic performance in later years.
  • The effectiveness of employee training and development programs in improving organizational performance.
  • The relationship between socioeconomic status and access to healthcare services.
  • The correlation between social support and academic achievement among college students.
  • The impact of technology on communication skills among children.
  • The effectiveness of mindfulness-based stress reduction programs in reducing symptoms of anxiety and depression.
  • The relationship between employee turnover and organizational culture.
  • The correlation between job satisfaction and employee engagement.
  • The impact of video game violence on aggressive behavior among children.
  • The effectiveness of nutritional education in promoting healthy eating habits among adolescents.
  • The relationship between bullying and academic performance among middle school students.
  • The correlation between teacher expectations and student achievement.
  • The impact of gender stereotypes on career choices among high school students.
  • The effectiveness of anger management programs in reducing violent behavior.
  • The relationship between social support and recovery from substance abuse.
  • The correlation between parent-child communication and adolescent drug use.
  • The impact of technology on family relationships.
  • The effectiveness of smoking cessation programs in promoting long-term abstinence.
  • The relationship between personality traits and academic achievement.
  • The correlation between stress and job performance among healthcare professionals.
  • The impact of online privacy concerns on social media use.
  • The effectiveness of cognitive-behavioral therapy in treating anxiety disorders.
  • The relationship between teacher feedback and student motivation.
  • The correlation between physical activity and academic performance among elementary school students.
  • The impact of parental divorce on academic achievement among children.
  • The effectiveness of diversity training in improving workplace relationships.
  • The relationship between childhood trauma and adult mental health.
  • The correlation between parental involvement and substance abuse among adolescents.
  • The impact of social media use on romantic relationships among young adults.
  • The effectiveness of assertiveness training in improving communication skills.
  • The relationship between parental expectations and academic achievement among high school students.
  • The correlation between sleep quality and mood among adults.
  • The impact of video game addiction on academic performance among college students.
  • The effectiveness of group therapy in treating eating disorders.
  • The relationship between job stress and job performance among teachers.
  • The correlation between mindfulness and emotional regulation.
  • The impact of social media use on self-esteem among college students.
  • The effectiveness of parent-teacher communication in promoting academic achievement among elementary school students.
  • The impact of renewable energy policies on carbon emissions
  • The relationship between employee motivation and job performance
  • The effectiveness of psychotherapy in treating eating disorders
  • The correlation between physical activity and cognitive function in older adults
  • The effect of childhood poverty on adult health outcomes
  • The impact of urbanization on biodiversity conservation
  • The relationship between work-life balance and employee job satisfaction
  • The effectiveness of eye movement desensitization and reprocessing (EMDR) in treating trauma
  • The correlation between parenting styles and child behavior
  • The effect of social media on political polarization
  • The impact of foreign aid on economic development
  • The relationship between workplace diversity and organizational performance
  • The effectiveness of dialectical behavior therapy in treating borderline personality disorder
  • The correlation between childhood abuse and adult mental health outcomes
  • The effect of sleep deprivation on cognitive function
  • The impact of trade policies on international trade and economic growth
  • The relationship between employee engagement and organizational commitment
  • The effectiveness of cognitive therapy in treating postpartum depression
  • The correlation between family meals and child obesity rates
  • The effect of parental involvement in sports on child athletic performance
  • The impact of social entrepreneurship on sustainable development
  • The relationship between emotional labor and job burnout
  • The effectiveness of art therapy in treating dementia
  • The correlation between social media use and academic procrastination
  • The effect of poverty on childhood educational attainment
  • The impact of urban green spaces on mental health
  • The relationship between job insecurity and employee well-being
  • The effectiveness of virtual reality exposure therapy in treating anxiety disorders
  • The correlation between childhood trauma and substance abuse
  • The effect of screen time on children’s social skills
  • The impact of trade unions on employee job satisfaction
  • The relationship between cultural intelligence and cross-cultural communication
  • The effectiveness of acceptance and commitment therapy in treating chronic pain
  • The correlation between childhood obesity and adult health outcomes
  • The effect of gender diversity on corporate performance
  • The impact of environmental regulations on industry competitiveness.
  • The impact of renewable energy policies on greenhouse gas emissions
  • The relationship between workplace diversity and team performance
  • The effectiveness of group therapy in treating substance abuse
  • The correlation between parental involvement and social skills in early childhood
  • The effect of technology use on sleep patterns
  • The impact of government regulations on small business growth
  • The relationship between job satisfaction and employee turnover
  • The effectiveness of virtual reality therapy in treating anxiety disorders
  • The correlation between parental involvement and academic motivation in adolescents
  • The effect of social media on political engagement
  • The impact of urbanization on mental health
  • The relationship between corporate social responsibility and consumer trust
  • The correlation between early childhood education and social-emotional development
  • The effect of screen time on cognitive development in young children
  • The impact of trade policies on global economic growth
  • The relationship between workplace diversity and innovation
  • The effectiveness of family therapy in treating eating disorders
  • The correlation between parental involvement and college persistence
  • The effect of social media on body image and self-esteem
  • The impact of environmental regulations on business competitiveness
  • The relationship between job autonomy and job satisfaction
  • The effectiveness of virtual reality therapy in treating phobias
  • The correlation between parental involvement and academic achievement in college
  • The effect of social media on sleep quality
  • The impact of immigration policies on social integration
  • The relationship between workplace diversity and employee well-being
  • The effectiveness of psychodynamic therapy in treating personality disorders
  • The correlation between early childhood education and executive function skills
  • The effect of parental involvement on STEM education outcomes
  • The impact of trade policies on domestic employment rates
  • The relationship between job insecurity and mental health
  • The effectiveness of exposure therapy in treating PTSD
  • The correlation between parental involvement and social mobility
  • The effect of social media on intergroup relations
  • The impact of urbanization on air pollution and respiratory health.
  • The relationship between emotional intelligence and leadership effectiveness
  • The effectiveness of cognitive-behavioral therapy in treating depression
  • The correlation between early childhood education and language development
  • The effect of parental involvement on academic achievement in STEM fields
  • The impact of trade policies on income inequality
  • The relationship between workplace diversity and customer satisfaction
  • The effectiveness of mindfulness-based therapy in treating anxiety disorders
  • The correlation between parental involvement and civic engagement in adolescents
  • The effect of social media on mental health among teenagers
  • The impact of public transportation policies on traffic congestion
  • The relationship between job stress and job performance
  • The effectiveness of group therapy in treating depression
  • The correlation between early childhood education and cognitive development
  • The effect of parental involvement on academic motivation in college
  • The impact of environmental regulations on energy consumption
  • The relationship between workplace diversity and employee engagement
  • The effectiveness of art therapy in treating PTSD
  • The correlation between parental involvement and academic success in vocational education
  • The effect of social media on academic achievement in college
  • The impact of tax policies on economic growth
  • The relationship between job flexibility and work-life balance
  • The effectiveness of acceptance and commitment therapy in treating anxiety disorders
  • The correlation between early childhood education and social competence
  • The effect of parental involvement on career readiness in high school
  • The impact of immigration policies on crime rates
  • The relationship between workplace diversity and employee retention
  • The effectiveness of play therapy in treating trauma
  • The correlation between parental involvement and academic success in online learning
  • The effect of social media on body dissatisfaction among women
  • The impact of urbanization on public health infrastructure
  • The relationship between job satisfaction and job performance
  • The effectiveness of eye movement desensitization and reprocessing therapy in treating PTSD
  • The correlation between early childhood education and social skills in adolescence
  • The effect of parental involvement on academic achievement in the arts
  • The impact of trade policies on foreign investment
  • The relationship between workplace diversity and decision-making
  • The effectiveness of exposure and response prevention therapy in treating OCD
  • The correlation between parental involvement and academic success in special education
  • The impact of zoning laws on affordable housing
  • The relationship between job design and employee motivation
  • The effectiveness of cognitive rehabilitation therapy in treating traumatic brain injury
  • The correlation between early childhood education and social-emotional learning
  • The effect of parental involvement on academic achievement in foreign language learning
  • The impact of trade policies on the environment
  • The relationship between workplace diversity and creativity
  • The effectiveness of emotion-focused therapy in treating relationship problems
  • The correlation between parental involvement and academic success in music education
  • The effect of social media on interpersonal communication skills
  • The impact of public health campaigns on health behaviors
  • The relationship between job resources and job stress
  • The effectiveness of equine therapy in treating substance abuse
  • The correlation between early childhood education and self-regulation
  • The effect of parental involvement on academic achievement in physical education
  • The impact of immigration policies on cultural assimilation
  • The relationship between workplace diversity and conflict resolution
  • The effectiveness of schema therapy in treating personality disorders
  • The correlation between parental involvement and academic success in career and technical education
  • The effect of social media on trust in government institutions
  • The impact of urbanization on public transportation systems
  • The relationship between job demands and job stress
  • The correlation between early childhood education and executive functioning
  • The effect of parental involvement on academic achievement in computer science
  • The effectiveness of cognitive processing therapy in treating PTSD
  • The correlation between parental involvement and academic success in homeschooling
  • The effect of social media on cyberbullying behavior
  • The impact of urbanization on air quality
  • The effectiveness of dance therapy in treating anxiety disorders
  • The correlation between early childhood education and math achievement
  • The effect of parental involvement on academic achievement in health education
  • The impact of global warming on agriculture
  • The effectiveness of narrative therapy in treating depression
  • The correlation between parental involvement and academic success in character education
  • The effect of social media on political participation
  • The impact of technology on job displacement
  • The relationship between job resources and job satisfaction
  • The effectiveness of art therapy in treating addiction
  • The correlation between early childhood education and reading comprehension
  • The effect of parental involvement on academic achievement in environmental education
  • The impact of income inequality on social mobility
  • The relationship between workplace diversity and organizational culture
  • The effectiveness of solution-focused brief therapy in treating anxiety disorders
  • The correlation between parental involvement and academic success in physical therapy education
  • The effect of social media on misinformation
  • The impact of green energy policies on economic growth
  • The relationship between job demands and employee well-being
  • The correlation between early childhood education and science achievement
  • The effect of parental involvement on academic achievement in religious education
  • The impact of gender diversity on corporate governance
  • The relationship between workplace diversity and ethical decision-making
  • The correlation between parental involvement and academic success in dental hygiene education
  • The effect of social media on self-esteem among adolescents
  • The impact of renewable energy policies on energy security
  • The effect of parental involvement on academic achievement in social studies
  • The impact of trade policies on job growth
  • The relationship between workplace diversity and leadership styles
  • The correlation between parental involvement and academic success in online vocational training
  • The effect of social media on self-esteem among men
  • The impact of urbanization on air pollution levels
  • The effectiveness of music therapy in treating depression
  • The correlation between early childhood education and math skills
  • The effect of parental involvement on academic achievement in language arts
  • The impact of immigration policies on labor market outcomes
  • The effectiveness of hypnotherapy in treating phobias
  • The effect of social media on political engagement among young adults
  • The impact of urbanization on access to green spaces
  • The relationship between job crafting and job satisfaction
  • The effectiveness of exposure therapy in treating specific phobias
  • The correlation between early childhood education and spatial reasoning
  • The effect of parental involvement on academic achievement in business education
  • The impact of trade policies on economic inequality
  • The effectiveness of narrative therapy in treating PTSD
  • The correlation between parental involvement and academic success in nursing education
  • The effect of social media on sleep quality among adolescents
  • The impact of urbanization on crime rates
  • The relationship between job insecurity and turnover intentions
  • The effectiveness of pet therapy in treating anxiety disorders
  • The correlation between early childhood education and STEM skills
  • The effect of parental involvement on academic achievement in culinary education
  • The impact of immigration policies on housing affordability
  • The relationship between workplace diversity and employee satisfaction
  • The effectiveness of mindfulness-based stress reduction in treating chronic pain
  • The correlation between parental involvement and academic success in art education
  • The effect of social media on academic procrastination among college students
  • The impact of urbanization on public safety services.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Music Research Topics

500+ Music Research Topics

Physics Research Topics

500+ Physics Research Topics

Educational Research Topics

500+ Educational Research Topics

how to write a research quantitative

300+ Social Media Research Topics

Economics Research Topics

500+ Economics Research Topics

History Research Paper Topics

500+ History Research Paper Topics

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology
  • What Is Quantitative Research? | Definition & Methods

What Is Quantitative Research? | Definition & Methods

Published on 4 April 2022 by Pritha Bhandari . Revised on 10 October 2022.

Quantitative research is the process of collecting and analysing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalise results to wider populations.

Quantitative research is the opposite of qualitative research , which involves collecting and analysing non-numerical data (e.g. text, video, or audio).

Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  • What is the demographic makeup of Singapore in 2020?
  • How has the average temperature changed globally over the last century?
  • Does environmental pollution affect the prevalence of honey bees?
  • Does working from home increase productivity for people with long commutes?

Table of contents

Quantitative research methods, quantitative data analysis, advantages of quantitative research, disadvantages of quantitative research, frequently asked questions about quantitative research.

You can use quantitative research methods for descriptive, correlational or experimental research.

  • In descriptive research , you simply seek an overall summary of your study variables.
  • In correlational research , you investigate relationships between your study variables.
  • In experimental research , you systematically examine whether there is a cause-and-effect relationship between variables.

Correlational and experimental research can both be used to formally test hypotheses , or predictions, using statistics. The results may be generalised to broader populations based on the sampling method used.

To collect quantitative data, you will often need to use operational definitions that translate abstract concepts (e.g., mood) into observable and quantifiable measures (e.g., self-ratings of feelings and energy levels).

Quantitative research methods
Research method How to use Example
Control or manipulate an to measure its effect on a dependent variable. To test whether an intervention can reduce procrastination in college students, you give equal-sized groups either a procrastination intervention or a comparable task. You compare self-ratings of procrastination behaviors between the groups after the intervention.
Ask questions of a group of people in-person, over-the-phone or online. You distribute with rating scales to first-year international college students to investigate their experiences of culture shock.
(Systematic) observation Identify a behavior or occurrence of interest and monitor it in its natural setting. To study college classroom participation, you sit in on classes to observe them, counting and recording the prevalence of active and passive behaviors by students from different backgrounds.
Secondary research Collect data that has been gathered for other purposes e.g., national surveys or historical records. To assess whether attitudes towards climate change have changed since the 1980s, you collect relevant questionnaire data from widely available .

Prevent plagiarism, run a free check.

Once data is collected, you may need to process it before it can be analysed. For example, survey and test data may need to be transformed from words to numbers. Then, you can use statistical analysis to answer your research questions .

Descriptive statistics will give you a summary of your data and include measures of averages and variability. You can also use graphs, scatter plots and frequency tables to visualise your data and check for any trends or outliers.

Using inferential statistics , you can make predictions or generalisations based on your data. You can test your hypothesis or use your sample data to estimate the population parameter .

You can also assess the reliability and validity of your data collection methods to indicate how consistently and accurately your methods actually measured what you wanted them to.

Quantitative research is often used to standardise data collection and generalise findings . Strengths of this approach include:

  • Replication

Repeating the study is possible because of standardised data collection protocols and tangible definitions of abstract concepts.

  • Direct comparisons of results

The study can be reproduced in other cultural settings, times or with different groups of participants. Results can be compared statistically.

  • Large samples

Data from large samples can be processed and analysed using reliable and consistent procedures through quantitative data analysis.

  • Hypothesis testing

Using formalised and established hypothesis testing procedures means that you have to carefully consider and report your research variables, predictions, data collection and testing methods before coming to a conclusion.

Despite the benefits of quantitative research, it is sometimes inadequate in explaining complex research topics. Its limitations include:

  • Superficiality

Using precise and restrictive operational definitions may inadequately represent complex concepts. For example, the concept of mood may be represented with just a number in quantitative research, but explained with elaboration in qualitative research.

  • Narrow focus

Predetermined variables and measurement procedures can mean that you ignore other relevant observations.

  • Structural bias

Despite standardised procedures, structural biases can still affect quantitative research. Missing data , imprecise measurements or inappropriate sampling methods are biases that can lead to the wrong conclusions.

  • Lack of context

Quantitative research often uses unnatural settings like laboratories or fails to consider historical and cultural contexts that may affect data collection and results.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to test a hypothesis by systematically collecting and analysing data, while qualitative methods allow you to explore ideas and experiences in depth.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organisations.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research , you also have to consider the internal and external validity of your experiment.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

Bhandari, P. (2022, October 10). What Is Quantitative Research? | Definition & Methods. Scribbr. Retrieved 29 July 2024, from https://www.scribbr.co.uk/research-methods/introduction-to-quantitative-research/

Is this article helpful?

Pritha Bhandari

Pritha Bhandari

educational research techniques

Research techniques and education.

how to write a research quantitative

Tips for Writing Quantitative Purpose Statements

There are several equally acceptable ways to write purpose statements for quantitative studies. This post will share some suggestion for getting started

Ideas for Writing Quantitative Purpose Statements

A well-written quantitative purpose statement contains the following elements

  • identified variables
  • the relationship among the variables
  • the participants
  • the site of the research

Here is an example

how to write a research quantitative

Here is a breakdown of the elements of the purpose statement above.

  • identified variables [Height and Weight]
  • the relationship among the variables [Height is the independent variable weight is the dependent variable]
  • the participants [undergrad students]
  • the site of the research [Thailand]

Here are some additional tips

  • Try to write purpose statements in one sentence
  • Start with the phrase “the purpose of this study” it’s a clue to readers
  • Specify all variables in the study such as independent, dependent, mediating etc.
  • Independent
  • Mediating or control
  • Variables are used for relationships between two or more, compare groups, or description
  • If you are testing a theory, comparing groups, or describing something, state this in the purpose statement

Below is an example, the characteristics of a purpose statement are underlined and in parentheses.

The purpose of this study is to test the theory of planned behavior (the theory)  by relating social support (independent variable)   to college intention  to dropout  (independent variable)   for undergrad students  (participants)  in Thailand  (research site)

Comparison is another common form of research. Below is a purpose statement that focuses on comparing groups. the characteristics of a purpose statement are underlined and in parentheses.

The purpose of this study music choice (independent variable)  of classical  (group 1) , contemporary  (group 2) ,  and no music (group 3)  in terms of its influence on academic performance  (dependent variable)  for undergrad students  (participants)  in Thailand   (research site)

In the above example, music choice is the independent variable that is hypothesized to influence academic performance. Three types of treatment are employed classical, contemporary, and no music. The goal is to see if there is a difference in the means of academic performance at the completion of the study.

Purpose statements for quantitative studies are important as they lay the foundation for a study. A good statement tells a reader what to expect for the rest of the study. For this reason, researchers need to be careful and think of the purpose statement with care.

Share this:

1 thought on “ tips for writing quantitative purpose statements ”.

Pingback: Top 100 Research Statement Writing Services – Research Statement

Leave a Reply Cancel reply

Discover more from educational research techniques.

Subscribe now to keep reading and get access to the full archive.

Type your email…

Continue reading

Compilatio

Understanding Quantitative Research: Definition, Collection methods, Design, Analysis and Reporting

quantitative research

Quantitative studies play an essential role in scientific and academic research. By enabling numerical data to be measured and analyzed with precision, quantitative surveys provide objective and generalizable results , often unattainable by qualitative methods . A student who undertakes a quantitative survey as part of his or her dissertation or thesis acquires crucial skills such as analytical rigor, mastery of statistical techniques and the ability to interpret numerical data. In this way, they can make a significant contribution to their field of research.  

Contents What is a quantitative study? What are the data collection methods for a quantitative study? How to design and plan a quantitative study? How can quantitative data be successfully analyzed and reported?

how to write a research quantitative

What is quantitative research?

Definition, objectives and benefits of quantitative research  .

“Quantitative research is a methodology that provides support when you need to draw general conclusions from your research and predict outcomes. These methods are designed to collect numerical data that can be used to measure variables. ” Survey Monkey, Qualitative vs. quantitative research: What's the difference?

The advantages of this method include : 

  • the possibility of obtaining objective, reliable data, 
  • the application of rigorous statistical models
  • the ability to make comparisons on a large scale and over time,
  • the ability to reveal causal relationships between variables, thus providing a basis for decision-making.

Differences between qualitative and quantitative research

how to write a research quantitative

Which data collection methods for a quantitative study?

Primary collection using surveys/questionnaires .

Primary data collection means that the researcher collects data directly from the sample, without relying on data collected in previous quantitative surveys. Questionnaires are the most common method used in quantitative research. They can be administered online, by telephone or in person to large population samples. Standardized questionnaires guarantee uniform data collection, delivering statistically significant results.

Primary data collection in longitudinal studies

Longitudinal studies follow the same participants over a long period, offering insights into evolutions and trends over time. They are particularly useful for studying changes in behavior, attitudes or conditions over different phases.

how to write a research quantitative

Primary collection by experimental research

Primary collection by experimental research involves the deliberate creation and manipulation of variables in a controlled environment to observe their direct effects on other variables . This method enables researchers to test specific hypotheses and establish cause-and-effect relationships with great precision. 

“In this method, the theory being studied has not yet been proven; it is merely speculation. Thus, an experiment is carried out to prove or disprove the theory.” Voxco, Quantitative research: Definition, methods and examples

This approach is particularly useful for studies where internal validity and methodological rigor are crucial.

how to write a research quantitative

Secondary analysis of quantitative data

Secondary data analysis uses existing databases to re-analyze information and answer new research questions. This method is effective in fully exploiting available data, and can reveal additional insights without the need for new data collection.

How do you design and plan a quantitative study?

Defining research objectives.

The first step in designing a quantitative study is to clarify the research objectives . This involves determining what the quanti study seeks to achieve and the specific questions it aims to answer. These objectives will guide the entire research process.

how to write a research quantitative

Choosing the data collection method

Depending on your research objectives, choose the most appropriate data collection method . This is what we developed in the previous section.

Select the sample

The representativeness of the results will depend on the selection of the sample. Determine the necessary size and the sampling method (random, stratified, etc.) to ensure that the sample accurately reflects the target population.

how to write a research quantitative

Design measurement instruments

Design measurement instruments, such as questionnaires or experimental protocols, t hat are clear, precise and adapted to the study objective. Questions should be formulated in such a way as to minimize bias (mostly closed-ended questions ) and easily yield usable figures.

Planning data analysis

Before collecting data, plan how it will be analyzed. This includes selecting appropriate statistical techniques and using data analysis software. Advance planning ensures that the data collected will answer the research questions validly and reliably.

Studium Newsletter

Receive tips on writing and citations and don't miss our promotional offers by subscribing to the Studium newsletter.

By clicking "Subscribe", I agree that Compilatio processes the data provided in this form for the following purpose: "Information on the topic of plagiarism". Learn more about how we manage your data and your rights.

How to successfully analyze and report quantitative data?

how to write a research quantitative

Checking and cleaning quantitative data

Before starting analysis, it's important to ensure that data is complete and error-free. Identify and manage missing data, correct anomalies and eliminate duplicates, while guaranteeing the integrity of the information.  

Initial exploration of quantitative data

Perform initial data exploration. Analyze measures of central tendency (mean, median) and dispersion (standard deviation, variance). Use visualizations such as histograms, whisker boxes and scatter plots to detect trends, distributions and possible anomalies.

how to write a research quantitative

Selecting statistical methods

Select the appropriate statistical methods according to your research objectives and the nature of the data. 

  • For comparisons between groups, use tests such as the T-test or ANOVA . 
  • To analyze relationships between variables, consider regression techniques .  

Analysis and interpretation of results

Interpret the results in the context of your study. Relate the findings to the original hypotheses and discuss their relevance to the research question. Consider the practical and theoretical implications of the results, as well as their limitations and potential implications for future research.

Clear, visual presentation of quantitative results

Use tables and graphs to illustrate your quantitative results in a concise and accessible way. Make sure visualizations are well-labeled, understandable and directly linked to key findings. The visual aspect helps to communicate results effectively and convincingly. 

It's also vital to document each stage of the analysis in detail in a quantitative survey report. Include :

  • a methodological description
  • analysis results
  • visualizations
  • your interpretations .

A well-structured report validates the rigor of your analysis and makes it easier for other researchers to understand and reproduce your results.  

Quantitative studies represent a fundamental pillar in the world of research, offering powerful tools for the collection and analysis of objective data. Using rigorous methods and advanced statistical techniques, they deliver reliable, generalizable results that are invaluable for decision-making. Whether designing surveys, analyzing data or presenting results, a well-planned and executed quantitative approach can not only strengthen the validity of findings, but also enrich the overall understanding of the research field. By mastering these skills, researchers and students make a significant contribution to the advancement of scientific knowledge.

Discover other practical guides to conducting effective quantitative research: 

Types of quantitative research , Lyssna Quantitative Research Methods,  Nova Southeastern University A Guide To Conducting Great Quantitative Research, EngageSpark

Information: This informative article was written in part with the help of ChatGPT. The content generated by AI has been reworked to check the veracity of the information, the relevance of the instructions and to add clarifications.

What are the quantitative studies?

What's the difference between qualitative and quantitative research?

Why conduct a quantitative study?

Compilatio Studium, the plagiarism checker for students

Write your student work with peace of mind

With Compilatio Studium, make sure to cite all your sources and submit quality assignments, compliant with academic requirements . This way, you can easily avoid plagiarism penalties and prove the integrity of your work .

Quantitative Data: Definition, Examples, Types, Methods, and Analysis

11 min read

Quantitative Data: Definition, Examples, Types, Methods, and Analysis cover

35% of startups fail because there is no market need. This is because they haven’t conducted any customer research to determine whether the product they are building is actually what customers want.

To gather the information needed to avoid this, quantitative data is a valuable tool for all startups. This article will examine quantitative data, the difference between quantitative and qualitative data, and how to collect the former.

  • Quantitative data, expressed numerically, is crucial for analysis, driving strategic decisions, and understanding consumer behavior and market trends .
  • Metrics like DAU, MRR, sales figures, satisfaction scores, and traffic are examples of quantitative data across industries.
  • Quantitative data is numeric and measurable, identifying patterns or trends, while qualitative data is descriptive, providing deeper insights and context.
  • Nominal data categorizes information without order and labels variables like user roles or subscription types. It is often shown in bar or pie charts .
  • Ordinal data categorizes information in a specific order, such as satisfaction ratings or ticket priorities, and is often shown in a bar or stacked bar chart.
  • Discrete data is numerical and takes specific values, like daily sign-ups or support tickets , and is often shown in bar or column charts.
  • Continuous data can take any numerical value within a range, such as user time on a platform or revenue over time, and is often shown in line graphs or histograms.
  • Quantitative data is objective, handles large datasets, and enables easy comparisons, providing clear insights and generalized conclusions in various fields.
  • However, quantitative data analysis lacks contextual understanding, requires analytical expertise, and is influenced by data collection quality that may affect result validity.
  • Customer feedback surveys , triggered by tools like Userpilot, collect consistent quantitative data, providing reliable numerical insights into customer satisfaction and experiences.
  • Product analytics tools track user interactions and feature usage , offering insights into user behavior and improving the user experience.
  • Tracking customer support data identifies common issues and areas for improvement , enhances service quality, and helps understand customer needs.
  • Implementing A/B tests and other experiments provides quantitative data on feature performance, helping teams make informed decisions to enhance product and user experience.
  • Searching platforms like Kaggle or Statista for accurate, reliable datasets enhances product analysis by providing broader context and robust comparison data.
  • Statistical analysis uses mathematical techniques to summarize and infer data patterns, helping SaaS companies understand user behavior, evaluate features, and identify engagement trends.
  • Trend analysis tracks quantitative data to identify patterns, helping SaaS companies forecast outcomes, understand variations, and plan strategic initiatives effectively.
  • Funnel analysis tracks user progression through stages, identifies drop-off points to enhance user experience, and increases conversions for SaaS companies.
  • Cohort analysis groups users by attribute and tracks behavior over time to understand retention and engagement.
  • Path analysis maps user journeys to identify users’ optimal routes, helping SaaS companies streamline and enhance the user experience.
  • Feedback analysis examines responses to close-ended questions to identify user sentiments and areas for improvement.
  • If you want to collect quantitative data within your product and analyze it, then learn how Userpilot can help you. Book a demo now !

how to write a research quantitative

Try Userpilot and Take Your Product Experience to the Next Level

  • 14 Day Trial
  • No Credit Card Required

how to write a research quantitative

What is quantitative data?

Quantitative data is information that can be measured and expressed numerically. It is essential for making data-driven decisions, as it provides a concrete foundation for analysis and evaluation.

In various fields, such as market research , quantitative data helps businesses understand consumer behavior, market trends, and overall performance. Companies can gain insights that drive strategic decisions and improve their products or services by collecting and analyzing numerical data.

Whether conducting a survey, running experiments , or gathering information from other sources, quantitative data analysis is key to uncovering patterns, testing hypotheses, and making informed decisions based on solid evidence.

What are examples of quantitative data?

Quantitative data comes in many forms and is used across various industries to provide measurable and numerical insights. Here are some examples of quantitative data:

  • Daily Active Users (DAU) : This metric counts the number of unique users interacting with a product or service daily. It is crucial for understanding user engagement and product usage trends.
  • Monthly Recurring Revenue (MRR) : For SaaS businesses, MRR is a vital metric that shows the predictable revenue generated each month from subscriptions. It helps forecast growth and financial planning.
  • Sales figures : This includes the total number of products sold or services rendered over a specific period. Sales data helps in evaluating business performance and market demand.
  • Customer satisfaction scores : Often collected through surveys , these scores quantify customers’ satisfaction with a product or service.
  • Website traffic : Measured in terms of visits, page views, and unique visitors, this quantitative data helps businesses understand their online presence and the effectiveness of their marketing efforts.
  • Conversion rates : This metric shows the percentage of users who take a desired action, such as making a purchase or signing up for a newsletter, out of the total number of visitors.
  • Churn rate : This represents the percentage of customers who stop using a product or service over time. It’s essential for understanding customer retention .
  • Average Revenue Per User (ARPU) : This metric calculates the average revenue generated per user, which helps assess each customer’s value to the business.
  • Bounce rate : In web analytics, the bounce rate indicates the percentage of visitors who leave a website after viewing only one page. It’s useful for evaluating the effectiveness of a website’s content and user experience .

Differences between quantitative and qualitative data

Quantitative data and qualitative data are two fundamental types of information used in research and analysis, each serving distinct purposes and represented in different forms.

Quantitative data is numeric and measurable. It allows you to quantify variables and identify patterns or trends that can be generalized. For example, tracking product trends or analyzing charts to understand market movements. Some quantitative data examples include:

  • The number of daily active users on a platform.
  • Monthly recurring revenue.
  • Customer satisfaction scores .
  • Website traffic metrics, like page views.

On the other hand, qualitative data is descriptive and subjective, often represented in words and visuals. It aims to explore deeper insights, understand data , and provide context to behaviors and experiences.

Examples of qualitative data include:

  • Customer reviews and testimonials.
  • Interview responses.
  • Social media interactions.
  • Observations recorded during user tests .

Different types of quantitative data

Understanding the different types of quantitative data is essential for effective data analysis . These types help categorize and analyze data accurately to derive meaningful insights and make informed decisions.

Nominal data

Nominal data categorizes information without a specific order or ranking. It is used to label variables that do not have a quantitative value.

For instance, in a SaaS platform , user roles can be categorized as ‘admin,’ ‘editor,’ or ‘viewer.’ Subscription types might be classified as ‘free,’ ‘basic,’ ‘premium,’ or ‘enterprise.’

This data type is typically represented using bar charts or pie charts to show the frequency or proportion of each category.

Ordinal data

Ordinal data categorizes information with a specific order or ranking. It is used to label variables that follow a particular sequence.

Examples include:

  • Rating customer satisfaction as ‘poor,’ ‘fair,’ ‘good,’ ‘very good,’ or ‘excellent.’
  • Ranking support ticket priorities as ‘low,’ ‘medium,’ or ‘high.’
  • User feedback ratings on features as ‘1 star’ to ‘5 stars.’

This type of data is typically represented using bar charts or stacked bar charts to illustrate the order and frequency of each category.

Discrete data

Discrete data is numerical values that can only take on specific values and cannot be subdivided meaningfully.

Examples include the number of new sign-ups daily, the count of support tickets received, and the number of active users at a given time.

This type of numerical data is often represented using bar charts or column charts to display the frequency of each value.

Continuous data

Continuous data is numerical information that can take on any numerical value within a range.

In a SaaS context, examples include measuring the amount of time users spend on a platform, the bandwidth usage of an application, and the revenue generated over a specific period. Continuous data, along with interval data, helps identify patterns and trends over time.

Pros of analyzing quantitative data

Analyzing quantitative data offers several advantages, making it a valuable approach in various fields, especially in SaaS. Here are some key benefits:

Provides measurable and verifiable data

Quantitative data is numeric and objective, allowing for precise measurement and verification. This reduces the influence of personal biases and subjectivity in analysis, leading to more reliable and consistent results.

Analyzing customer data using quantitative methods can provide clear insights into user behavior and preferences, helping businesses make data-driven decisions.

Enables analysis of large datasets

Quantitative data analysis can handle large datasets efficiently, enabling the identification of patterns and trends across extensive samples.

This capability makes it possible to draw broad, generalized conclusions that can be applied to larger populations. For example, a company might analyze usage data from thousands of users to understand overall engagement trends and identify areas for improvement .

Allows easy comparison across different groups, time periods, and variables

Quantitative data allows straightforward comparisons across various groups, time periods, and variables. This facilitates the evaluation of changes over time, differences between demographics, and the impact of different factors on outcomes.

For instance, comparing customer satisfaction scores before and after a product update can help assess the effectiveness of the changes and guide future improvements.

Cons of quantitative data analysis

While quantitative data analysis offers many benefits, it also has some drawbacks:

Lacks contextual understanding

Quantitative data can miss the deeper context and nuances of human behavior, focusing solely on numbers without explaining the reasons behind actions. For example, tracking user behavior may show usage patterns but not the motivations or feelings behind them.

Requires analytical expertise

Accurate analysis and interpretation of quantitative data require specialized skills . Without proper expertise, there is a risk of misinterpretation and incorrect conclusions, which can negatively impact decision-making.

Influenced by data collection quality

The reliability of quantitative analysis depends on the data collection methods and the quality of measurement tools. Poor data collection can lead to data discrepancies , affecting the validity of the results. Ensuring consistent, high-quality data collection is essential for accurate analysis.

How to collect data for quantitative research?

Collecting data for quantitative research involves using systematic and structured methods to gather numerical information. Let’s look at a few methods in detail.

Customer feedback surveys

Customer feedback surveys are a key method for collecting quantitative data. Tools like Userpilot can trigger in-app surveys with closed-ended questions to ensure consistent data collection.

Conducting these surveys quarterly or after a specific period helps track changes in customer satisfaction and other important metrics. This approach provides reliable, numerical insights into customer opinions and experiences.

A screenshot of a customer survey created in Userpilot to collect Quantitative Data

Product usage data

Product analytics tools are essential for tracking user interactions and feature usage. Utilizing these tools allows you to monitor metrics such as user sessions, feature adoption , and user engagement regularly.

This quantitative data provides valuable insights into how users interact with your product, helping you understand their behavior and improve the overall user experience.

Customer support data

Tracking customer support data is crucial for quantitative research. You can record details such as ticket number, issue type, resolution time, and customer feedback by monitoring support tickets.

Organize these tickets into categories, such as feature requests , to identify common problems and areas needing product improvement . This approach helps understand customer needs and enhance overall service quality.

An example of a resource center you can collect in Userpilot

Experiments

Implementing experiments, such as A/B tests , is a powerful method for collecting quantitative data. By comparing the performance of different features or designs, you can gain valuable insights into what works best for your users.

Use the insights gained from these A/B tests and other product experimentation methods to make informed decisions that enhance your product and user experience.

A screenshot showing the results of an A/B test in Userpilot to help with Quantitative Data

Open-source datasets

Searching for datasets on platforms like Kaggle or Statista can provide valuable information relevant to your research. However, to avoid issues with data discrepancy , ensure these datasets are accurate and reliable before incorporating them into your analysis.

Utilizing accurate open-source datasets can significantly enhance your product analysis by providing a broader context and more robust quantitative data for comparison and insights.

A screenshot of Statista showing a AI report

Quantitative data analysis methods for gathering actionable insights

Analyzing quantitative data involves using various methods to extract meaningful and actionable insights. These techniques help understand the data’s patterns, trends, and relationships, enabling informed decision-making and strategic planning .

Statistical analysis

Statistical analysis involves using mathematical techniques to summarize, describe, and infer patterns from data. This method helps validate hypotheses and make data-driven decisions .

For SaaS companies, statistical analysis can be crucial in understanding user behavior , evaluating the effectiveness of new features, and identifying trends in user engagement.

By leveraging statistical techniques, SaaS businesses can derive meaningful insights from their data, allowing them to optimize their products and services based on empirical evidence.

Trend analysis

Trend analysis involves tracking quantitative data points and metrics to identify consistent patterns. Using a tool like Userpilot, SaaS companies can generate detailed trend analysis reports that provide valuable insights into how various metrics evolve.

This method enables SaaS companies to forecast future outcomes, understand seasonal variations, and plan strategic initiatives accordingly. By identifying trends, businesses can anticipate changes, adapt their strategies, and stay ahead of market dynamics.

A screenshot showing a trend analysis report in Userpilot

Funnel analysis

Funnel analysis defines key stages in the user journey and tracks the number of users progressing through each stage.

This method helps SaaS companies identify friction and drop-off points within the funnel. By understanding where users are dropping off, businesses can implement targeted improvements to enhance user experience and increase conversions.

An example of a funnel analysis report in Userpilot

Cohort analysis

Cohort analysis groups users into cohorts based on attributes such as the month of sign-up or acquisition channel and tracks their behavior over time.

This method allows SaaS companies to understand user retention and engagement patterns by comparing how cohorts perform over various periods. By analyzing these patterns, businesses can identify successful strategies and improvement areas.

A screenshot showing a cohort analysis report in Userpilot

Path analysis

Path analysis maps user journeys and analyzes the actions taken by users. This method helps SaaS companies identify the “ happy path ” or the optimal route users take to achieve their goals.

By understanding these paths , businesses can streamline the user experience, making it more intuitive and efficient.

Feedback analysis

Feedback analysis involves using questionnaires and examining responses to close-ended questions to identify patterns in customer feedback . This quantitative data helps you to understand common user sentiments, preferences, and areas needing improvement.

Businesses can make informed decisions to enhance their products and services by systematically analyzing feedback.

A screenshot of a feedback analysis report in Userpilot

Collecting quantitative data is important if you want a product that will succeed. Your customers are the only people who can signal your success, so speaking to them and analyzing the quantitative data you collect will help you to produce the best product you can.

If you want help collecting quantitative data and analyzing it, Userpilot can help. Book a demo now to see exactly how it can help.

Leave a comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Book a demo with on of our product specialists

Get The Insights!

The fastest way to learn about Product Growth,Management & Trends.

The coolest way to learn about Product Growth, Management & Trends. Delivered fresh to your inbox, weekly.

how to write a research quantitative

The fastest way to learn about Product Growth, Management & Trends.

You might also be interested in ...

Psychographic vs behavioral segmentation: what are the differences.

Aazar Ali Shad

Saffa Faisal

What is Retroactive Analysis? [+ How to Conduct]

IMAGES

  1. (PDF) Quantitative Research Method

    how to write a research quantitative

  2. Chapter 3 Pdf Quantitative Research Research Design

    how to write a research quantitative

  3. how to write a hypothesis for quantitative research

    how to write a research quantitative

  4. The Steps of Quantitative Research ~ ReviseSociologyReviseSociology

    how to write a research quantitative

  5. Quantitative Research Example

    how to write a research quantitative

  6. Quantitative Research Process

    how to write a research quantitative

VIDEO

  1. Quantitative Research Questions: Guiding towards Verifying Questions

  2. How to Write the Methodology

  3. How to Read a Quantitative Research Article

  4. QUANTITATIVE RESEARCH DESIGNS BY OLANITI TAIWO

  5. RESULTS OF QUANTITATIVE RESEARCH BY OLANITI TAIWO

  6. What is Qualitative Research

COMMENTS

  1. A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

    The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development ...

  2. Quantitative Methods

    Quantitative methods emphasize objective measurements and the statistical, mathematical, or numerical analysis of data collected through polls, questionnaires, and surveys, or by manipulating pre-existing statistical data using computational techniques. Quantitative research focuses on gathering numerical data and generalizing it across groups of people or to explain a particular phenomenon.

  3. A Complete Guide to Quantitative Research Methods

    The goal of quantitative research methods is to collect numerical data from a group of people, then generalize those results to a larger group of people to explain a phenomenon. Researchers generally use quantitative research when they want get objective, conclusive answers. For example, a chocolate brand may run a survey among a sample of ...

  4. What Is Quantitative Research?

    Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations.

  5. How to Write Quantitative Research Questions: Types With Examples

    Quantitative research questions are the best way to collect quantifiable data. But how do you write such questions? Read this blog to get all your answers.

  6. 9 Presenting the Results of Quantitative Analysis

    This chapter provides an overview of how to present the results of quantitative analysis, in particular how to create effective tables for displaying quantitative results and how to write quantitative research papers that effectively communicate the methods used and findings of quantitative analysis.

  7. Quantitative Research

    Quantitative research is a type of research that collects and analyzes numerical data to test hypotheses and answer research questions. This research typically involves a large sample size and uses statistical analysis to make inferences about a population based on the data collected. It often involves the use of surveys, experiments, or other structured data collection methods to gather ...

  8. Writing Quantitative Research Studies

    Summarizing quantitative data and its effective presentation and discussion can be challenging for students and researchers. This chapter provides a framework for adequately reporting findings from quantitative analysis in a research study for those contemplating to...

  9. Dissertation Results/Findings Chapter (Quantitative)

    Learn how to write up the quantitative results/findings/analysis chapter for your dissertation or thesis. Step-by-step guide + examples.

  10. How To Write Methodology For A Quantitative Study?

    A methodology for a quantitative study begins with a reiteration of the research question and its context. Methodology for a Quantitative study. This is followed by the research design, where the methods used to gather, process and analyze the data are given. This is usually preceded or followed by a justification of the appropriateness of the ...

  11. Chapter Four: Quantitative Methods (Part 3

    You have learned a great deal about how to go about using quantitative methods for your future research projects. You have learned how to design a quantitative study, conduct a quantitative study, and write about a quantitative study.

  12. What Is a Research Design

    The research design is a strategy for answering your research questions. It determines how you will collect and analyze your data.

  13. PDF Step'by-step guide to critiquing research. Part 1: quantitative research

    It is imperative in nursing that care has its foundations in sound research and it is essential that all nurses have the ability to critically appraise research to identify what is best practice. This article is a step-by step-approach to critiquing quantitative research to help nurses demystify the process and decode the terminology.

  14. Q: How to write the title for a quantitative research study?

    To write a good title for a quantitative paper, you should follow these steps: Draft a title that includes all the items you've listed (if you wish, do so in a sentence format). Delete anything that is unnecessary. Use a general term to cover overly specific aspects, as shown in the example above.

  15. What is Quantitative Research? Definition, Methods, Types, and Examples

    Before adopting quantitative research for your study, you need to understand what is quantitative research. Read this article to learn the quantitative research definition, key characteristics, types of quantitative research, methods and examples, and pros and cons of quantitative research.

  16. PDF Writing Chapter 3 Chapter 3: Methodology

    Instruments. This section should include the instruments you plan on using to measure the variables in the research questions. (a) the source or developers of the instrument. (b) validity and reliability information. •. (c) information on how it was normed. •. (d) other salient information (e.g., number of. items in each scale, subscales ...

  17. Quantitative Research Design (JARS-Quant)

    The updated APA Style JARS for Quantitative Research address quantitative studies—studies that rely on measuring variables using a numerical system.

  18. Research Methodology

    Writing a research methodology involves explaining the methods and techniques you used to conduct research, collect data, and analyze results. It's an essential section of any research paper or thesis, as it helps readers understand the validity and reliability of your findings.

  19. PDF Introduction to Quantitative Research

    This pdf provides an overview of quantitative research methods, including their advantages, limitations, and ethical issues. It also introduces some common statistical techniques and tools for data analysis.

  20. Writing a quantitative research question

    Formulating a quantitative research question can often be a difficult task. When composing a research question, a researcher needs to determine if they want to describe data, compare differences among groups, assess a relationship, or determine if a set of variables predict another variable. The type of question the researcher asks will help to ...

  21. 500+ Quantitative Research Titles and Topics

    Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology, economics, and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas ...

  22. What Is Quantitative Research?

    Quantitative research is the opposite of qualitative research, which involves collecting and analysing non-numerical data (e.g. text, video, or audio). Quantitative research is widely used in the natural and social sciences: biology, chemistry, psychology, economics, sociology, marketing, etc.

  23. Tips for Writing Quantitative Purpose Statements

    There are several equally acceptable ways to write purpose statements for quantitative studies. This post will share some suggestion for getting started Ideas for Writing Quantitative Purpose State…

  24. Understanding Quantitative Research: Definition, Collection methods

    What is quantitative research? Definition, objectives and benefits of quantitative research "Quantitative research is a methodology that provides support when you need to draw general conclusions from your research and predict outcomes. These methods are designed to collect numerical data that can be used to measure variables.

  25. Quantitative Data: Definition, Examples, Types, Methods, & Analysis

    Quantitative data is information that can be measured and expressed numerically. It is essential for making data-driven decisions, as it provides a concrete foundation for analysis and evaluation. In various fields, such as market research, quantitative data helps businesses understand consumer behavior, market trends, and overall performance ...

  26. Research: quantifying GitHub Copilot's impact on developer productivity

    When we first launched a technical preview of GitHub Copilot in 2021, our hypothesis was that it would improve developer productivity and, in fact, early users shared reports that it did. In the months following its release, we wanted to better understand and measure its effects with quantitative and qualitative research.