Research Methods

Chapter 2 introduction.

Maybe you have already gained some experience in doing research, for example in your bachelor studies, or as part of your work.

The challenge in conducting academic research at masters level, is that it is multi-faceted.

The types of activities are:

  • Finding and reviewing literature on your research topic;
  • Designing a research project that will answer your research questions;
  • Collecting relevant data from one or more sources;
  • Analyzing the data, statistically or otherwise, and
  • Writing up and presenting your findings.

Some researchers are strong on some parts but weak on others.

We do not require perfection. But we do require high quality.

Going through all stages of the research project, with the guidance of your supervisor, is a learning process.

The journey is hard at times, but in the end your thesis is considered an academic publication, and we want you to be proud of what you have achieved!

Probably the biggest challenge is, where to begin?

  • What will be your topic?
  • And once you have selected a topic, what are the questions that you want to answer, and how?

In the first chapter of the book, you will find several views on the nature and scope of business research.

Since a study in business administration derives its relevance from its application to real-life situations, an MBA typically falls in the grey area between applied research and basic research.

The focus of applied research is on finding solutions to problems, and on improving (y)our understanding of existing theories of management.

Applied research that makes use of existing theories, often leads to amendments or refinements of these theories. That is, the applied research feeds back to basic research.

In the early stages of your research, you will feel like you are running around in circles.

You start with an idea for a research topic. Then, after reading literature on the topic, you will revise or refine your idea. And start reading again with a clearer focus ...

A thesis research/project typically consists of two main stages.

The first stage is the research proposal .

Once the research proposal has been approved, you can start with the data collection, analysis and write-up (including conclusions and recommendations).

Stage 1, the research proposal consists of he first three chapters of the commonly used five-chapter structure :

  • Chapter 1: Introduction
  • An introduction to the topic.
  • The research questions that you want to answer (and/or hypotheses that you want to test).
  • A note on why the research is of academic and/or professional relevance.
  • Chapter 2: Literature
  • A review of relevant literature on the topic.
  • Chapter 3: Methodology

The methodology is at the core of your research. Here, you define how you are going to do the research. What data will be collected, and how?

Your data should allow you to answer your research questions. In the research proposal, you will also provide answers to the questions when and how much . Is it feasible to conduct the research within the given time-frame (say, 3-6 months for a typical master thesis)? And do you have the resources to collect and analyze the data?

In stage 2 you collect and analyze the data, and write the conclusions.

  • Chapter 4: Data Analysis and Findings
  • Chapter 5: Summary, Conclusions and Recommendations

This video gives a nice overview of the elements of writing a thesis.

Grad Coach

How To Write The Results/Findings Chapter

For quantitative studies (dissertations & theses).

By: Derek Jansen (MBA). Expert Reviewed By: Kerryn Warren (PhD) | July 2021

So, you’ve completed your quantitative data analysis and it’s time to report on your findings. But where do you start? In this post, we’ll walk you through the results chapter (also called the findings or analysis chapter), step by step, so that you can craft this section of your dissertation or thesis with confidence. If you’re looking for information regarding the results chapter for qualitative studies, you can find that here .

The results & analysis section in a dissertation

Overview: Quantitative Results Chapter

  • What exactly the results/findings/analysis chapter is
  • What you need to include in your results chapter
  • How to structure your results chapter
  • A few tips and tricks for writing top-notch chapter

What exactly is the results chapter?

The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you’ve found in terms of the quantitative data you’ve collected. It presents the data using a clear text narrative, supported by tables, graphs and charts. In doing so, it also highlights any potential issues (such as outliers or unusual findings) you’ve come across.

But how’s that different from the discussion chapter?

Well, in the results chapter, you only present your statistical findings. Only the numbers, so to speak – no more, no less. Contrasted to this, in the discussion chapter , you interpret your findings and link them to prior research (i.e. your literature review), as well as your research objectives and research questions . In other words, the results chapter presents and describes the data, while the discussion chapter interprets the data.

Let’s look at an example.

In your results chapter, you may have a plot that shows how respondents to a survey  responded: the numbers of respondents per category, for instance. You may also state whether this supports a hypothesis by using a p-value from a statistical test. But it is only in the discussion chapter where you will say why this is relevant or how it compares with the literature or the broader picture. So, in your results chapter, make sure that you don’t present anything other than the hard facts – this is not the place for subjectivity.

It’s worth mentioning that some universities prefer you to combine the results and discussion chapters. Even so, it is good practice to separate the results and discussion elements within the chapter, as this ensures your findings are fully described. Typically, though, the results and discussion chapters are split up in quantitative studies. If you’re unsure, chat with your research supervisor or chair to find out what their preference is.

The results and discussion chapter are typically split

What should you include in the results chapter?

Following your analysis, it’s likely you’ll have far more data than are necessary to include in your chapter. In all likelihood, you’ll have a mountain of SPSS or R output data, and it’s your job to decide what’s most relevant. You’ll need to cut through the noise and focus on the data that matters.

This doesn’t mean that those analyses were a waste of time – on the contrary, those analyses ensure that you have a good understanding of your dataset and how to interpret it. However, that doesn’t mean your reader or examiner needs to see the 165 histograms you created! Relevance is key.

How do I decide what’s relevant?

At this point, it can be difficult to strike a balance between what is and isn’t important. But the most important thing is to ensure your results reflect and align with the purpose of your study .  So, you need to revisit your research aims, objectives and research questions and use these as a litmus test for relevance. Make sure that you refer back to these constantly when writing up your chapter so that you stay on track.

There must be alignment between your research aims objectives and questions

As a general guide, your results chapter will typically include the following:

  • Some demographic data about your sample
  • Reliability tests (if you used measurement scales)
  • Descriptive statistics
  • Inferential statistics (if your research objectives and questions require these)
  • Hypothesis tests (again, if your research objectives and questions require these)

We’ll discuss each of these points in more detail in the next section.

Importantly, your results chapter needs to lay the foundation for your discussion chapter . This means that, in your results chapter, you need to include all the data that you will use as the basis for your interpretation in the discussion chapter.

For example, if you plan to highlight the strong relationship between Variable X and Variable Y in your discussion chapter, you need to present the respective analysis in your results chapter – perhaps a correlation or regression analysis.

Need a helping hand?

how to make chapter 2 in quantitative research

How do I write the results chapter?

There are multiple steps involved in writing up the results chapter for your quantitative research. The exact number of steps applicable to you will vary from study to study and will depend on the nature of the research aims, objectives and research questions . However, we’ll outline the generic steps below.

Step 1 – Revisit your research questions

The first step in writing your results chapter is to revisit your research objectives and research questions . These will be (or at least, should be!) the driving force behind your results and discussion chapters, so you need to review them and then ask yourself which statistical analyses and tests (from your mountain of data) would specifically help you address these . For each research objective and research question, list the specific piece (or pieces) of analysis that address it.

At this stage, it’s also useful to think about the key points that you want to raise in your discussion chapter and note these down so that you have a clear reminder of which data points and analyses you want to highlight in the results chapter. Again, list your points and then list the specific piece of analysis that addresses each point. 

Next, you should draw up a rough outline of how you plan to structure your chapter . Which analyses and statistical tests will you present and in what order? We’ll discuss the “standard structure” in more detail later, but it’s worth mentioning now that it’s always useful to draw up a rough outline before you start writing (this advice applies to any chapter).

Step 2 – Craft an overview introduction

As with all chapters in your dissertation or thesis, you should start your quantitative results chapter by providing a brief overview of what you’ll do in the chapter and why . For example, you’d explain that you will start by presenting demographic data to understand the representativeness of the sample, before moving onto X, Y and Z.

This section shouldn’t be lengthy – a paragraph or two maximum. Also, it’s a good idea to weave the research questions into this section so that there’s a golden thread that runs through the document.

Your chapter must have a golden thread

Step 3 – Present the sample demographic data

The first set of data that you’ll present is an overview of the sample demographics – in other words, the demographics of your respondents.

For example:

  • What age range are they?
  • How is gender distributed?
  • How is ethnicity distributed?
  • What areas do the participants live in?

The purpose of this is to assess how representative the sample is of the broader population. This is important for the sake of the generalisability of the results. If your sample is not representative of the population, you will not be able to generalise your findings. This is not necessarily the end of the world, but it is a limitation you’ll need to acknowledge.

Of course, to make this representativeness assessment, you’ll need to have a clear view of the demographics of the population. So, make sure that you design your survey to capture the correct demographic information that you will compare your sample to.

But what if I’m not interested in generalisability?

Well, even if your purpose is not necessarily to extrapolate your findings to the broader population, understanding your sample will allow you to interpret your findings appropriately, considering who responded. In other words, it will help you contextualise your findings . For example, if 80% of your sample was aged over 65, this may be a significant contextual factor to consider when interpreting the data. Therefore, it’s important to understand and present the demographic data.

Communicate the data

 Step 4 – Review composite measures and the data “shape”.

Before you undertake any statistical analysis, you’ll need to do some checks to ensure that your data are suitable for the analysis methods and techniques you plan to use. If you try to analyse data that doesn’t meet the assumptions of a specific statistical technique, your results will be largely meaningless. Therefore, you may need to show that the methods and techniques you’ll use are “allowed”.

Most commonly, there are two areas you need to pay attention to:

#1: Composite measures

The first is when you have multiple scale-based measures that combine to capture one construct – this is called a composite measure .  For example, you may have four Likert scale-based measures that (should) all measure the same thing, but in different ways. In other words, in a survey, these four scales should all receive similar ratings. This is called “ internal consistency ”.

Internal consistency is not guaranteed though (especially if you developed the measures yourself), so you need to assess the reliability of each composite measure using a test. Typically, Cronbach’s Alpha is a common test used to assess internal consistency – i.e., to show that the items you’re combining are more or less saying the same thing. A high alpha score means that your measure is internally consistent. A low alpha score means you may need to consider scrapping one or more of the measures.

#2: Data shape

The second matter that you should address early on in your results chapter is data shape. In other words, you need to assess whether the data in your set are symmetrical (i.e. normally distributed) or not, as this will directly impact what type of analyses you can use. For many common inferential tests such as T-tests or ANOVAs (we’ll discuss these a bit later), your data needs to be normally distributed. If it’s not, you’ll need to adjust your strategy and use alternative tests.

To assess the shape of the data, you’ll usually assess a variety of descriptive statistics (such as the mean, median and skewness), which is what we’ll look at next.

Descriptive statistics

Step 5 – Present the descriptive statistics

Now that you’ve laid the foundation by discussing the representativeness of your sample, as well as the reliability of your measures and the shape of your data, you can get started with the actual statistical analysis. The first step is to present the descriptive statistics for your variables.

For scaled data, this usually includes statistics such as:

  • The mean – this is simply the mathematical average of a range of numbers.
  • The median – this is the midpoint in a range of numbers when the numbers are arranged in order.
  • The mode – this is the most commonly repeated number in the data set.
  • Standard deviation – this metric indicates how dispersed a range of numbers is. In other words, how close all the numbers are to the mean (the average).
  • Skewness – this indicates how symmetrical a range of numbers is. In other words, do they tend to cluster into a smooth bell curve shape in the middle of the graph (this is called a normal or parametric distribution), or do they lean to the left or right (this is called a non-normal or non-parametric distribution).
  • Kurtosis – this metric indicates whether the data are heavily or lightly-tailed, relative to the normal distribution. In other words, how peaked or flat the distribution is.

A large table that indicates all the above for multiple variables can be a very effective way to present your data economically. You can also use colour coding to help make the data more easily digestible.

For categorical data, where you show the percentage of people who chose or fit into a category, for instance, you can either just plain describe the percentages or numbers of people who responded to something or use graphs and charts (such as bar graphs and pie charts) to present your data in this section of the chapter.

When using figures, make sure that you label them simply and clearly , so that your reader can easily understand them. There’s nothing more frustrating than a graph that’s missing axis labels! Keep in mind that although you’ll be presenting charts and graphs, your text content needs to present a clear narrative that can stand on its own. In other words, don’t rely purely on your figures and tables to convey your key points: highlight the crucial trends and values in the text. Figures and tables should complement the writing, not carry it .

Depending on your research aims, objectives and research questions, you may stop your analysis at this point (i.e. descriptive statistics). However, if your study requires inferential statistics, then it’s time to deep dive into those .

Dive into the inferential statistics

Step 6 – Present the inferential statistics

Inferential statistics are used to make generalisations about a population , whereas descriptive statistics focus purely on the sample . Inferential statistical techniques, broadly speaking, can be broken down into two groups .

First, there are those that compare measurements between groups , such as t-tests (which measure differences between two groups) and ANOVAs (which measure differences between multiple groups). Second, there are techniques that assess the relationships between variables , such as correlation analysis and regression analysis. Within each of these, some tests can be used for normally distributed (parametric) data and some tests are designed specifically for use on non-parametric data.

There are a seemingly endless number of tests that you can use to crunch your data, so it’s easy to run down a rabbit hole and end up with piles of test data. Ultimately, the most important thing is to make sure that you adopt the tests and techniques that allow you to achieve your research objectives and answer your research questions .

In this section of the results chapter, you should try to make use of figures and visual components as effectively as possible. For example, if you present a correlation table, use colour coding to highlight the significance of the correlation values, or scatterplots to visually demonstrate what the trend is. The easier you make it for your reader to digest your findings, the more effectively you’ll be able to make your arguments in the next chapter.

make it easy for your reader to understand your quantitative results

Step 7 – Test your hypotheses

If your study requires it, the next stage is hypothesis testing. A hypothesis is a statement , often indicating a difference between groups or relationship between variables, that can be supported or rejected by a statistical test. However, not all studies will involve hypotheses (again, it depends on the research objectives), so don’t feel like you “must” present and test hypotheses just because you’re undertaking quantitative research.

The basic process for hypothesis testing is as follows:

  • Specify your null hypothesis (for example, “The chemical psilocybin has no effect on time perception).
  • Specify your alternative hypothesis (e.g., “The chemical psilocybin has an effect on time perception)
  • Set your significance level (this is usually 0.05)
  • Calculate your statistics and find your p-value (e.g., p=0.01)
  • Draw your conclusions (e.g., “The chemical psilocybin does have an effect on time perception”)

Finally, if the aim of your study is to develop and test a conceptual framework , this is the time to present it, following the testing of your hypotheses. While you don’t need to develop or discuss these findings further in the results chapter, indicating whether the tests (and their p-values) support or reject the hypotheses is crucial.

Step 8 – Provide a chapter summary

To wrap up your results chapter and transition to the discussion chapter, you should provide a brief summary of the key findings . “Brief” is the keyword here – much like the chapter introduction, this shouldn’t be lengthy – a paragraph or two maximum. Highlight the findings most relevant to your research objectives and research questions, and wrap it up.

Some final thoughts, tips and tricks

Now that you’ve got the essentials down, here are a few tips and tricks to make your quantitative results chapter shine:

  • When writing your results chapter, report your findings in the past tense . You’re talking about what you’ve found in your data, not what you are currently looking for or trying to find.
  • Structure your results chapter systematically and sequentially . If you had two experiments where findings from the one generated inputs into the other, report on them in order.
  • Make your own tables and graphs rather than copying and pasting them from statistical analysis programmes like SPSS. Check out the DataIsBeautiful reddit for some inspiration.
  • Once you’re done writing, review your work to make sure that you have provided enough information to answer your research questions , but also that you didn’t include superfluous information.

If you’ve got any questions about writing up the quantitative results chapter, please leave a comment below. If you’d like 1-on-1 assistance with your quantitative analysis and discussion, check out our hands-on coaching service , or book a free consultation with a friendly coach.

how to make chapter 2 in quantitative research

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

You Might Also Like:

How to write the results chapter in a qualitative thesis

Thank you. I will try my best to write my results.

Lord

Awesome content 👏🏾

Tshepiso

this was great explaination

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly

University of Northern Iowa Home

  • Chapter Four: Quantitative Methods (Part 1)

Once you have chosen a topic to investigate, you need to decide which type of method is best to study it. This is one of the most important choices you will make on your research journey. Understanding the value of each of the methods described in this textbook to answer different questions allows you to be able to plan your own studies with more confidence, critique the studies others have done, and provide advice to your colleagues and friends on what type of research they should do to answer questions they have. After briefly reviewing quantitative research assumptions, this chapter is organized in three parts or sections. These parts can also be used as a checklist when working through the steps of your study. Specifically, part 1 focuses on planning a quantitative study (collecting data), part two explains the steps involved in doing a quantitative study, and part three discusses how to make sense of your results (organizing and analyzing data).

  • Chapter One: Introduction
  • Chapter Two: Understanding the distinctions among research methods
  • Chapter Three: Ethical research, writing, and creative work
  • Chapter Four: Quantitative Methods (Part 2 - Doing Your Study)
  • Chapter Four: Quantitative Methods (Part 3 - Making Sense of Your Study)
  • Chapter Five: Qualitative Methods (Part 1)
  • Chapter Five: Qualitative Data (Part 2)
  • Chapter Six: Critical / Rhetorical Methods (Part 1)
  • Chapter Six: Critical / Rhetorical Methods (Part 2)
  • Chapter Seven: Presenting Your Results

Quantitative Worldview Assumptions: A Review

In chapter 2, you were introduced to the unique assumptions quantitative research holds about knowledge and how it is created, or what the authors referred to in chapter one as "epistemology." Understanding these assumptions can help you better determine whether you need to use quantitative methods for a particular research study in which you are interested.

Quantitative researchers believe there is an objective reality, which can be measured. "Objective" here means that the researcher is not relying on their own perceptions of an event. S/he is attempting to gather "facts" which may be separate from people's feeling or perceptions about the facts. These facts are often conceptualized as "causes" and "effects." When you ask research questions or pose hypotheses with words in them such as "cause," "effect," "difference between," and "predicts," you are operating under assumptions consistent with quantitative methods. The overall goal of quantitative research is to develop generalizations that enable the researcher to better predict, explain, and understand some phenomenon.

Because of trying to prove cause-effect relationships that can be generalized to the population at large, the research process and related procedures are very important for quantitative methods. Research should be consistently and objectively conducted, without bias or error, in order to be considered to be valid (accurate) and reliable (consistent). Perhaps this emphasis on accurate and standardized methods is because the roots of quantitative research are in the natural and physical sciences, both of which have at their base the need to prove hypotheses and theories in order to better understand the world in which we live. When a person goes to a doctor and is prescribed some medicine to treat an illness, that person is glad such research has been done to know what the effects of taking this medicine is on others' bodies, so s/he can trust the doctor's judgment and take the medicines.

As covered in chapters 1 and 2, the questions you are asking should lead you to a certain research method choice. Students sometimes want to avoid doing quantitative research because of fear of math/statistics, but if their questions call for that type of research, they should forge ahead and use it anyway. If a student really wants to understand what the causes or effects are for a particular phenomenon, they need to do quantitative research. If a student is interested in what sorts of things might predict a person's behavior, they need to do quantitative research. If they want to confirm the finding of another researcher, most likely they will need to do quantitative research. If a student wishes to generalize beyond their participant sample to a larger population, they need to be conducting quantitative research.

So, ultimately, your choice of methods really depends on what your research goal is. What do you really want to find out? Do you want to compare two or more groups, look for relationships between certain variables, predict how someone will act or react, or confirm some findings from another study? If so, you want to use quantitative methods.

A topic such as self-esteem can be studied in many ways. Listed below are some example RQs about self-esteem. Which of the following research questions should be answered with quantitative methods?

  • Is there a difference between men's and women's level of self- esteem?
  • How do college-aged women describe their ups and downs with self-esteem?
  • How has "self-esteem" been constructed in popular self-help books over time?
  • Is there a relationship between self-esteem levels and communication apprehension?

What are the advantages of approaching a topic like self-esteem using quantitative methods? What are the disadvantages?

For more information, see the following website: Analyse This!!! Learning to analyse quantitative data

Answers:  1 & 4

Quantitative Methods Part One: Planning Your Study

Planning your study is one of the most important steps in the research process when doing quantitative research. As seen in the diagram below, it involves choosing a topic, writing research questions/hypotheses, and designing your study. Each of these topics will be covered in detail in this section of the chapter.

Image removed.

Topic Choice

Decide on topic.

How do you go about choosing a topic for a research project? One of the best ways to do this is to research something about which you would like to know more. Your communication professors will probably also want you to select something that is related to communication and things you are learning about in other communication classes.

When the authors of this textbook select research topics to study, they choose things that pique their interest for a variety of reasons, sometimes personal and sometimes because they see a need for more research in a particular area. For example, April Chatham-Carpenter studies adoption return trips to China because she has two adopted daughters from China and because there is very little research on this topic for Chinese adoptees and their families; she studied home vs. public schooling because her sister home schools, and at the time she started the study very few researchers had considered the social network implications for home schoolers (cf.  http://www.uni.edu/chatham/homeschool.html ).

When you are asked in this class and other classes to select a topic to research, think about topics that you have wondered about, that affect you personally, or that know have gaps in the research. Then start writing down questions you would like to know about this topic. These questions will help you decide whether the goal of your study is to understand something better, explain causes and effects of something, gather the perspectives of others on a topic, or look at how language constructs a certain view of reality.

Review Previous Research

In quantitative research, you do not rely on your conclusions to emerge from the data you collect. Rather, you start out looking for certain things based on what the past research has found. This is consistent with what was called in chapter 2 as a deductive approach (Keyton, 2011), which also leads a quantitative researcher to develop a research question or research problem from reviewing a body of literature, with the previous research framing the study that is being done. So, reviewing previous research done on your topic is an important part of the planning of your study. As seen in chapter 3 and the Appendix, to do an adequate literature review, you need to identify portions of your topic that could have been researched in the past. To do that, you select key terms of concepts related to your topic.

Some people use concept maps to help them identify useful search terms for a literature review. For example, see the following website: Concept Mapping: How to Start Your Term Paper Research .

Narrow Topic to Researchable Area

Once you have selected your topic area and reviewed relevant literature related to your topic, you need to narrow your topic to something that can be researched practically and that will take the research on this topic further. You don't want your research topic to be so broad or large that you are unable to research it. Plus, you want to explain some phenomenon better than has been done before, adding to the literature and theory on a topic. You may want to test out what someone else has found, replicating their study, and therefore building to the body of knowledge already created.

To see how a literature review can be helpful in narrowing your topic, see the following sources.  Narrowing or Broadening Your Research Topic  and  How to Conduct a Literature Review in Social Science

Research Questions & Hypotheses

Write Your Research Questions (RQs) and/or Hypotheses (Hs)

Once you have narrowed your topic based on what you learned from doing your review of literature, you need to formalize your topic area into one or more research questions or hypotheses. If the area you are researching is a relatively new area, and no existing literature or theory can lead you to predict what you might find, then you should write a research question. Take a topic related to social media, for example, which is a relatively new area of study. You might write a research question that asks:

"Is there a difference between how 1st year and 4th year college students use Facebook to communicate with their friends?"

If, however, you are testing out something you think you might find based on the findings of a large amount of previous literature or a well-developed theory, you can write a hypothesis. Researchers often distinguish between  null  and  alternative  hypotheses. The alternative hypothesis is what you are trying to test or prove is true, while the null hypothesis assumes that the alternative hypothesis is not true. For example, if the use of Facebook had been studied a great deal, and there were theories that had been developed on the use of it, then you might develop an alternative hypothesis, such as: "First-year students spend more time on using Facebook to communicate with their friends than fourth-year students do." Your null hypothesis, on the other hand, would be: "First-year students do  not  spend any more time using Facebook to communication with their friends than fourth-year students do." Researchers, however, only state the alternative hypothesis in their studies, and actually call it "hypothesis" rather than "alternative hypothesis."

Process of Writing a Research Question/Hypothesis.

Once you have decided to write a research question (RQ) or hypothesis (H) for your topic, you should go through the following steps to create your RQ or H.

Name the concepts from your overall research topic that you are interested in studying.

RQs and Hs have variables, or concepts that you are interested in studying. Variables can take on different values. For example, in the RQ above, there are at least two variables – year in college and use of Facebook (FB) to communicate. Both of them have a variety of levels within them.

When you look at the concepts you identified, are there any concepts which seem to be related to each other? For example, in our RQ, we are interested in knowing if there is a difference between first-year students and fourth-year students in their use of FB, meaning that we believe there is some connection between our two variables.

  • Decide what type of a relationship you would like to study between the variables. Do you think one causes the other? Does a difference in one create a difference in the other? As the value of one changes, does the value of the other change?

Identify which one of these concepts is the independent (or predictor) variable, or the concept that is perceived to be the cause of change in the other variable? Which one is the dependent (criterion) variable, or the one that is affected by changes in the independent variable? In the above example RQ, year in school is the independent variable, and amount of time spent on Facebook communicating with friends is the dependent variable. The amount of time spent on Facebook depends on a person's year in school.

If you're still confused about independent and dependent variables, check out the following site: Independent & Dependent Variables .

Express the relationship between the concepts as a single sentence – in either a hypothesis or a research question.

For example, "is there a difference between international and American students on their perceptions of the basic communication course," where cultural background and perceptions of the course are your two variables. Cultural background would be the independent variable, and perceptions of the course would be your dependent variable. More examples of RQs and Hs are provided in the next section.

APPLICATION: Try the above steps with your topic now. Check with your instructor to see if s/he would like you to send your topic and RQ/H to him/her via e-mail.

Types of Research Questions/Hypotheses

Once you have written your RQ/H, you need to determine what type of research question or hypothesis it is. This will help you later decide what types of statistics you will need to run to answer your question or test your hypothesis. There are three possible types of questions you might ask, and two possible types of hypotheses. The first type of question cannot be written as a hypothesis, but the second and third types can.

Descriptive Question.

The first type of question is a descriptive question. If you have only one variable or concept you are studying, OR if you are not interested in how the variables you are studying are connected or related to each other, then your question is most likely a descriptive question.

This type of question is the closest to looking like a qualitative question, and often starts with a "what" or "how" or "why" or "to what extent" type of wording. What makes it different from a qualitative research question is that the question will be answered using numbers rather than qualitative analysis. Some examples of a descriptive question, using the topic of social media, include the following.

"To what extent are college-aged students using Facebook to communicate with their friends?"
"Why do college-aged students use Facebook to communicate with their friends?"

Notice that neither of these questions has a clear independent or dependent variable, as there is no clear cause or effect being assumed by the question. The question is merely descriptive in nature. It can be answered by summarizing the numbers obtained for each category, such as by providing percentages, averages, or just the raw totals for each type of strategy or organization. This is true also of the following research questions found in a study of online public relations strategies:

"What online public relations strategies are organizations implementing to combat phishing" (Baker, Baker, & Tedesco, 2007, p. 330), and
"Which organizations are doing most and least, according to recommendations from anti- phishing advocacy recommendations, to combat phishing" (Baker, Baker, & Tedesco, 2007, p. 330)

The researchers in this study reported statistics in their results or findings section, making it clearly a quantitative study, but without an independent or dependent variable; therefore, these research questions illustrate the first type of RQ, the descriptive question.

Difference Question/Hypothesis.

The second type of question is a question/hypothesis of difference, and will often have the word "difference" as part of the question. The very first research question in this section, asking if there is a difference between 1st year and 4th year college students' use of Facebook, is an example of this type of question. In this type of question, the independent variable is some type of grouping or categories, such as age. Another example of a question of difference is one April asked in her research on home schooling: "Is there a difference between home vs. public schoolers on the size of their social networks?" In this example, the independent variable is home vs. public schooling (a group being compared), and the dependent variable is size of social networks. Hypotheses can also be difference hypotheses, as the following example on the same topic illustrates: "Public schoolers have a larger social network than home schoolers do."

Relationship/Association Question/Hypothesis.

The third type of question is a relationship/association question or hypothesis, and will often have the word "relate" or "relationship" in it, as the following example does: "There is a relationship between number of television ads for a political candidate and how successful that political candidate is in getting elected." Here the independent (or predictor) variable is number of TV ads, and the dependent (or criterion) variable is the success at getting elected. In this type of question, there is no grouping being compared, but rather the independent variable is continuous (ranges from zero to a certain number) in nature. This type of question can be worded as either a hypothesis or as a research question, as stated earlier.

Test out your knowledge of the above information, by answering the following questions about the RQ/H listed below. (Remember, for a descriptive question there are no clear independent & dependent variables.)

  • What is the independent variable (IV)?
  • What is the dependent variable (DV)?
  • What type of research question/hypothesis is it? (descriptive, difference, relationship/association)
  • "Is there a difference on relational satisfaction between those who met their current partner through online dating and those who met their current partner face-to-face?"
  • "How do Fortune 500 firms use focus groups to market new products?"
  • "There is a relationship between age and amount of time spent online using social media."

Answers: RQ1  is a difference question, with type of dating being the IV and relational satisfaction being the DV. RQ2  is a descriptive question with no IV or DV. RQ3  is a relationship hypothesis with age as the IV and amount of time spent online as the DV.

Design Your Study

The third step in planning your research project, after you have decided on your topic/goal and written your research questions/hypotheses, is to design your study which means to decide how to proceed in gathering data to answer your research question or to test your hypothesis. This step includes six things to do. [NOTE: The terms used in this section will be defined as they are used.]

  • Decide type of study design: Experimental, quasi-experimental, non-experimental.
  • Decide kind of data to collect: Survey/interview, observation, already existing data.
  • Operationalize variables into measurable concepts.
  • Determine type of sample: Probability or non-probability.
  • Decide how you will collect your data: face-to-face, via e-mail, an online survey, library research, etc.
  • Pilot test your methods.

Types of Study Designs

With quantitative research being rooted in the scientific method, traditional research is structured in an experimental fashion. This is especially true in the natural sciences, where they try to prove causes and effects on topics such as successful treatments for cancer. For example, the University of Iowa Hospitals and Clinics regularly conduct clinical trials to test for the effectiveness of certain treatments for medical conditions ( University of Iowa Hospitals & Clinics: Clinical Trials ). They use human participants to conduct such research, regularly recruiting volunteers. However, in communication, true experiments with treatments the researcher controls are less necessary and thus less common. It is important for the researcher to understand which type of study s/he wishes to do, in order to accurately communicate his/her methods to the public when describing the study.

There are three possible types of studies you may choose to do, when embarking on quantitative research: (a) True experiments, (b) quasi-experiments, and (c) non-experiments.

For more information to read on these types of designs, take a look at the following website and related links in it: Types of Designs .

The following flowchart should help you distinguish between the three types of study designs described below.

Image removed.

True Experiments.

The first two types of study designs use difference questions/hypotheses, as the independent variable for true and quasi-experiments is  nominal  or categorical (based on categories or groupings), as you have groups that are being compared. As seen in the flowchart above, what distinguishes a true experiment from the other two designs is a concept called "random assignment." Random assignment means that the researcher controls to which group the participants are assigned. April's study of home vs. public schooling was NOT a true experiment, because she could not control which participants were home schooled and which ones were public schooled, and instead relied on already existing groups.

An example of a true experiment reported in a communication journal is a study investigating the effects of using interest-based contemporary examples in a lecture on the history of public relations, in which the researchers had the following two hypotheses: "Lectures utilizing interest- based examples should result in more interested participants" and "Lectures utilizing interest- based examples should result in participants with higher scores on subsequent tests of cognitive recall" (Weber, Corrigan, Fornash, & Neupauer, 2003, p. 118). In this study, the 122 college student participants were randomly assigned by the researchers to one of two lecture video viewing groups: a video lecture with traditional examples and a video with contemporary examples. (To see the results of the study, look it up using your school's library databases).

A second example of a true experiment in communication is a study of the effects of viewing either a dramatic narrative television show vs. a nonnarrative television show about the consequences of an unexpected teen pregnancy. The researchers randomly assigned their 367 undergraduate participants to view one of the two types of shows.

Moyer-Gusé, E., & Nabi, R. L. (2010). Explaining the effects of narrative in an entertainment television program: Overcoming resistance to persuasion.  Human Communication Research, 36 , 26-52.

A third example of a true experiment done in the field of communication can be found in the following study.

Jensen, J. D. (2008). Scientific uncertainty in news coverage of cancer research: Effects of hedging on scientists' and journalists' credibility.  Human Communication Research, 34,  347-369.

In this study, Jakob Jensen had three independent variables. He randomly assigned his 601 participants to 1 of 20 possible conditions, between his three independent variables, which were (a) a hedged vs. not hedged message, (b) the source of the hedging message (research attributed to primary vs. unaffiliated scientists), and (c) specific news story employed (of which he had five randomly selected news stories about cancer research to choose from). Although this study was pretty complex, it does illustrate the true experiment in our field since the participants were randomly assigned to read a particular news story, with certain characteristics.

Quasi-Experiments.

If the researcher is not able to randomly assign participants to one of the treatment groups (or independent variable), but the participants already belong to one of them (e.g., age; home vs. public schooling), then the design is called a quasi-experiment. Here you still have an independent variable with groups, but the participants already belong to a group before the study starts, and the researcher has no control over which group they belong to.

An example of a hypothesis found in a communication study is the following: "Individuals high in trait aggression will enjoy violent content more than nonviolent content, whereas those low in trait aggression will enjoy violent content less than nonviolent content" (Weaver & Wilson, 2009, p. 448). In this study, the researchers could not assign the participants to a high or low trait aggression group since this is a personality characteristic, so this is a quasi-experiment. It does not have any random assignment of participants to the independent variable groups. Read their study, if you would like to, at the following location.

Weaver, A. J., & Wilson, B. J. (2009). The role of graphic and sanitized violence in the enjoyment of television dramas.  Human Communication Research, 35  (3), 442-463.

Benoit and Hansen (2004) did not choose to randomly assign participants to groups either, in their study of a national presidential election survey, in which they were looking at differences between debate and non-debate viewers, in terms of several dependent variables, such as which candidate viewers supported. If you are interested in discovering the results of this study, take a look at the following article.

Benoit, W. L., & Hansen, G. J. (2004). Presidential debate watching, issue knowledge, character evaluation, and vote choice.  Human Communication Research, 30  (1), 121-144.

Non-Experiments.

The third type of design is the non-experiment. Non-experiments are sometimes called survey designs, because their primary way of collecting data is through surveys. This is not enough to distinguish them from true experiments and quasi-experiments, however, as both of those types of designs may use surveys as well.

What makes a study a non-experiment is that the independent variable is not a grouping or categorical variable. Researchers observe or survey participants in order to describe them as they naturally exist without any experimental intervention. Researchers do not give treatments or observe the effects of a potential natural grouping variable such as age. Descriptive and relationship/association questions are most often used in non-experiments.

Some examples of this type of commonly used design for communication researchers include the following studies.

  • Serota, Levine, and Boster (2010) used a national survey of 1,000 adults to determine the prevalence of lying in America (see  Human Communication Research, 36 , pp. 2-25).
  • Nabi (2009) surveyed 170 young adults on their perceptions of reality television on cosmetic surgery effects, looking at several things: for example, does viewing cosmetic surgery makeover programs relate to body satisfaction (p. 6), finding no significant relationship between those two variables (see  Human Communication Research, 35 , pp. 1-27).
  • Derlega, Winstead, Mathews, and Braitman (2008) collected stories from 238 college students on reasons why they would disclose or not disclose personal information within close relationships (see  Communication Research Reports, 25 , pp. 115-130). They coded the participants' answers into categories so they could count how often specific reasons were mentioned, using a method called  content analysis , to answer the following research questions:

RQ1: What are research participants' attributions for the disclosure and nondisclosure of highly personal information?

RQ2: Do attributions reflect concerns about rewards and costs of disclosure or the tension between openness with another and privacy?

RQ3: How often are particular attributions for disclosure/nondisclosure used in various types of relationships? (p. 117)

All of these non-experimental studies have in common no researcher manipulation of an independent variable or even having an independent variable that has natural groups that are being compared.

Identify which design discussed above should be used for each of the following research questions.

  • Is there a difference between generations on how much they use MySpace?
  • Is there a relationship between age when a person first started using Facebook and the amount of time they currently spend on Facebook daily?
  • Is there a difference between potential customers' perceptions of an organization who are shown an organization's Facebook page and those who are not shown an organization's Facebook page?

[HINT: Try to identify the independent and dependent variable in each question above first, before determining what type of design you would use. Also, try to determine what type of question it is – descriptive, difference, or relationship/association.]

Answers: 1. Quasi-experiment 2. Non-experiment 3. True Experiment

Data Collection Methods

Once you decide the type of quantitative research design you will be using, you will need to determine which of the following types of data you will collect: (a) survey data, (b) observational data, and/or (c) already existing data, as in library research.

Using the survey data collection method means you will talk to people or survey them about their behaviors, attitudes, perceptions, and demographic characteristics (e.g., biological sex, socio-economic status, race). This type of data usually consists of a series of questions related to the concepts you want to study (i.e., your independent and dependent variables). Both of April's studies on home schooling and on taking adopted children on a return trip back to China used survey data.

On a survey, you can have both closed-ended and open-ended questions. Closed-ended questions, can be written in a variety of forms. Some of the most common response options include the following.

Likert responses – for example: for the following statement, ______ do you strongly agree agree neutral disagree strongly disagree

Semantic differential – for example: does the following ______ make you Happy ..................................... Sad

Yes-no answers for example: I use social media daily. Yes / No.

One site to check out for possible response options is  http://www.360degreefeedback.net/media/ResponseScales.pdf .

Researchers often follow up some of their closed-ended questions with an "other" category, in which they ask their participants to "please specify," their response if none of the ones provided are applicable. They may also ask open-ended questions on "why" a participant chose a particular answer or ask participants for more information about a particular topic. If the researcher wants to use the open-ended question responses as part of his/her quantitative study, the answers are usually coded into categories and counted, in terms of the frequency of a certain answer, using a method called  content analysis , which will be discussed when we talk about already-existing artifacts as a source of data.

Surveys can be done face-to-face, by telephone, mail, or online. Each of these methods has its own advantages and disadvantages, primarily in the form of the cost in time and money to do the survey. For example, if you want to survey many people, then online survey tools such as surveygizmo.com and surveymonkey.com are very efficient, but not everyone has access to taking a survey on the computer, so you may not get an adequate sample of the population by doing so. Plus you have to decide how you will recruit people to take your online survey, which can be challenging. There are trade-offs with every method.

For more information on things to consider when selecting your survey method, check out the following website:

Selecting the Survey Method .

There are also many good sources for developing a good survey, such as the following websites. Constructing the Survey Survey Methods Designing Surveys

Observation.

A second type of data collection method is  observation . In this data collection method, you make observations of the phenomenon you are studying and then code your observations, so that you can count what you are studying. This type of data collection method is often called interaction analysis, if you collect data by observing people's behavior. For example, if you want to study the phenomenon of mall-walking, you could go to a mall and count characteristics of mall-walkers. A researcher in the area of health communication could study the occurrence of humor in an operating room, for example, by coding and counting the use of humor in such a setting.

One extended research study using observational data collection methods, which is cited often in interpersonal communication classes, is John Gottman's research, which started out in what is now called "The Love Lab." In this lab, researchers observe interactions between couples, including physiological symptoms, using coders who look for certain items found to predict relationship problems and success.

Take a look at the YouTube video about "The Love Lab" at the following site to learn more about the potential of using observation in collecting data for a research study:  The "Love" Lab .

Already-Existing Artifacts.

The third method of quantitative data collection is the use of  already-existing artifacts . With this method, you choose certain artifacts (e.g., newspaper or magazine articles; television programs; webpages) and code their content, resulting in a count of whatever you are studying. With this data collection method, researchers most often use what is called quantitative  content analysis . Basically, the researcher counts frequencies of something that occurs in an artifact of study, such as the frequency of times something is mentioned on a webpage. Content analysis can also be used in qualitative research, where a researcher identifies and creates text-based themes but does not do a count of the occurrences of these themes. Content analysis can also be used to take open-ended questions from a survey method, and identify countable themes within the questions.

Content analysis is a very common method used in media studies, given researchers are interested in studying already-existing media artifacts. There are many good sources to illustrate how to do content analysis such as are seen in the box below.

See the following sources for more information on content analysis. Writing Guide: Content Analysis A Flowchart for the Typical Process of Content Analysis Research What is Content Analysis?

With content analysis and any method that you use to code something into categories, one key concept you need to remember is  inter-coder or inter-rater reliability , in which there are multiple coders (at least two) trained to code the observations into categories. This check on coding is important because you need to check to make sure that the way you are coding your observations on the open-ended answers is the same way that others would code a particular item. To establish this kind of inter-coder or inter-rater reliability, researchers prepare codebooks (to train their coders on how to code the materials) and coding forms for their coders to use.

To see some examples of actual codebooks used in research, see the following website:  Human Coding--Sample Materials .

There are also online inter-coder reliability calculators some researchers use, such as the following:  ReCal: reliability calculation for the masses .

Regardless of which method of data collection you choose, you need to decide even more specifically how you will measure the variables in your study, which leads us to the next planning step in the design of a study.

Operationalization of Variables into Measurable Concepts

When you look at your research question/s and/or hypotheses, you should know already what your independent and dependent variables are. Both of these need to be measured in some way. We call that way of measuring  operationalizing  a variable. One way to think of it is writing a step by step recipe for how you plan to obtain data on this topic. How you choose to operationalize your variable (or write the recipe) is one all-important decision you have to make, which will make or break your study. In quantitative research, you have to measure your variables in a valid (accurate) and reliable (consistent) manner, which we discuss in this section. You also need to determine the level of measurement you will use for your variables, which will help you later decide what statistical tests you need to run to answer your research question/s or test your hypotheses. We will start with the last topic first.

Level of Measurement

Level of measurement has to do with whether you measure your variables using categories or groupings OR whether you measure your variables using a continuous level of measurement (range of numbers). The level of measurement that is considered to be categorical in nature is called nominal, while the levels of measurement considered to be continuous in nature are ordinal, interval, and ratio. The only ones you really need to know are nominal, ordinal, and interval/ratio.

Image removed.

Nominal  variables are categories that do not have meaningful numbers attached to them but are broader categories, such as male and female, home schooled and public schooled, Caucasian and African-American.  Ordinal  variables do have numbers attached to them, in that the numbers are in a certain order, but there are not equal intervals between the numbers (e.g., such as when you rank a group of 5 items from most to least preferred, where 3 might be highly preferred, and 2 hated).  Interval/ratio  variables have equal intervals between the numbers (e.g., weight, age).

For more information about these levels of measurement, check out one of the following websites. Levels of Measurement Measurement Scales in Social Science Research What is the difference between ordinal, interval and ratio variables? Why should I care?

Validity and Reliability

When developing a scale/measure or survey, you need to be concerned about validity and reliability. Readers of quantitative research expect to see researchers justify their research measures using these two terms in the methods section of an article or paper.

Validity.   Validity  is the extent to which your scale/measure or survey adequately reflects the full meaning of the concept you are measuring. Does it measure what you say it measures? For example, if researchers wanted to develop a scale to measure "servant leadership," the researchers would have to determine what dimensions of servant leadership they wanted to measure, and then create items which would be valid or accurate measures of these dimensions. If they included items related to a different type of leadership, those items would not be a valid measure of servant leadership. When doing so, the researchers are trying to prove their measure has internal validity. Researchers may also be interested in external validity, but that has to do with how generalizable their study is to a larger population (a topic related to sampling, which we will consider in the next section), and has less to do with the validity of the instrument itself.

There are several types of validity you may read about, including face validity, content validity, criterion-related validity, and construct validity. To learn more about these types of validity, read the information at the following link: Validity .

To improve the validity of an instrument, researchers need to fully understand the concept they are trying to measure. This means they know the academic literature surrounding that concept well and write several survey questions on each dimension measured, to make sure the full idea of the concept is being measured. For example, Page and Wong (n.d.) identified four dimensions of servant leadership: character, people-orientation, task-orientation, and process-orientation ( A Conceptual Framework for Measuring Servant-Leadership ). All of these dimensions (and any others identified by other researchers) would need multiple survey items developed if a researcher wanted to create a new scale on servant leadership.

Before you create a new survey, it can be useful to see if one already exists with established validity and reliability. Such measures can be found by seeing what other respected studies have used to measure a concept and then doing a library search to find the scale/measure itself (sometimes found in the reference area of a library in books like those listed below).

Reliability .  Reliability  is the second criterion you will need to address if you choose to develop your own scale or measure. Reliability is concerned with whether a measurement is consistent and reproducible. If you have ever wondered why, when taking a survey, that a question is asked more than once or very similar questions are asked multiple times, it is because the researchers one concerned with proving their study has reliability. Are you, for example, answering all of the similar questions similarly? If so, the measure/scale may have good reliability or consistency over time.

Researchers can use a variety of ways to show their measure/scale is reliable. See the following websites for explanations of some of these ways, which include methods such as the test-retest method, the split-half method, and inter-coder/rater reliability. Types of Reliability Reliability

To understand the relationship between validity and reliability, a nice visual provided below is explained at the following website (Trochim, 2006, para. 2). Reliability & Validity

Self-Quiz/Discussion:

Take a look at one of the surveys found at the following poll reporting sites on a topic which interests you. Critique one of these surveys, using what you have learned about creating surveys so far.

http://www.pewinternet.org/ http://pewresearch.org/ http://www.gallup.com/Home.aspx http://www.kff.org/

One of the things you might have critiqued in the previous self-quiz/discussion may have had less to do with the actual survey itself, but rather with how the researchers got their participants or sample. How participants are recruited is just as important to doing a good study as how valid and reliable a survey is.

Imagine that in the article you chose for the last "self-quiz/discussion" you read the following quote from the Pew Research Center's Internet and American Life Project: "One in three teens sends more than 100 text messages a day, or 3000 texts a month" (Lenhart, 2010, para.5). How would you know whether you could trust this finding to be true? Would you compare it to what you know about texting from your own and your friends' experiences? Would you want to know what types of questions people were asked to determine this statistic, or whether the survey the statistic is based on is valid and reliable? Would you want to know what type of people were surveyed for the study? As a critical consumer of research, you should ask all of these types of questions, rather than just accepting such a statement as undisputable fact. For example, if only people shopping at an Apple Store were surveyed, the results might be skewed high.

In particular, related to the topic of this section, you should ask about the sampling method the researchers did. Often, the researchers will provide information related to the sample, stating how many participants were surveyed (in this case 800 teens, aged 12-17, who were a nationally representative sample of the population) and how much the "margin of error" is (in this case +/- 3.8%). Why do they state such things? It is because they know the importance of a sample in making the case for their findings being legitimate and credible.  Margin of error  is how much we are confident that our findings represent the population at large. The larger the margin of error, the less likely it is that the poll or survey is accurate. Margin of error assumes a 95% confidence level that what we found from our study represents the population at large.

For more information on margin of error, see one of the following websites. Answers.com Margin of Error Stats.org Margin of Error Americanresearchgroup.com Margin of Error [this last site is a margin of error calculator, which shows that margin of error is directly tied to the size of your sample, in relationship to the size of the population, two concepts we will talk about in the next few paragraphs]

In particular, this section focused on sampling will talk about the following topics: (a) the difference between a population vs. a sample; (b) concepts of error and bias, or "it's all about significance"; (c) probability vs. non-probability sampling; and (d) sample size issues.

Population vs. Sample

When doing quantitative studies, such as the study of cell phone usage among teens, you are never able to survey the entire population of teenagers, so you survey a portion of the population. If you study every member of a population, then you are conducting a census such as the United States Government does every 10 years. When, however, this is not possible (because you do not have the money the U.S. government has!), you attempt to get as good a sample as possible.

Characteristics of a population are summarized in numerical form, and technically these numbers are called  parameters . However, numbers which summarize the characteristics of a sample are called  statistics .

Error and Bias

If a sample is not done well, then you may not have confidence in how the study's results can be generalized to the population from which the sample was taken. Your confidence level is often stated as the  margin of error  of the survey. As noted earlier, a study's margin of error refers to the degree to which a sample differs from the total population you are studying. In the Pew survey, they had a margin of error of +/- 3.8%. So, for example, when the Pew survey said 33% of teens send more than 100 texts a day, the margin of error means they were 95% sure that 29.2% - 36.8% of teens send this many texts a day.

Margin of error is tied to  sampling error , which is how much difference there is between your sample's results and what would have been obtained if you had surveyed the whole population. Sample error is linked to a very important concept for quantitative researchers, which is the notion of  significance . Here, significance does not refer to whether some finding is morally or practically significant, it refers to whether a finding is statistically significant, meaning the findings are not due to chance but actually represent something that is found in the population.  Statistical significance  is about how much you, as the researcher, are willing to risk saying you found something important and be wrong.

For the difference between statistical significance and practical significance, see the following YouTube video:  Statistical and Practical Significance .

Scientists set certain arbitrary standards based on the probability they could be wrong in reporting their findings. These are called  significance levels  and are commonly reported in the literature as  p <.05  or  p <.01  or some other probability (or  p ) level.

If an article says a statistical test reported that  p < .05 , it simply means that they are most likely correct in what they are saying, but there is a 5% chance they could be wrong and not find the same results in the population. If p < .01, then there would be only a 1% chance they were wrong and would not find the same results in the population. The lower the probability level, the more certain the results.

When researchers are wrong, or make that kind of decision error, it often implies that either (a) their sample was biased and was not representative of the true population in some way, or (b) that something they did in collecting the data biased the results. There are actually two kinds of sampling error talked about in quantitative research: Type I and Type II error.  Type 1 error  is what happens when you think you found something statistically significant and claim there is a significant difference or relationship, when there really is not in the actual population. So there is something about your sample that made you find something that is not in the actual population. (Type I error is the same as the probability level, or .05, if using the traditional p-level accepted by most researchers.)  Type II error  happens when you don't find a statistically significant difference or relationship, yet there actually is one in the population at large, so once again, your sample is not representative of the population.

For more information on these two types of error, check out the following websites. Hypothesis Testing: Type I Error, Type II Error Type I and Type II Errors - Making Mistakes in the Justice System

Researchers want to select a sample that is representative of the population in order to reduce the likelihood of having a sample that is biased. There are two types of bias particularly troublesome for researchers, in terms of sampling error. The first type is  selection bias , in which each person in the population does not have an equal chance to be chosen for the sample, which happens frequently in communication studies, because we often rely on convenience samples (whoever we can get to complete our surveys). The second type of bias is  response bias , in which those who volunteer for a study have different characteristics than those who did not volunteer for the study, another common challenge for communication researchers. Volunteers for a study may very well be different from persons who choose not to volunteer for a study, so that you have a biased sample by relying just on volunteers, which is not representative of the population from which you are trying to sample.

Probability vs. Non-Probability Sampling

One of the best ways to lower your sampling error and reduce the possibility of bias is to do probability or random sampling. This means that every person in the population has an equal chance of being selected to be in your sample. Another way of looking at this is to attempt to get a  representative  sample, so that the characteristics of your sample closely approximate those of the population. A sample needs to contain essentially the same variations that exist in the population, if possible, especially on the variables or elements that are most important to you (e.g., age, biological sex, race, level of education, socio-economic class).

There are many different ways to draw a probability/random sample from the population. Some of the most common are a  simple random sample , where you use a random numbers table or random number generator to select your sample from the population.

There are several examples of random number generators available online. See the following example of an online random number generator:  http://www.randomizer.org/ .

A  systematic random sample  takes every n-th number from the population, depending on how many people you would like to have in your sample. A  stratified random sample  does random sampling within groups, and a  multi-stage  or  cluster sample  is used when there are multiple groups within a large area and a large population, and the researcher does random sampling in stages.

If you are interested in understanding more about these types of probability/random samples, take a look at the following website: Probability Sampling .

However, many times communication researchers use whoever they can find to participate in their study, such as college students in their classes since these people are easily accessible. Many of the studies in interpersonal communication and relationship development, for example, used this type of sample. This is called a convenience sample. In doing so, they are using a non- probability or non-random sample. In these types of samples, each member of the population does not have an equal opportunity to be selected. For example, if you decide to ask your facebook friends to participate in an online survey you created about how college students in the U.S. use cell phones to text, you are using a non-random type of sample. You are unable to randomly sample the whole population in the U.S. of college students who text, so you attempt to find participants more conveniently. Some common non-random or non-probability samples are:

  • accidental/convenience samples, such as the facebook example illustrates
  • quota samples, in which you do convenience samples within subgroups of the population, such as biological sex, looking for a certain number of participants in each group being compared
  • snowball or network sampling, where you ask current participants to send your survey onto their friends.

For more information on non-probability sampling, see the following website: Nonprobability Sampling .

Researchers, such as communication scholars, often use these types of samples because of the nature of their research. Most research designs used in communication are not true experiments, such as would be required in the medical field where they are trying to prove some cause-effect relationship to cure or alleviate symptoms of a disease. Most communication scholars recognize that human behavior in communication situations is much less predictable, so they do not adhere to the strictest possible worldview related to quantitative methods and are less concerned with having to use probability sampling.

They do recognize, however, that with either probability or non-probability sampling, there is still the possibility of bias and error, although much less with probability sampling. That is why all quantitative researchers, regardless of field, will report statistical significance levels if they are interested in generalizing from their sample to the population at large, to let the readers of their work know how confident they are in their results.

Size of Sample

The larger the sample, the more likely the sample is going to be representative of the population. If there is a lot of variability in the population (e.g., lots of different ethnic groups in the population), a researcher will need a larger sample. If you are interested in detecting small possible differences (e.g., in a close political race), you need a larger sample. However, the bigger your population, the less you have to increase the size of your sample in order to have an adequate sample, as is illustrated by an example sample size calculator such as can be found at  http://www.raosoft.com/samplesize.html .

Using the example sample size calculator, see how you might determine how large of a sample you might need in order to study how college students in the U.S. use texting on their cell phones. You would have to first determine approximately how many college students are in the U.S. According to ANEKI, there are a little over 14,000,000 college students in the U.S. ( Countries with the Most University Students ). When inputting that figure into the sample size calculator below (using no commas for the population size), you would need a sample size of approximately 385 students. If the population size was 20,000, you would need a sample of 377 students. If the population was only 2,000, you would need a sample of 323. For a population of 500, you would need a sample of 218.

It is not enough, however, to just have an adequate or large sample. If there is bias in the sampling, you can have a very bad large sample, one that also does not represent the population at large. So, having an unbiased sample is even more important than having a large sample.

So, what do you do, if you cannot reasonably conduct a probability or random sample? You run statistics which report significance levels, and you report the limitations of your sample in the discussion section of your paper/article.

Pilot Testing Methods

Now that we have talked about the different elements of your study design, you should try out your methods by doing a pilot test of some kind. This means that you try out your procedures with someone to try to catch any mistakes in your design before you start collecting data from actual participants in your study. This will save you time and money in the long run, along with unneeded angst over mistakes you made in your design during data collection. There are several ways you might do this.

You might ask an expert who knows about this topic (such as a faculty member) to try out your experiment or survey and provide feedback on what they think of your design. You might ask some participants who are like your potential sample to take your survey or be a part of your pilot test; then you could ask them which parts were confusing or needed revising. You might have potential participants explain to you what they think your questions mean, to see if they are interpreting them like you intended, or if you need to make some questions clearer.

The main thing is that you do not just assume your methods will work or are the best type of methods to use until you try them out with someone. As you write up your study, in your methods section of your paper, you can then talk about what you did to change your study based on the pilot study you did.

Institutional Review Board (IRB) Approval

The last step of your planning takes place when you take the necessary steps to get your study approved by your institution's review board. As you read in chapter 3, this step is important if you are planning on using the data or results from your study beyond just the requirements for your class project. See chapter 3 for more information on the procedures involved in this step.

Conclusion: Study Design Planning

Once you have decided what topic you want to study, you plan your study. Part 1 of this chapter has covered the following steps you need to follow in this planning process:

  • decide what type of study you will do (i.e., experimental, quasi-experimental, non- experimental);
  • decide on what data collection method you will use (i.e., survey, observation, or already existing data);
  • operationalize your variables into measureable concepts;
  • determine what type of sample you will use (probability or non-probability);
  • pilot test your methods; and
  • get IRB approval.

At that point, you are ready to commence collecting your data, which is the topic of the next section in this chapter.

Logo for UEN Digital Press with Pressbooks

Part II: Data Analysis Methods in Quantitative Research

Data analysis methods in quantitative research.

We started this module with levels of measurement as a way to categorize our data. Data analysis is directed toward answering the original research question and achieving the study purpose (or aim). Now, we are going to delve into two main statistical analyses to describe our data and make inferences about our data:

Descriptive Statistics and Inferential Statistics.

Descriptive Statistics:

Before you panic, we will not be going into statistical analyses very deeply. We want to simply get a good overview of some of the types of general statistical analyses so that it makes some sense to us when we read results in published research articles.

Descriptive statistics   summarize or describe the characteristics of a data set. This is a method of simply organizing and describing our data. Why? Because data that are not organized in some fashion are super difficult to interpret.

Let’s say our sample is golden retrievers (population “canines”). Our descriptive statistics  tell us more about the same.

  • 37% of our sample is male, 43% female
  • The mean age is 4 years
  • Mode is 6 years
  • Median age is 5.5 years

Image of golden retriever in field

Let’s explore some of the types of descriptive statistics.

Frequency Distributions : A frequency distribution describes the number of observations for each possible value of a measured variable. The numbers are arranged from lowest to highest and features a count of how many times each value occurred.

For example, if 18 students have pet dogs, dog ownership has a frequency of 18.

We might see what other types of pets that students have. Maybe cats, fish, and hamsters. We find that 2 students have hamsters, 9 have fish, 1 has a cat.

You can see that it is very difficult to interpret the various pets into any meaningful interpretation, yes?

Now, let’s take those same pets and place them in a frequency distribution table.                          

As we can now see, this is much easier to interpret.

Let’s say that we want to know how many books our sample population of  students have read in the last year. We collect our data and find this:

We can then take that table and plot it out on a frequency distribution graph. This makes it much easier to see how the numbers are disbursed. Easier on the eyes, yes?

Chart, histogram Description automatically generated

Here’s another example of symmetrical, positive skew, and negative skew:

Understanding Descriptive Statistics | by Sarang Narkhede | Towards Data Science

Correlation : Relationships between two research variables are called correlations . Remember, correlation is not cause-and-effect. Correlations  simply measure the extent of relationship between two variables. To measure correlation in descriptive statistics, the statistical analysis called Pearson’s correlation coefficient I is often used.  You do not need to know how to calculate this for this course. But, do remember that analysis test because you will often see this in published research articles. There really are no set guidelines on what measurement constitutes a “strong” or “weak” correlation, as it really depends on the variables being measured.

However, possible values for correlation coefficients range from -1.00 through .00 to +1.00. A value of +1 means that the two variables are positively correlated, as one variable goes up, the other goes up. A value of r = 0 means that the two variables are not linearly related.

Often, the data will be presented on a scatter plot. Here, we can view the data and there appears to be a straight line (linear) trend between height and weight. The association (or correlation) is positive. That means, that there is a weight increase with height. The Pearson correlation coefficient in this case was r = 0.56.

how to make chapter 2 in quantitative research

A type I error is made by rejecting a null hypothesis that is true. This means that there was no difference but the researcher concluded that the hypothesis was true.

A type II error is made by accepting that the null hypothesis is true when, in fact, it was false. Meaning there was actually a difference but the researcher did not think their hypothesis was supported.

Hypothesis Testing Procedures : In a general sense, the overall testing of a hypothesis has a systematic methodology. Remember, a hypothesis is an educated guess about the outcome. If we guess wrong, we might set up the tests incorrectly and might get results that are invalid. Sometimes, this is super difficult to get right. The main purpose of statistics is to test a hypothesis.

  • Selecting a statistical test. Lots of factors go into this, including levels of measurement of the variables.
  • Specifying the level of significance. Usually 0.05 is chosen.
  • Computing a test statistic. Lots of software programs to help with this.
  • Determining degrees of freedom ( df ). This refers to the number of observations free to vary about a parameter. Computing this is easy (but you don’t need to know how for this course).
  • Comparing the test statistic to a theoretical value. Theoretical values exist for all test statistics, which is compared to the study statistics to help establish significance.

Some of the common inferential statistics you will see include:

Comparison tests: Comparison tests look for differences among group means. They can be used to test the effect of a categorical variable on the mean value of some other characteristic.

T-tests are used when comparing the means of precisely two groups (e.g., the average heights of men and women). ANOVA and MANOVA tests are used when comparing the means of more than two groups (e.g., the average heights of children, teenagers, and adults).

  • t -tests (compares differences in two groups) – either paired t-test (example: What is the effect of two different test prep programs on the average exam scores for students from the same class?) or independent t-test (example: What is the difference in average exam scores for students from two different schools?)
  • analysis of variance (ANOVA, which compares differences in three or more groups) (example: What is the difference in average pain levels among post-surgical patients given three different painkillers?) or MANOVA (compares differences in three or more groups, and 2 or more outcomes) (example: What is the effect of flower species on petal length, petal width, and stem length?)

Correlation tests: Correlation tests check whether variables are related without hypothesizing a cause-and-effect relationship.

  • Pearson r (measures the strength and direction of the relationship between two variables) (example: How are latitude and temperature related?)

Nonparametric tests: Non-parametric tests don’t make as many assumptions about the data, and are useful when one or more of the common statistical assumptions are violated. However, the inferences they make aren’t as strong as with parametric tests.

  • chi-squared ( X 2 ) test (measures differences in proportions). Chi-square tests are often used to test hypotheses. The chi-square statistic compares the size of any discrepancies between the expected results and the actual results, given the size of the sample and the number of variables in the relationship. For example, the results of tossing a fair coin meet these criteria. We can apply a chi-square test to determine which type of candy is most popular and make sure that our shelves are well stocked. Or maybe you’re a scientist studying the offspring of cats to determine the likelihood of certain genetic traits being passed to a litter of kittens.

Inferential Versus Descriptive Statistics Summary Table

Statistical Significance Versus Clinical Significance

Finally, when it comes to statistical significance  in hypothesis testing, the normal probability value in nursing is <0.05. A p=value (probability) is a statistical measurement used to validate a hypothesis against measured data in the study. Meaning, it measures the likelihood that the results were actually observed due to the intervention, or if the results were just due by chance. The p-value, in measuring the probability of obtaining the observed results, assumes the null hypothesis is true.

The lower the p-value, the greater the statistical significance of the observed difference.

In the example earlier about our diabetic patients receiving online diet education, let’s say we had p = 0.05. Would that be a statistically significant result?

If you answered yes, you are correct!

What if our result was p = 0.8?

Not significant. Good job!

That’s pretty straightforward, right? Below 0.05, significant. Over 0.05 not   significant.

Could we have significance clinically even if we do not have statistically significant results? Yes. Let’s explore this a bit.

Statistical hypothesis testing provides little information for interpretation purposes. It’s pretty mathematical and we can still get it wrong. Additionally, attaining statistical significance does not really state whether a finding is clinically meaningful. With a large enough sample, even a small very tiny relationship may be statistically significant. But, clinical significance  is the practical importance of research. Meaning, we need to ask what the palpable effects may be on the lives of patients or healthcare decisions.

Remember, hypothesis testing cannot prove. It also cannot tell us much other than “yeah, it’s probably likely that there would be some change with this intervention”. Hypothesis testing tells us the likelihood that the outcome was due to an intervention or influence and not just by chance. Also, as nurses and clinicians, we are not concerned with a group of people – we are concerned at the individual, holistic level. The goal of evidence-based practice is to use best evidence for decisions about specific individual needs.

how to make chapter 2 in quantitative research

Additionally, begin your Discussion section. What are the implications to practice? Is there little evidence or a lot? Would you recommend additional studies? If so, what type of study would you recommend, and why?

how to make chapter 2 in quantitative research

  • Were all the important results discussed?
  • Did the researchers discuss any study limitations and their possible effects on the credibility of the findings? In discussing limitations, were key threats to the study’s validity and possible biases reviewed? Did the interpretations take limitations into account?
  • What types of evidence were offered in support of the interpretation, and was that evidence persuasive? Were results interpreted in light of findings from other studies?
  • Did the researchers make any unjustifiable causal inferences? Were alternative explanations for the findings considered? Were the rationales for rejecting these alternatives convincing?
  • Did the interpretation consider the precision of the results and/or the magnitude of effects?
  • Did the researchers draw any unwarranted conclusions about the generalizability of the results?
  • Did the researchers discuss the study’s implications for clinical practice or future nursing research? Did they make specific recommendations?
  • If yes, are the stated implications appropriate, given the study’s limitations and the magnitude of the effects as well as evidence from other studies? Are there important implications that the report neglected to include?
  • Did the researchers mention or assess clinical significance? Did they make a distinction between statistical and clinical significance?
  • If clinical significance was examined, was it assessed in terms of group-level information (e.g., effect sizes) or individual-level results? How was clinical significance operationalized?

References & Attribution

“ Green check mark ” by rawpixel licensed CC0 .

“ Magnifying glass ” by rawpixel licensed CC0

“ Orange flame ” by rawpixel licensed CC0 .

Polit, D. & Beck, C. (2021).  Lippincott CoursePoint Enhanced for Polit’s Essentials of Nursing Research  (10th ed.). Wolters Kluwer Health 

Vaid, N. K. (2019) Statistical performance measures. Medium. https://neeraj-kumar-vaid.medium.com/statistical-performance-measures-12bad66694b7

Evidence-Based Practice & Research Methodologies Copyright © by Tracy Fawns is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Quantitative and Qualitative Research: An Overview of Approaches

  • First Online: 03 January 2022

Cite this chapter

how to make chapter 2 in quantitative research

  • Euclid Seeram 5 , 6 , 7  

528 Accesses

In Chap. 1 , the nature and scope of research were outlined and included an overview of quantitative and qualitative research and a brief description of research designs. In this chapter, both quantitative and qualitative research will be described in a little more detail with respect to essential features and characteristics. Furthermore, the research designs used in each of these approaches will be reviewed. Finally, this chapter will conclude with examples of published quantitative and qualitative research in medical imaging and radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Anvari, A., Halpern, E. F., & Samir, A. E. (2015). Statistics 101 for radiologists. Radiographics, 35 , 1789–1801.

Article   Google Scholar  

Battistelli, A., Portoghese, I., Galletta, M., & Pohl, S. (2013). Beyond the tradition: Test of an integrative conceptual model on nurse turnover. International Nursing Review, 60 (1), 103–111. https://doi.org/10.1111/j.1466-7657.2012.01024.x

Article   CAS   PubMed   Google Scholar  

Bhattacherjee, A. (2012). Social science research: Principles, methods, and practices . In Textbooks Collection , 3. http://scholarcommons.usf.edu/oa_textbooks/3 . University of South Florida.

Chenail, R. (2011). Ten steps for conceptualizing and conducting qualitative research studies in a pragmatically curious manner. The Qualitative Report, 16 (6), 1713–1730. http://www.nova.edu/ssss/QR/QR16-6/chenail.pdf

Google Scholar  

Coyle, M. K. (2012). Depressive symptoms after a myocardial infarction and self-care. Archives of Psychiatric Nursing, 26 (2), 127–134. https://doi.org/10.1016/j.apnu.2011.06.004

Article   PubMed   Google Scholar  

Creswell, J. W., & Guetterman, T. C. (2019). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (6th ed.). Pearson Education.

Curtis, E. A., Comiskey, C., & Dempsey, O. (2016). Importance and use of correlational research. Nurse Researcher, 23 (6), 20–25. https://doi.org/10.7748/nr.2016.e1382

Gibson, D. J., & Davidson, R. A. (2012). Exposure creep in computed radiography: A longitudinal study. Academic Radiology, 19 (4), 458–462. https://doi.org/10.1016/j.acra.2011.12.003 . Epub 2012 Jan 5.

Gray, J. R., Grove, S. K., & Sutherland, S. (2017). The practice of nursing research: Appraisal, synthesis, and generation of evidence . Elsevier.

Miles, M., Hubermann, A., & Saldana, J. (2014). Qualitative data analysis: a methods sourcebook (3rd ed.). Sage.

Munhall, P. L. (2012). Nursing research: A qualitative perspective (5th ed.). Jones and Bartlett.

Munn, Z., & Jordan, Z. (2011). The patient experience of high technology medical imaging: A systematic review of the qualitative evidence. JBI Library of Systematic Reviews, 9 (19), 631–678. https://doi.org/10.11124/01938924-201109190-00001

Munn, Z., Pearson, A., Jordan, Z., Murphy, F., & Pilkington, D. (2013). Action research in radiography: What it is and how it can be conducted. Journal of Medical Radiation Sciences, 60 (2), 47–52. https://doi.org/10.1002/jmrs.8

Article   PubMed   PubMed Central   Google Scholar  

O’Regan, T., Robinson, L., Newton-Hughes, A., & Strudwick, R. (2019). A review of visual ethnography: Radiography viewed through a different lens. Radiography, 25 (Supplement 1), S9–S13.

Price, P., Jhangiani, R., & Chiang, I. (2015). Research methods of psychology (2nd Canadian ed.). BC Campus. Retrieved from https://opentextbc.ca/researchmethods/

Seeram, E., Davidson, R., Bushong, S., & Swan, H. (2015). Education and training required for the digital radiography environment: A non-interventional quantitative survey study of radiologic technologists. International Journal of Radiology & Medical Imaging, 2 , 103. https://doi.org/10.15344/ijrmi/2015/103

Seeram, E., Davidson, R., Bushong, S., & Swan, H. (2016). Optimizing the exposure indicator as a dose management strategy in computed radiography. Radiologic Technology, 87 (4), 380–391.

PubMed   Google Scholar  

Solomon, P., & Draine, J. (2010). An overview of quantitative methods. In B. Thyer (Ed.), The handbook of social work research methods (2nd ed., pp. 26–36). Sage.

Chapter   Google Scholar  

Suchsland, M. Z., Cruz, M. J., Hardy, V., Jarvik, J., McMillan, G., Brittain, A., & Thompson, M. (2020). Qualitative study to explore radiologist and radiologic technologist perceptions of outcomes patients experience during imaging in the USA. BMJ Open, 10 , e033961. https://doi.org/10.1136/bmjopen-2019-033961

Thomas, L. (2020). An introduction to quasi-experimental designs. Retrieved from Scribbr.com https://www.scribbr.com/methodology/quasi-experimental-design/ . Accessed 8 Jan 2021.

University of Lethbridge (Alberta, Canada). (2020). An introduction to action research. https://www.uleth.ca/education/research/research-centers/action-research/introduction . Accessed 12 Jan 2020.

Download references

Author information

Authors and affiliations.

Medical Imaging and Radiation Sciences, Monash University, Melbourne, VIC, Australia

Euclid Seeram

Faculty of Science, Charles Sturt University, Bathurst, NSW, Australia

Medical Radiation Sciences, Faculty of Health, University of Canberra, Canberra, ACT, Australia

You can also search for this author in PubMed   Google Scholar

Editor information

Editors and affiliations.

Medical Imaging, Faculty of Health, University of Canberra, Burnaby, BC, Canada

Faculty of Health, University of Canberra, Canberra, ACT, Australia

Robert Davidson

Brookfield Health Sciences, University College Cork, Cork, Ireland

Andrew England

Mark F. McEntee

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Seeram, E. (2021). Quantitative and Qualitative Research: An Overview of Approaches. In: Seeram, E., Davidson, R., England, A., McEntee, M.F. (eds) Research for Medical Imaging and Radiation Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-79956-4_2

Download citation

DOI : https://doi.org/10.1007/978-3-030-79956-4_2

Published : 03 January 2022

Publisher Name : Springer, Cham

Print ISBN : 978-3-030-79955-7

Online ISBN : 978-3-030-79956-4

eBook Packages : Biomedical and Life Sciences Biomedical and Life Sciences (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

CHAPTER 2 RESEARCH METHODOLOGY

Profile image of Jamie Francis Ray Rn

Related Papers

Randel D Estacio

The purpose of this study is to evaluate the acceptability of the proposed instructional material, the learning assessment tool in Physics 1 (Mechanics), and to investigate its effect in teaching the subject. The design of this study is a combination of descriptive and experimental designs. A total of thirty three (33) experts and instructors in Physics from selected local colleges and universities in Metro Manila evaluated the proposed instructional material and learning assessment tool. In order to determine the effect of the proposed instructional material and learning assessment tool in Physics 1 (Mechanics) a one group pretest-posttest was employed and a total of 50 freshmen Industrial Engineering students of the Quezon City Polytechnic University (QCPU) served as the experimental group. Lessons in Physics 1 (Mechanics) were presented according to the outcomes based learning approach and the proposed instructional material and learning assessment tool were utilized. An instructional material and learning assessment tool were developed based from the results of validity, reliability, and item analysis of the achievement test in Physics 1 (Mechanics). The acceptability of the proposed instructional material and assessment of learning tool as assessed by the experts and faculty in Physics respondents revealed the following findings: As to Objective. It revealed that the objectives found in the proposed instructional material and learning assessment tool in Physics were highly acceptable as a result by its mean of 4.16. As to Content. The content of the proposed instructional material and learning assessment tool in Physics was highly acceptable having a mean of 4.42 as assessed by the experts and faculty in Physics. As to Usefulness. The study revealed that the usefulness of the proposed instructional material and learning assessment tool in Physics subject was highly acceptable with a mean of 4.45 as assessed by the experts and faculty in the field. As for Clarity. Both expert and faculty agreed that when it comes to clarity, the proposed instructional material and learning assessment tool in Physics were highly acceptable with a mean of 4.43. As to Presentation. The mean response of the expert and faculty in Physics was 4.44 and indicates that the presentation of the lessons in the proposed instructional material and assessment of learning tool was highly acceptable. As to Evaluation. The study found out that the evaluation of the proposed instructional material in a form of concept cartoon was highly accepted by the experts and faculty in Physics as supported by a mean of 4.49. As to Language and Style. Experts and faculty members in the field of Physics assessed the language and style of the proposed instructional-material and assessment of learning tool as very highly acceptable having a mean of 4.46. The study revealed that there is a statistically significant difference in the performance in the post-test of students who were taught with the use of the proposed instructional material and assessment of learning tool as compared to those who did not, p(98)=8.9174, p<.05. When the result of pre-test and post-test of each group was compared, statistically significant difference was found, p(49)=12.9769, p<.05 (control group) and p(49)=22.9071, p<.05 (experimental group). This implies that the proposed instructional material and assessment of learning tool in Physics 1 (Mechanics) greatly affect the performance of students in the class; the result also signifies that students were able to learn the lesson easily if it was presented by means of picture diagrams. The study claims and reaffirms that the findings of other researches that concept cartoon when used as formative assessment can improve the performance and achievement of students in difficult subjects like Physics.

how to make chapter 2 in quantitative research

José G. Vargas-hernández

Globalization has become a trigger for international trade due to its role as an integrator of the world economy and social standardization in a technological, cultural and universal knowledge that allows free access to resources with minimal effort context. The study aimed to analyze the Port of Manzanillo from the perspective of theories based on the Industry, the Dynamic Resources and Institutions, all around the Mexican Port System. The study utilized qualitative research method and is based on a literature review of the current status of the port and its global environment.

Prof. Negar Elhamian , Helen Bihag , Dondon Salingay

International Journal of Engineering Research and Technology (IJERT)

IJERT Journal

https://www.ijert.org/difference-of-pretest-and-post-test-in-philippine-history-of-cas-freshmen-students https://www.ijert.org/research/difference-of-pretest-and-post-test-in-philippine-history-of-cas-freshmen-students-IJERTV5IS040470.pdf This research centers on the difference of pretest and post test in Philippine history of CAS freshmen students. Specifically, it determines the appropriate instructional materials suited to the student's level to maximize learning have to be provided. The study utilized the descriptive method of research. Pretest and Post test were made and it was found out that film viewing in teaching History of the respondents were assessed effective and that the overall mean scores of the students in the pretest and posttest had increased. Results of the study show that the null hypothesis that there is no significant difference between the mean scores of the respondent was rejected.

International Journal of Emergency Medicine

Shaik Farid Abdull Wahab , Tuan Hairulnizam Tuan Kamauzaman , Ida Zaini

nomie valencia

Science Insights

Insights Publisher , E. Agatep

The study assessed the level of internet addiction exists among students of AMA Computer Colleges in Region III, Philippines and identified internet addiction management practices as strategies to address the problem, to lessen if not to eliminate, to prevent or cure level of internet addiction that exists. The descriptive analysis method of research was utilized. A total of one thousand five hundred fifteen student-respondents and one hundred fifty-eight administrator-respondents participated in the study. The researcher found out that there is a severe addiction level described as Often. There is a severe dependence on the internet as reflected in the internet addiction mean test scores of the student-respondents. There is a significant relationship between the level of internet addiction and the perceived level of implementation of the internet addiction management practices. There is a significant relationship between the internet addiction test scores and the perceived level of implementation of the internet addiction management practices. Overall findings conclude that there was a significant very strong negative relationship between the level of internet addiction and in-ternet addiction test scores of student-respondents and the perceived level of implementation of internet addiction management practices of administrator-respondents; hence, the negative relationship indicates that as the intensity of the perceived level of implementation increases, the level of internet addiction and internet addiction test scores among student-respondents decreases. This study is expected to provide a worthy contribution to the institution and to international literature on internet addiction; the result can be used in providing solution, actions and remedies to lessen if not to eliminate addiction in Internet usage.■

Maricel Mendoza Fider

finding answers to my querry about how the learners of today in the secondary best describe

ResearchGate.net

DR. DAVID C . BUENO

The course aims to give an understanding of some topical and contemporary issues in educational administration and how such issues have influenced the educational system. You are required to do and submit literature reviews or syntheses (IMRaD format) on the various current issues, trends or problems affecting the educational system in the Philippines.

Jong Azores

This study is aimed at assessing the data gathered from the survey of 102 musicians about their status and condition in working at the bars and restaurants in the city of Olongapo and the Subic Bay Freeport Zone and at identifying their collective aspirations. Based on its findings, the challenge to develop the adjacent localities of Olongapo City and Subic Bay Freeport Zone as a music tourism destination was identified.

RELATED PAPERS

Institutional Multidsciplinary Research and Development (IMRaD)

DR. DAVID C . BUENO , Edward San Agustin

Arnolfo Monleon

Polytechnic University of the Philippines Open University

Francisco B Bautista

Jo Dominado

Xenery Madera

Asia Pacific Journal of Education, Arts and Sciences

Research and Statistics Center

Laela Montezor

Research Paper

Zoe Vera Acain

IP innovative publication pvt. ltd

IP Innovative Publication Pvt. Ltd.

Historically Digitized

ronaldo pasion

Bangladesh Journal of Pharmacology

Zakirul Islam

US-China Education Review A & B

Maine Morales

Lanie Torres

Susan Houge Mackenzie

Ramon Alvarado

caroline tobing , Jimmy Kijai , Francis H , Stenly Pungus , Damrong Satayavaksakul , Evy Indrawati Siregar , yane sinaga , Ika Suhartanti Darmo , Fanny Soewignyo , Mariju Pimentel

Andy N Cubalit , Naely Muchtar , Jittrapat Piankrad , Dararat Khampusaen

YOLI LLORICO

Rainulfo Pagaran

Asian EFL Journal

Romualdo Mabuan

simarjeet kaur

Ritchie Bilasa

Ioannis Syrmpas , Nikolaos Digelidis , Achillios A. Koutelidas

José G. Vargas-hernandez

Ioannis Syrmpas , Nikolaos Digelidis

San Beda College Alabang

Savipra Gorospe, C.Ht., RPm , Chennie Regala , Renzen Martinez

Gilbert Bagsic

Journal of Institutional Research South East Asia

Siti H Stapa , Nor Hasni Mokhtar , Zarina Othman , Azizah Yaacob , Sharifah Zurina

International Journal of Social & Scientific Research

John Mark R . Asio , Ediric D . Gadia

Maribel Malana

Nikolaos Digelidis , D. Pasco

Jeniesel Lopian

International Journal of Scientific Research in Multidisciplinary Studies

Edward Jimenez , John Mark R . Asio

Joanah Marie Mercado

Rommel Tabula

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024
  • QUICK LINKS
  • How to enroll
  • Career services

Understanding Q-Methodology: Bridging the Gap Between Qualitative and Quantitative Research

High school teacher leading a blended learning class

By  Stella Smith, Ph.D.

Introduction

Among the myriad of methodologies, Q-methodology stands out as a unique approach that offers a nuanced understanding of subjectivity while maintaining the rigor of quantitative analysis (Damio, 2016; Herrington & Coogan, 2011). On April 2nd, the Research Methodology Group hosted a webinar focused on Q-methodology Essentials. In this blog post, we delve into the essence of Q-methodology, exploring its principles, applications, and significance in contemporary research. We will end with some suggestions for how to learn more about Q-methodology.

Q-methodology

Seeks to uncover subjective viewpoints or perspectives on a particular topic by systematically analyzing individuals' rankings of statements or items

What is Q-Methodology?

Q-methodology, developed by British physicist and psychologist William Stephenson, is a research technique that combines elements of both qualitative and quantitative methodologies (Stephenson,1953). At its core, Q-methodology seeks to uncover subjective viewpoints or perspectives on a particular topic by systematically analyzing individuals' rankings of statements or items (Sandling, 2022; Van Exel & De Graaf, 2005). Unlike traditional surveys or interviews, which aim to capture consensus or frequency of responses, Q-methodology focuses on understanding the diversity of opinions within a given population.

Principles of Q-Methodology

Central to Q-methodology is the notion of "subjectivity" – recognizing that individuals interpret the world differently based on their unique experiences, beliefs, and values. The process typically involves three main steps:

Statement Generation: Researchers compile a set of statements or items relevant to the topic under study. These statements should cover a wide range of viewpoints and perspectives to capture the diversity within the population.

Q-Sorting: Participants are presented with the statements and asked to rank them according to their level of agreement or preference. This process, known as Q-sorting, requires participants to make subjective judgments about the statements based on their personal viewpoints.

Factor Analysis: The Q-sort data from multiple participants are then subjected to factor analysis, a statistical technique that identifies patterns or "factors" representing clusters of similar viewpoints. Through factor analysis, researchers can uncover underlying dimensions of opinion within the dataset.

Applications of Q-Methodology

Q-methodology has found applications across various disciplines, including psychology, sociology, political science, and market research. Some common areas of application include exploring subjective perceptions, understanding stakeholder perspectives and market segmentation.

Significance of Q-Methodology

What distinguishes Q-methodology is its ability to reconcile the richness of qualitative data with the rigor of quantitative analysis. By acknowledging the subjective nature of human perception while employing robust statistical techniques, Q-methodology offers a holistic approach to understanding complex social phenomena (Herrington & Coogan, 2011).

Moreover, Q-methodology provides a platform for amplifying marginalized voices and uncovering minority viewpoints that may be overlooked in traditional research approaches. By embracing diversity and embracing subjectivity, Q-methodology fosters a more inclusive and comprehensive understanding of the world around us.

Want to know more?

Check out the full webinar on Q-methodology which is uploaded to the  Research and Methodology Group Teams  site. 

Schedule an  office hours appointment  with a methodologist to discuss your Q-methodology design.

Review the  Qmethod  website and  Operant Subjectivity - The International Journal of Q Methodology

Damio, S. M. (2016). Q Methodology: An Overview and Steps to Implementation. Asian Journal of  University Education, 12(1), 105.

Herrington, N., &, Coogan, J. (2011). Q methodology: an overview. Research in Teacher   Education, 1(2), 24-28.

Sandling, J. (2022). Q Methodology: Complete Beginner’s Guide. Available at   https://jonathansandling.com/q-methodology-complete-beginners-guide/

Stephenson W. The study of behavior: Q-technique and its methodology. Chicago: University of Chicago Press. 1953

Van Exel, J., & De Graaf, G. (2005). Q methodology: A sneak preview. Available at https://www.betterevaluation.org/tools-resources/q-methodology-sneak-preview

how to make chapter 2 in quantitative research

Stella Smith, Ph.D.

ABOUT THE AUTHOR

Dr. Stella Smith serves as the Associate University Research Chair for Center for Educational and Instructional Technology Research (CEITR).  She is also an Assistant Professor of Qualitative Research at Prairie View A&M University. A qualitative researcher, Dr. Stella Smith's scholarly interests focus on the experiences of  African American females in leadership in higher education; diversity, equity and inclusion of underserved populations in higher education, and P–20 educational pipeline alignment.  Dr. Smith is a strong advocate for social justice and passionate about creating asset based pathways of success for underserved students.

Dr. Smith was recognized with a 2014 Dissertation Award from the American Association of Blacks in Higher Education and as part of the 2019 class of 35 Outstanding Women Leaders in Higher Education by Diverse Issues in Higher Education. Dr. Smith earned her PhD in Educational Administration with a portfolio in Women and Gender Studies from The University of Texas at Austin.

More from Author Name

Research Methodology Group Office Hours: Your Guide to Productive Consultations

IMAGES

  1. (PDF) Chapter 2 Quantitative, Qualitative, and Mixed Research

    how to make chapter 2 in quantitative research

  2. Chapter 2

    how to make chapter 2 in quantitative research

  3. Example Of Methodology In Research Paper Quantitative

    how to make chapter 2 in quantitative research

  4. Quantitative Research Hypothesis Examples

    how to make chapter 2 in quantitative research

  5. Chapter 2 Sample

    how to make chapter 2 in quantitative research

  6. Quantitative Methodology Example In Research

    how to make chapter 2 in quantitative research

VIDEO

  1. Quantitative techniques For Manager

  2. RESEARCH II Q1 Module 4. Steps in Research Process (Part 1)

  3. PRACTICAL RESEARCH 2

  4. Chapter 2 Formulating research question, hypothesis and objectives : Part 2 Research Question

  5. Quantitative Research Process

  6. Module 7_Practical Research 2| Review of Related Literature

COMMENTS

  1. HOW TO WRITE CHAPTER 2 FOR A QUANTITATIVE DISSERTATION

    There are different considerations for writing a dissertation proposal Chapter 2 for a quantitative research study as compared to a qualitative research stud...

  2. Chapter 2 Introduction

    Chapter 2 Introduction. Chapter 2. Introduction. Maybe you have already gained some experience in doing research, for example in your bachelor studies, or as part of your work. The challenge in conducting academic research at masters level, is that it is multi-faceted. The types of activities are: Writing up and presenting your findings.

  3. Dissertation Results/Findings Chapter (Quantitative)

    The results chapter (also referred to as the findings or analysis chapter) is one of the most important chapters of your dissertation or thesis because it shows the reader what you've found in terms of the quantitative data you've collected. It presents the data using a clear text narrative, supported by tables, graphs and charts.

  4. PDF CHAPTER 2 Foundational Concepts for Quantitative Research

    for Quantitative Research CHAPTER2 Learning Objectives After reading this chapter, you will be able to do the following: 1. Define basic terms for quantitative research. 2. Describe the research circle. 3. Identify the four major goals of social research. 4. Write a checklist of the W's. 5. Understand the reasons for both reporting and ...

  5. PDF What Is a Literature Review?

    Slide 1. Mainly Chapter 2 of a doctoral dissertation. An exhaustive exposition of the literature sources (especially methods and findings) that a researcher consulted in order to understand and investigate his or her research problem. Built from the annotated bibliography assignment (#4) from the Methods of Inquiry (MOI) course.

  6. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  7. Writing Chapter 2

    Took too long for the Chapter 2, but here it is! Thank you for the continuous support everyone :) I would be studying Chapter 3 na so I could teach it to you...

  8. How to Write Review of Related Literature (RRL) in Research

    Tips on how to write a review of related literature in research. Given that you will probably need to produce a number of these at some point, here are a few general tips on how to write an effective review of related literature 2. Define your topic, audience, and purpose: You will be spending a lot of time with this review, so choose a topic ...

  9. PDF CHAPTER 2 Introduction & Literature Review A distribute

    deems inquiry. A thorough research of the literature assures that a research topic can and should be researched. Even though the literature review is the second chapter of the dissertation, students begin this process first since an extensive review of the literature is necessary for developing a proposed research topic. Beginning the Literature

  10. Chapter Four: Quantitative Methods (Part 1)

    These parts can also be used as a checklist when working through the steps of your study. Specifically, part 1 focuses on planning a quantitative study (collecting data), part two explains the steps involved in doing a quantitative study, and part three discusses how to make sense of your results (organizing and analyzing data). Research Methods.

  11. Part II: Data Analysis Methods in Quantitative Research

    Nonparametric tests: Non-parametric tests don't make as many assumptions about the data, and are useful when one or more of the common statistical assumptions are violated. However, the inferences they make aren't as strong as with parametric tests. chi-squared (X 2) test (measures differences in proportions). Chi-square tests are often ...

  12. Writing chapter 2

    5. B. RELATED STUDIES The related studies are taken from published and unpublished theses/dissertations or published research journals. C. RELATIONSHIP OF THE PREVIOUS STUDIES TO THE PRESENT STUDY • Points out the similarities and differences of the reviewed studies to the present study in terms of the framework of the study,, methodology , statistical analysis, etc.

  13. Chapter 2- Quantitative research study about readiness of students

    The materials are included in this chapter help in familiarizing information that is relevant and similar to the present study. This chapter presents literatures and studies related to the present research work that guided the researcher in the formulation of the conceptual and theoretical framework of the study. Review Literature. Local

  14. (PDF) CHAPTER 2 REVIEW OF RELATED LITERATURE

    INTRODUCTION. A review of literature is a classification and evaluation of what accredited scholars and. researchers have written on a topic, organized according to a guiding concept such as a ...

  15. Introduction to Quantitative Research || Practical Research 2

    ‼️SHS PRACTICAL RESEARCH 2‼️🟣 GRADE 11: INTRODUCTION TO QUANTITATIVE RESEARCH‼️GRADE 11 PLAYLISTS ‼️General MathematicsFirst Quarter: https ...

  16. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  17. PDF Chapter 2: Quantitative, Qualitative, and Mixed Research Lecture Notes

    This chapter is our introduction to the three major research methodology paradigms. A paradigm is a perspective based on a set of assumptions, concepts, and values that are held and practiced by a community of researchers. For the most of the 20th century the quantitative paradigm was dominant. During the 1980s, the qualitative paradigm came of ...

  18. Chapter 2 Research Procedures

    Chapter 2 Research Procedures. In Chapter 1, we covered the basic concepts of research in economics first by reviewing key terms in research and the roles of theory and data in the study of economics. We noted that the study of economics proceeds within the framework of scientific methods and we engaged in a general discussion of scientific ...

  19. PDF Chapter 2 Quantitative, Qualitative, and Mixed Research

    This chapter is our introduction to the three research methodology paradigms. A paradigm is a perspective based on a set of assumptions, concepts, and values that are held by a community or researchers. For the most of the 20th century the quantitative paradigm was dominant. During the 1980s, the qualitative paradigm came of age as an ...

  20. PDF Chapter 2 Quantitative and Qualitative Research: An Overview ...

    research designs used in each of these approaches will be reviewed. Finally, this chapter will conclude with examples of published quantitative and qualitative research in medical imaging and radiation therapy. 2.1 What Is Quantitative Research? Quantitative research makes use of the scientic method (Chap. 1) through the application of a dened ...

  21. Research Paper, Chapter 2 Example 6 pages

    Chapter 2 Review Of Related Literature This chapter will provide related literature that the researcher deemed relevant to further strengthen the importance of our study.. What is E-Learning/Online learning E-learning is exclusively defined as "instructional content or learning experiences delivered or enabled by electronic technology" (Servage, 2005:306).

  22. Chapter 1 AND 2 Quantitative Research Paper

    CHAPTER 2 METHOD. Research Design. The researchers used the quantitative descriptive research design in doing the research study. The goal of the study is to know the impacts of discrimaination of grade 12 STEM students' social and mental health in Agusan National High School.

  23. (DOC) CHAPTER 2 RESEARCH METHODOLOGY

    View PDF. Chapter 2 RESEARCH METHODOLOGY The methodology describes and explains about the different procedures including research design, respondents of the study, research instrument, validity and reliability of the instrument, data gathering procedure, as well as the statistical treatment and analysis.

  24. Understanding Q-Methodology: Bridging the Gap Between Qualitative and

    What distinguishes Q-methodology is its ability to reconcile the richness of qualitative data with the rigor of quantitative analysis. By acknowledging the subjective nature of human perception while employing robust statistical techniques, Q-methodology offers a holistic approach to understanding complex social phenomena (Herrington & Coogan, 2011).