കാലാവസ്ഥാ വ്യതിയാനം ഒരു ആഗോള ആരോഗ്യ വെല്ലുവിളി

climate change and health

കാലാവസ്ഥാ വ്യതിയാനം മനുഷ്യജീവിതത്തിന്റെ എല്ലാതലങ്ങളെയും ഗൗരവതരമായി ബാധിച്ചു കൊണ്ടിരിക്കുകയാണ്. ലോകം ഇപ്പോൾ നേരിട്ടുകൊണ്ടിരിക്കുന്ന കാലാവസ്ഥാ വ്യതിയാനപരമായ വലിയൊരു വെല്ലുവിളി ആരോഗ്യപ്രശ്നങ്ങൾ വളർന്നു വരുന്നതാണ്. അന്തരീക്ഷ ഊഷ്മാവിന്റെ അളവ് ക്രമാതീതമായി വർധിക്കുന്നത് ജീവന്റെ നിലനിൽപ്പിനു തന്നെ ഭീഷണിയായി മാറിയിരിക്കുന്നു. താപ കാലാവസ്ഥാ താളക്രമത്തിൽ വന്ന മാറ്റം സാംക്രമിക രോഗങ്ങൾക്ക് ആക്കംകൂട്ടി. ഉഷ്ണമേഖലാ രോഗങ്ങളിൽ (Tropical Diseases) പ്രധാനികളായ ചിക്കുൻഗുനിയ, ഡെങ്കി തുടങ്ങിയ കൊതുകുജന്യ രോഗങ്ങളുടെ പ്രഹരശേഷിയും വ്യാപനതോതും അടുത്തിടെയായി വർധിച്ചു വരുന്നതായി കാണുന്നു.

essay on climate change in malayalam

ആര്‍ട്ടിക്കിള്‍ ഷോ

ഇന്ത്യന്‍ ജയിലുകളും മനുഷ്യാവകാശവും

The Hindu Logo

  • Entertainment
  • Life & Style

essay on climate change in malayalam

To enjoy additional benefits

CONNECT WITH US

Whatsapp

കാലാവസ്ഥാ വ്യതിയാനം: അന്തിമ പരിഹാരം

സംഘടിതമായ പരിശ്രമത്തിലൂടെ മാത്രമേ കാലാവസ്ഥാ വ്യതിയാനത്തിന്റെ പ്രത്യാഘാതങ്ങളിൽ നിന്ന് ഭൂമിയെ രക്ഷിക്കാനാവൂ .

Published - March 23, 2023 11:40 am IST

ഏറെ സ്വാധീനമുള്ള കാലാവസ്ഥാ വ്യതിയാനത്തിനായുള്ള അന്തർദേശീയ സമിതി (ഐ.പി.സി.സി.) അതിന്റെ ആറാമത്തെ മൂല്യനിർണ്ണയ പ്രക്രിയയുടെ ഭാഗമായ അന്തിമ ‘സംയോജന’ റിപ്പോർട്ട് പുറത്തിറക്കി. 1990 മുതൽ, ഐ.പി.സി.സി. ഹരിതഗൃഹ വാതകത്തിന്റെ പുറംതള്ളലിനെ കാലാവസ്ഥയിലും ഋതുക്കളിലും വരുന്ന മാറ്റങ്ങളോട് ബന്ധിപ്പിക്കുന്ന ആഗോള ശാസ്ത്ര ഗവേഷണത്തിന്റെ സമാഹാരം പ്രസിദ്ധീകരിക്കാൻ തുടങ്ങിയപ്പോൾ, മനുഷ്യരുടെ പ്രവർത്തനങ്ങൾ ലോകത്തെ തിരുത്താനാവാത്ത വിപത്തുകളിലേക്ക് തള്ളിവിടുന്നു എന്നതിന്റെ തെളിവുകൾ കൂടുതൽ ശക്തമായി. ഐ.പി.സി.സിയുടെ വിവിധ മൂല്യനിർണ്ണയ പ്രക്രിയകൾ അതിൽ ഒരു പ്രധാന പങ്ക് വഹിച്ചിട്ടുണ്ട്. സ്വിറ്റ്‌സർലൻഡിലെ ഇന്റർലേക്കനിൽ ഒരാഴ്ച്ച നീണ്ട ചർച്ചകൾക്ക് ശേഷം പരസ്യമാക്കിയ ഏറ്റവും പുതിയ റിപ്പോർട്ടിൽ പുതിയ വിവരങ്ങൾ വളരെ കുറവാണ്. കാരണം, 2018 മുതൽ താപനില ഉയരുന്നതിൽ മനുഷ്യർക്കുള്ള പങ്കിനെ ഉറപ്പിക്കുകയും, 2015-ലെ പാരീസ് ഉടമ്പടി പാലിക്കാത്തതിന്റെ പ്രത്യാഘാതങ്ങൾ ഒന്നിലധികം കോണുകളിൽ നിന്ന് വിശകലനം ചെയ്യുന്ന റിപ്പോർട്ടുകളുടെ ഒരു സംയോജനം മാത്രമാണിത്. താപനില വ്യവസായവൽക്കരണത്തിന് മുമ്പുള്ള കാലഘട്ടത്തിൽ നിന്ന് 1.5 ഡിഗ്രി സെൽഷ്യസ് ഉയരാതിരിക്കാനായി രാജ്യങ്ങൾ ഒപ്പുവെച്ചതാണ് 2015-ലെ പാരീസ് ഉടമ്പടി.

സമ്പന്ന വികസിത രാജ്യങ്ങളിൽ നിന്ന് വികസ്വര രാജ്യങ്ങളിലേക്ക് ധനസഹായം ഒഴുകേണ്ടതിന്റേയും, കാലാവസ്ഥാ വ്യതിയാനം മൂലം ഏറ്റവും കൂടുതൽ നഷ്ടം നേരിടുന്ന രാജ്യങ്ങൾക്ക് പൂർവ സ്ഥിതി വീണ്ടുടുക്കാൻ നഷ്ടപരിഹാരം നൽകേണ്ടതിന്റേയും ആവശ്യകത റിപ്പോർട്ട് ഊന്നിപ്പറയുന്നു. 1.5 ഡിഗ്രി സെൽഷ്യസിൽ താഴെ താപനില നിലനിർത്താനുള്ള ഏറ്റവും മികച്ച അവസരം ഹരിതഗൃഹ വാതകങ്ങളുടെ പുറംതള്ളൽ 2030-ഓടെ 48 ശതമാനമായും, 2050-ഓടെ 99 ശതമാനമായും കുറയ്ക്കുക എന്നതാണെന്നാണ് ഏറ്റവും പുതിയ റിപ്പോർട്ടിന്റെ നയരൂപകർത്താക്കൾക്കുള്ള ഒരു സംഗ്രഹത്തിൽ പറയുന്നത്. നിലവിൽ രാജ്യങ്ങൾ പ്രഖ്യാപിച്ച നയങ്ങൾ മുഴുവനായും നടപ്പാക്കിയാൽ, 2100-ഓടെ താപനില 2.5°C മുതൽ 3.2°C വരെ ഉയരും. ഏറ്റവും പുതിയ റിപ്പോർട്ട് നവംബറിൽ ദുബായിൽ നടക്കാനിരിക്കുന്ന കക്ഷികളുടെ അടുത്ത യോഗത്തിൽ പ്രാധാന്യത്തോടെ വിശകലനം ചെയ്യപ്പെടും. ഈ യോഗത്തിൽ ആഗോള കണക്കെടുപ്പിന്റെ – പാരീസ് ഉടമ്പടിയിൽ ഒപ്പുവെച്ച രാജ്യങ്ങൾ പ്രതിജ്ഞാബദ്ധത നിറവേറ്റാൻ ഇതുവരെ ചെയ്ത കാര്യങ്ങളുടെ വിശദീകരണം -- നടപടികളായിരിക്കും ഏറ്റവും പ്രധാനം. ഐ.പി.സി.സി. റിപ്പോർട്ടുകൾ പൊതുവെ നാശത്തിന്റെ സൂചനയായാണ് വീക്ഷിക്കപ്പെടുന്നത്. എന്നാൽ നിലവിലെ റിപ്പോർട്ട് സൗരോർജ്ജത്തിന്റേയും കാറ്റിൽ നിന്നുണ്ടാക്കുന്ന വൈദ്യുതിയുടെയും വില കുറയുന്നതിനെക്കുറിച്ചും വൈദ്യുത വാഹനങ്ങളുടെ വർദ്ധനവിനെക്കുറിച്ചും എടുത്തു പറയുന്നു. പാരീസ് ഉടമ്പടി ലക്ഷ്യങ്ങൾ ‘പ്രതികൂല ഉദ്വമനം’ നടത്താതെ, അഥവാ കാർബൺ ഡൈ ഓക്‌സൈഡ് നീക്കം ചെയ്യാതെ കൈവരിക്കാൻ കഴിയില്ല. ഇതിന് ഇപ്പോൾ അപ്രായോഗികമായ തോതിൽ ചെലവേറിയതെന്ന് തോന്നിപ്പിക്കുന്ന പരീക്ഷിക്കാത്ത സാങ്കേതികവിദ്യകൾ ആവശ്യമാണ്. ഇന്ത്യ റിപ്പോർട്ടിനെ “സ്വാഗതം” ചെയ്യുകയും, അതിന്റെ നിരവധി ഭാഗങ്ങൾ രാജ്യത്തിന്റെ പ്രഖ്യാപിത നിലപാടിന് അടിവരയിടുന്നുണ്ടെന്നും പറഞ്ഞു. കാലാവസ്ഥാ പ്രതിസന്ധി രാജ്യങ്ങളുടെ സമമല്ലാത്ത സംഭാവനകൾ മൂലമാണെന്നും, കാലാവസ്ഥാ നീതിയുടെ അടിസ്ഥാനം വ്യതിയാനങ്ങളുടെ ലഘൂകരിക്കലും ഇണങ്ങിച്ചേരലുമാണ് എന്നാണ് ഇന്ത്യയുടെ നിലപാട്. എന്നിരുന്നാലും, രാജ്യങ്ങൾ അവരുടെ സൗകര്യപ്രദമായ അവസ്ഥയ്ക്ക് പുറത്ത് വന്ന് സംഘടിതമായി പരിശ്രമിച്ചാൽ മാത്രമേ ഭൂമിക്ക് ഏറ്റവും മോശമായ അവസ്ഥയിൽ നിന്ന് രക്ഷപ്പെടാനാകൂ എന്ന സന്ദേശവും ഇന്ത്യ അവഗണിക്കരുത്.

This editorial has been translated from English, which can be read here.

Top News Today

  • Access 10 free stories every month
  • Save stories to read later
  • Access to comment on every story
  • Sign-up/manage your newsletter subscriptions with a single click
  • Get notified by email for early access to discounts & offers on our products

Terms & conditions   |   Institutional Subscriber

Comments have to be in English, and in full sentences. They cannot be abusive or personal. Please abide by our community guidelines for posting your comments.

We have migrated to a new commenting platform. If you are already a registered user of The Hindu and logged in, you may continue to engage with our articles. If you do not have an account please register and login to post comments. Users can access their older comments by logging into their accounts on Vuukle.

Activate your premium subscription today

  • Wayanad Landslide
  • Latest News
  • Weather Updates
  • Change Password

ഭൂമിക്ക് മരണഗന്ധം; വരുന്നത് അതിതീവ്ര മഴ, അസഹ്യ ചൂട്, കാട്ടുതീ, ചുഴലിക്കാറ്റ്, കടലേറ്റം

ഡോ. റോക്സി മാത്യു കോൾ

Published: August 10 , 2021 09:46 AM IST

Link Copied

കാലാവസ്ഥമാറ്റം രൂക്ഷമെന്ന് ഇന്നലെ പുറത്തിറക്കിയ ഐപിസിസി റിപ്പോർട്ട്

TOPSHOT-GREECE-FIRE

Mail This Article

 alt=

ഭൂമി ആസന്നപ്രതിസന്ധിയുടെ തുരങ്കത്തിലേക്കു കടന്നിരിക്കുന്നു. തീവ്രകാലാവസ്ഥമാറ്റങ്ങൾ ഇനി നമ്മുടെ നിത്യജീവിതത്തിന്റെ ഭാഗമാകും.  പല മാറ്റങ്ങളും തിരുത്താനാവാത്തതും നൂറ്റാണ്ടുകളോ സഹസ്രാബ്ദങ്ങളോ നീളുന്നവയും ആയേക്കാം. പുതിയൊരു തീവ്രയുഗം തുടങ്ങിയെന്ന വെളിപ്പെടുത്തലാണ് ഐപിസിസി റിപ്പോർട്ട്

ക്ഷമിക്കണം. പതിവുപോലെ നല്ലവാക്കുകൾ പറഞ്ഞ് നിങ്ങളെ ആശ്വസിപ്പിക്കാൻ എനിക്കാവുന്നില്ല. ഭൂമിയുടെ പേടിപ്പെടുത്തുന്ന സ്ഥിതി പറയാൻ സത്യത്തിൽ അൽപം മടിയുണ്ട്. പക്ഷേ, കാലാവസ്ഥാ ഗവേഷകൻ എന്ന നിലയിൽ ഇനിയും അതു തുറന്നുപറഞ്ഞില്ലെങ്കിൽ വരുംതലമുറകളോടുള്ള വഞ്ചനയാകും. വാക്സിനേഷനും കരുതലും ചേർന്നു കോവിഡിനെ പിടിച്ചുകെട്ടുകതന്നെ ചെയ്യും. പക്ഷേ, കാലാവസ്ഥമാറ്റത്തിന്റെ ഗ്രാഫിനെ താഴ്ത്താനാവില്ല. അതു താഴണമെങ്കിൽ നാം പുറത്തേക്കു തള്ളുന്ന കാർബൺ കുറയ്ക്കണം. സുസ്ഥിര വികസനമാതൃകയെ പുണരണം. പ്രകൃതിദത്തമായ പ്രതിരോധങ്ങൾ ശക്തിപ്പെടുത്തണം. പ്രകൃതിയിൽ ഇടപെടുന്നതിനു മുൻപ് എല്ലാ ദുരന്തസാധ്യതകളും വിലയിരുത്തണം. 

കണ്ണു തുറപ്പിക്കണം ഐപിസിസി റിപ്പോർട്ട് 

കാലാവസ്ഥമാറ്റം സംബന്ധിച്ച റിപ്പോർട്ട് ഓരോ ഏഴു വർഷം കൂടുമ്പോഴും ഐപിസിസി (ഇന്റർ ഗവൺമെന്റൽ പാനൽ ഓൺ ക്ലൈമറ്റ് ചേഞ്ച്) തയാറാക്കുന്നു. ഈ പരമ്പരയിലെ ഏറ്റവും പുതിയ റിപ്പോർട്ട് ഇന്നലെ ജനീവയിൽ പുറത്തിറക്കി. മനുഷ്യരുടെ ജീവിതരീതിമൂലം ലോകത്തു കാലാവസ്ഥകൾ തീവ്രമായി മാറുന്നുവെന്നു മാത്രമല്ല, വൻപ്രളയവും പൊള്ളുന്ന ചൂടുമെല്ലാം നമ്മുടെ വാതിലിൽ മുട്ടുകയുമാണ്. ആഗോളതാപനം കുറയ്ക്കാൻ ലോകരാജ്യങ്ങൾ ചേ‍ർന്ന് ഒപ്പുവച്ചതാണു പാരിസ് കരാർ. ലോകത്തെ ശരാശരി താപവർധന 1.5 മുതൽ 2 ഡിഗ്രി വരെ എന്ന പരിധി കടക്കാതെ നോക്കുകയായിരുന്നു കരാറിന്റെ ലക്ഷ്യം. എന്നാൽ ഇതനുസരിച്ചു നീങ്ങിയാലും താപനം നിയന്ത്രിച്ചു കാലാവസ്ഥയെ പിടിച്ചുനിർത്തി പാരിസ്ഥിതിക വീണ്ടെടുപ്പു സാധ്യമല്ലെന്നതാണ്  ഐപിസിസിയുടെ ആറാമത് അസസ്മെന്റ് റിപ്പോർട്ടിന്റെ ചുരുക്കം. 

cyclone-tauktae-low-pressure-area-concentrates-into-depression1

അന്തരീക്ഷത്തിലേക്കുള്ള വാതക പുറന്തള്ളൽ കുറയ്ക്കുന്നതിൽ നാമെല്ലാം പരാജയപ്പെട്ടിരിക്കുന്നു. നാളിതുവരെ കണ്ടിട്ടില്ലാത്തവിധം അതിതീവ്ര മഴയും അസഹ്യ ചൂടും കാട്ടുതീയും തൽഫലമായുള്ള ചുഴലിക്കാറ്റുകളും കടലേറ്റവും ഒക്കെയായി ഭൂമി ഒരു ആസന്നപ്രതിസന്ധിയുടെ തുരങ്കത്തിലേക്കു കടന്നിരിക്കുന്നു. തീവ്രകാലാവസ്ഥമാറ്റങ്ങൾ ഇനി മുതൽ നമ്മുടെ നിത്യജീവിതത്തിന്റെ ഭാഗമാകാൻ പോകുന്നു. 

പല മാറ്റങ്ങളും തിരുത്താനാവാത്തതും നൂറ്റാണ്ടുകളോ സഹസ്രാബ്ദങ്ങളോ നീളുന്നവയും ആയേക്കാം. പുതിയൊരു തീവ്രയുഗം തുടങ്ങിയെന്ന വെളിപ്പെടുത്തലാണ് ഐപിസിസി റിപ്പോർട്ട്. 

മൂന്നുദിക്കിലും കടലും വടക്കു ഹിമാലയവും കോട്ടപോലെ സംരക്ഷിക്കുന്ന ഇന്ത്യയുടെ സന്തുലിത കാലാവസ്ഥയും വെല്ലുവിളി നേരിടുകയാണെന്നു റിപ്പോർട്ട് പറയുന്നു. ലോകത്തുതന്നെ ഏറ്റവും ചൂടേറിയ കടലായി അറേബ്യൻ സമുദ്രമേഖല മാറി. ബംഗാൾ ഉൾക്കടലും ചൂടേറ്റത്തിന്റെ പിടിയിലാണ്. ചൂടേറുന്നതോടെ കടലിലെ അമ്ലത(അസിഡിറ്റി) വർധിക്കും. ഓക്സിജൻ തോതുകുറഞ്ഞ് കടൽപായലും മറ്റും പെരുകുന്ന സാഹചര്യവുമുണ്ട്. ആർട്ടിക്സമുദ്രത്തിൽ 2050 ആകുമ്പോൾ മഞ്ഞില്ലാതാകും. ഗ്രീൻലൻഡിലെ മഞ്ഞുപാളിയും കുറയുന്നു. യൂറോപ്പിലെ ആൽപ്സ് പർവതനിരയും മഞ്ഞുരുക്കത്തിലാണ്. 

ഹിമാലയത്തിൽ മഞ്ഞുരുകൽ തുടങ്ങിക്കഴിഞ്ഞു. ഹിമാവരണം ഓരോ വർഷവും നേർത്തുവരുന്നു. ഈ ജലം എത്തുന്നതോടെ സമുദ്രജലം തിളച്ചുതൂവും. ഇതു തീരത്തെ താഴ്ന്ന പ്രദേശങ്ങളിലേക്കു  ഉപ്പുവെള്ളം കയറാൻ ഇടയാക്കും.  

കടലിൽ ചൂടേറി; ചുഴലികൾ തീവ്രമായി

ചുഴലികളുടെ (സൈക്ലോൺ) എണ്ണം 50 ശതമാനം വർധിച്ചു. മൺസൂൺകാലത്തെ തീവ്രമഴയുടെ തോതിൽ മൂന്നുമടങ്ങിന്റെ വർധന. സമുദ്രജലം ചൂടായാൽ നീരാവിയായി ഉയരും. ഇതാണു മഴയാകുന്നത്. ചൂട് പിന്നെയും കൂടിയാൽ നീരാവിയുടെ അളവുകൂടി മഴമേഘങ്ങൾ ജലകുംഭങ്ങളായി മാറും. മേഘസ്ഫോടനങ്ങൾ ഇങ്ങനെയാണുണ്ടാകുന്നത്. അന്തരീക്ഷത്തിലേക്കു തള്ളുന്ന ചൂടിന്റെ 93 ശതമാനത്തെയും ആഗിരണം ചെയ്യുന്നതു കടലാണ്. ഏറ്റവും വേഗത്തിൽ ചൂടുപിടിക്കുന്നതും കടലിന്. ഇന്ത്യൻ തീരത്തോടു ചേർന്നുകിടക്കുന്ന മഹാസമുദ്രമേഖലയിലാണ് ഇന്നു ലോകത്തിൽ  ഏറ്റവും വേഗത്തിൽ ചൂടുകൂടുന്നതെന്നും  കണ്ടെത്തിയിട്ടുണ്ട്. 

climate-change

അസാധാരണ പ്രളയത്തിനും ചൂടേറ്റത്തിനുമാണു ചൈനയും ജർമനിയും സാക്ഷ്യം വഹിക്കുന്നത്. ഇത്തരം മാറിയ കാലാവസ്ഥയെ വർണിക്കാൻ ജർമൻ ഭാഷയിൽ വാക്കുകളേയില്ലെന്നാണു ചാൻസലർ അംഗല മെർക്കൽ പറയുന്നത്. അതെ, നാം ചരിത്രത്തിലെ വലിയൊരു മാറ്റത്തിന്റെ തുറമുഖത്താണ്. കാനഡയിലും യുഎസിലും ഇന്നുവരെ കാണാത്തത്ര ചൂടായിരുന്നു. ഗ്രീസിൽ കാട്ടുതീ മൂലം 56,000 ഹെക്ടർ വനം കത്തിപ്പോയി. കാനഡയിലെ ബ്രിട്ടിഷ് കൊളംബിയയിൽ അനുഭവപ്പെട്ട 49.6 ഡിഗ്രി സെൽഷ്യസ് ചൂട് റെക്കോർഡാണ്. ഇതൊന്നും ഒറ്റപ്പെട്ട സംഭവമല്ല. ആഗോളതാപനവുമായി നേരിട്ടു ബന്ധപ്പെട്ട കാലാവസ്ഥാ ദുരന്തങ്ങളാണെന്നു ഗവേഷകർ തെളിയിച്ചു കഴിഞ്ഞു. 

ദുരന്തസാധ്യത ഇന്ത്യ വിലയിരുത്തണം

മഹാരാഷ്ട്രയിലെ മഹാബലേശ്വറിൽ 48 മണിക്കൂറിൽ 107 സെന്റീമീറ്റർ മഴ രേഖപ്പെടുത്തി. ഭൂമിക്കും മണ്ണിനും താങ്ങാവുന്നതിനും അപ്പുറമായിരുന്നു ഈ പെയ്ത്ത്. എന്നു വച്ചാൽ ഓരോ ചതുരശ്രമീറ്ററിലും ഒരു മീറ്റർ ഉയരത്തിൽ മഴവെള്ളം സങ്കൽപിച്ചു നോക്കൂ. 200 പേരാണു മരിച്ചത്. 

നമ്മുടെ നഗരങ്ങളും നദികളും മലയോരങ്ങളുമെല്ലാം ചൂടിനെ ആഗിരണം ചെയ്യാനോ പ്രളയജലത്തെ ഉൾക്കൊള്ളാനോ ആവാത്തവിധം ദീർഘവീക്ഷണമില്ലാത്ത വികസനത്തിന്റെ ദുരന്തഭൂമികളായി മാറുന്നു. ലോകത്തുതന്നെ, ഇന്ത്യയിൽ മണ്ണിടിച്ചിൽ ഏറ്റവുമധികം വർധിച്ചുവരുന്നതിന്റെ കാരണം മൺഘടന പഠിക്കാതെയുള്ള ഭൂവിനിയോഗ രീതിയാണ്. 

കാലാവസ്ഥാ– പാരിസ്ഥിതിക ദുരന്തസാധ്യതാ വിലയിരുത്തലിന് ഇന്ത്യ തയാറാകേണ്ട സമയം അതിക്രമിച്ചിരിക്കുന്നു. തീവ്രകാലാവസ്ഥയുമായി ബന്ധപ്പെട്ട് എവിടെ, എന്തൊക്കെ അപകടങ്ങൾ പതിയിരിക്കുന്നു എന്നു കണ്ടെത്തി അടയാളപ്പെടുത്തണം. വലിയ അതിവേഗ റെയിൽവേ നിർമാണം മുതൽ ചെറിയ വീടുവയ്ക്കുന്നതിനു വരെ ഇത് അടിസ്ഥാനമാക്കണം.  ദുർബല മേഖലകളിലേക്കുള്ള കടന്നുകയറ്റം ഒഴിവാക്കിയാൽ ഭാവിദുരന്തങ്ങളെ ഒഴിവാക്കുകയോ ആഘാതം കുറയ്ക്കുകയോ ചെയ്യാം. അപകടസാധ്യത കുറവുള്ള മേഖലകൾ കണ്ടെത്തി അവിടെ അനുയോജ്യ വികസനം നടപ്പാക്കാം. നമ്മുടെ നഗരങ്ങളെ പുനർരൂപകൽപന ചെയ്യണം. ദുരന്തകവചിതമാകണം രാജ്യത്തെ ഓരോ ജില്ലയും. കാലാവസ്ഥമാറ്റം ആഗോള പ്രതിഭാസമാണെങ്കിലും അതു ദുരന്തമായി പെയ്തിറങ്ങുന്നത് ഒരു പ്രദേശത്തേക്കു മാത്രമായിരിക്കും. 

ഓരോ സ്ഥലത്തെയും കാലാവസ്ഥാ പ്രത്യേകതകളും ദുരന്തസാധ്യതകളും സംബന്ധിച്ച തൽസ്ഥിതിയും സ്ഥിതിവിവരക്കണക്കും നൽകുന്ന ഡേറ്റാ ടൂളുകൾ ഇന്നു ലഭ്യമാണ്. എന്തുകൊണ്ടു നടപ്പാക്കാൻ വൈകുന്നു എന്ന ചോദ്യംമാത്രം ബാക്കി. 

roxy

പ്രളയവും സൈക്ലോണുകളും സംബന്ധിച്ച ആസൂത്രണത്തിന് ഒരു ഗവേഷണ കേന്ദ്രംതന്നെ ആരംഭിക്കാം. കാർബൺ സന്തുലിത സാങ്കേതികവിദ്യകളിലേക്കും കാർഷിക– ഭക്ഷ്യ– ജീവിതരീതികളിലേക്കും ചുവടുമാറ്റണം.  മനുഷ്യനിർമിത കാർബൺ ഡയോക്സൈഡാണു ചൂടുകൂടാൻ കാരണം. ഇന്നത്തെ നമ്മുടെ രീതിവച്ചു നോക്കിയാൽ ഈ താപനതോത് 2040 ആകുമ്പോഴേക്കും ശരാശരി രണ്ട് ഡിഗ്രി സെൽഷ്യസ് വരെ വർധിക്കാം. 

മിത ശീതോഷ്ണ കാലാവസ്ഥയ്ക്കു പേരുകേട്ട പുണെയിൽ ഇക്കുറി 34 ശതമാനം അധികമഴ ലഭിച്ചു. പലപ്പോഴും കാലാവസ്ഥാ ദുരന്തങ്ങൾക്ക് ആദ്യം ഇരയാകുന്നതു ദുർബല ജനവിഭാഗങ്ങളാണ്. ദുരന്തതീവ്രത ഏറ്റവും അനുഭവിക്കേണ്ടതും ഇവർ തന്നെ. പ്രളയവും കൃഷിനാശവും പലായനത്തിലേക്കും ദാരിദ്ര്യത്തിലേക്കുമാണു മറനീക്കുന്നത്.  ലോകത്തു കാലാവസ്ഥാ സംബന്ധമായ ദുരന്തസാധ്യതകളുടെ നിഴലിൽ കഴിയുന്ന ജനവിഭാഗങ്ങൾ ഏറ്റവുമധികമുള്ളത് ഇന്ത്യയിലാണ്; ജനസംഖ്യയുടെ 24%. 

മുംബൈയിൽ 2005ലെ പ്രളയം (മരണം 1000), യൂറോപ്പിലെ 2003ലെ താപതരംഗം (മരണം 70,000) തുടങ്ങി അനേകം സംഭവങ്ങളുണ്ടായിട്ടും നാം പാഠം പഠിച്ചില്ല. ഉറക്കം തുടരുകയാണ്. മനുഷ്യ നിർമിത കാലാവസ്ഥാമാറ്റമാണ് ഈ ദുരന്തങ്ങൾക്കെല്ലാം പിന്നിൽ. 

ഐപിസിസി റിപ്പോർട്ട്, ആഗോളമായി ചിന്തിച്ചു പ്രാദേശികമായി കർമനിരതരാകാനുള്ള മാർഗരേഖയാണ്. ഓരോ വാർഡുകളെയും ദുരന്തപ്രതിരോധ സജ്ജമാക്കാനുള്ള ജനകീയ മുന്നേറ്റം ആവശ്യമാണ്. മീനച്ചിലാറിന്റെ തീരത്തു പ്രളയജലത്തോത് അളക്കാനുള്ള ജനകീയ സ്കെയിലുകൾ സ്ഥാപിച്ചതും മറ്റും ഈ ദിശയിലുള്ള നല്ല നീക്കങ്ങളാണ്. 

(പുണെ ഇന്ത്യൻ ഇൻസ്റ്റിറ്റ്യൂട്ട് ഓഫ് ട്രോപ്പിക്കൽ മീറ്റിയറോളജിയിലെ കാലാവസ്ഥാ ശാസ്ത്രജ്ഞനും ഐപിസിസി റിപ്പോർട്ട് അവലോകന സമിതിയംഗവുമാണു ലേഖകൻ)

English Summary: Climate change: IPCC report is 'code red for humanity'

  • Climate Change
  • Climate Action

essay on climate change in malayalam

  • Kerala News
  • Entertainment

Powered by :

താപനം: നമ്മെ തുറിച്ചുനോക്കുന്നത് എന്ത്?

അന്തരീക്ഷ താപവര്‍ധനവ് മൂലം ഓസ്‌ട്രേലിയ, ദക്ഷിണാഫ്രിക്ക, തെക്കേ അമേരിക്ക എന്നിവിടങ്ങളില്‍നിന്നും ഈര്‍പ്പത്തെ വഹിച്ചുകൊണ്ടുവരുന്ന പടിഞ്ഞാറന്‍ കാറ്റുകള്‍ ദക്ഷിണധ്രുവദിശയിലേക്ക് പലായനം ചെയ്യുന്നത് മൂലം പൊതുവെ മഴ കുറഞ്ഞ് വരള്‍ച്ച, കാട്ടുതീ എന്നിവയ്ക്കുള്ള സാധ്യതകളേറുന്നു.

essay on climate change in malayalam

ഭൂമിയുടെ രണ്ട് അര്‍ധഗോളങ്ങളിലും അക്ഷാംശം 30 ഡിഗ്രിക്കും 60 ഡിഗ്രിക്കും ഇടയ്ക്ക് സ്ഥിതിചെയ്യുന്ന മധ്യ അക്ഷാംശമേഖലയില്‍ പടിഞ്ഞാറ് ദിശയില്‍നിന്ന് കിഴക്കോട്ട് സ്ഥിരമായി വീശുന്ന കാറ്റുകളാണ് പശ്ചിമവാതങ്ങള്‍ (Westerlies). ഉപോഷ്ണ മേഖലയിലെ അതിമര്‍ദ മേഖലയ്ക്കും ധ്രുവപ്രദേശങ്ങളിലെ നീചമര്‍ദ മേഖലകള്‍ക്കും ഇടയിലാണ് ഇവ വീശുന്നത്. 30 ഡിഗ്രി അക്ഷാംശത്തിലെ അതിമര്‍ദ്ദമേഖലകളില്‍നിന്ന് ഉത്ഭവിച്ച് ധ്രുവമേഖലകളുടെ ദിശയിലേക്ക് വീശുന്നവയാണീ കാറ്റുകള്‍.

ഉഷ്ണമേഖലാ പ്രദേശങ്ങള്‍ക്കുപുറമേവീശുന്ന ചുഴലിവാതങ്ങളുടെ ദിശനിയന്ത്രിക്കുന്നതില്‍ പശ്ചിമവാതങ്ങള്‍ക്ക് പ്രധാന പങ്കുണ്ട്. ഉഷ്ണമേഖലാപ്രദേശങ്ങളില്‍ രൂപം കൊള്ളുന്ന ചുഴലിവാതങ്ങളില്‍ ചിലവ 30 ഡിഗ്രി അക്ഷാംശത്തില്‍ സ്ഥിതിചെയ്യുന്ന ഉച്ചമര്‍ദപാത്തി മറികടന്ന് മധ്യ അക്ഷാംശ മേഖലയില്‍ പ്രവേശിക്കുമ്പോള്‍, പശ്ചിമവാതങ്ങളുടെ നിയന്ത്രണത്തിന് വിധേയമായി അവക്ക് ദിശാവ്യതിയാനം ഉണ്ടാകാറുണ്ട്. ഉത്തരാര്‍ധഗോളത്തില്‍ പ്രധാനമായും തെക്കുപടിഞ്ഞാറ് (Southwest Westerlies) ദിശയില്‍നിന്നും ദക്ഷിണാര്‍ധഗോളത്തില്‍ വടക്കുപടിഞ്ഞാറ് (Northwest Westerlies) ദിശയില്‍നിന്നുമാണ് പശ്ചിമവാതങ്ങള്‍ വീശുന്നത്.

താഴ്ന്നമേഖലകളില്‍ ശൈത്യം അനുഭവപ്പെടുന്ന സമയത്തോ, അതുമല്ലെങ്കില്‍ ധ്രുവപ്രദേശങ്ങളില്‍ താരതമ്യേന മര്‍ദം വളരെ കുറവ് അനുഭവപ്പെടുന്ന സമയങ്ങളിലോ അതാത് അര്‍ധഗോളങ്ങളില്‍ പശ്ചിമവാതങ്ങള്‍ക്കു ശക്തിയേറും. മറിച്ച്, വേനല്‍ക്കാലങ്ങളിലും ധ്രുവപ്രദേശങ്ങളില്‍ ഉയര്‍ന്ന മര്‍ദം അനുഭവപ്പെടുന്ന കാലങ്ങളിലും ഇവ ദുര്‍ബലമാകും.

ദക്ഷിണാര്‍ധഗോളത്തില്‍ പശ്ചിമവാതങ്ങള്‍ താരതമ്യേന ശക്തിയേറിയവയാണ്. ഉത്തരാര്‍ധഗോളത്തെ അപേക്ഷിച്ച് സമുദ്രത്തില്‍ ഭൂഖണ്ഡസാന്നിധ്യം വളരെക്കുറഞ്ഞ അവസ്ഥയാണ് കാരണം. ഭൂഖണ്ഡ സാന്നിധ്യം പശ്ചിമവാതങ്ങളുടെ ശക്തിക്ഷയിക്കാന്‍ കാരണമാകുന്നു. അക്ഷാംശം 40 ഡിഗ്രിക്കും 50 ഡിഗ്രിക്കും ഇടയ്ക്കു വീശുന്ന പശ്ചിമ വാതങ്ങളാണ് ഏറ്റവും ശക്തിയേറിയവ. ഭൂമധ്യരേഖാ പ്രദേശത്തുനിന്നു ചൂടുപിടിച്ച സമുദ്രജലം, കാറ്റ് എന്നിവയുടെ ഗതി നിയന്ത്രിച്ച് ദക്ഷിണാര്‍ധഗോളത്തിലെ ഭൂഖണ്ഡങ്ങളുടെ പടിഞ്ഞാറന്‍തീരത്തേക്കു നയിക്കുന്നതില്‍ വരെ പശ്ചിമവാതങ്ങള്‍ക്ക് അതിപ്രധാന പങ്കുണ്ട്.

ഓരോ വര്‍ഷവും വ്യത്യസ്ത കാലങ്ങളില്‍ പശ്ചിമവാതങ്ങളുടെ ശക്തിയില്‍ വ്യതിയാനം ഉണ്ടാകാറുണ്ട്. ധ്രുവപ്രദേശങ്ങളില്‍ വീശുന്ന ചുഴലിവാതങ്ങളാണ് ഇതിനു കാരണമാവുന്നത്. ഇത്തരം ചുഴലിവാതങ്ങള്‍ ശൈത്യകാലത്ത് കൂടുതല്‍ ശക്തിയാര്‍ജിക്കുന്നു. അതിനെത്തുടര്‍ന്ന് പശ്ചിമവാതങ്ങളും അതിശക്തമാവുന്നു. വേനല്‍ക്കാലത്ത് ചുഴലിവാതങ്ങളുടെ ശക്തി ക്ഷയിക്കുന്നതോടൊപ്പം പശ്ചിമവാതങ്ങളും ദുര്‍ബലമാവുന്നു. ഗോബി മരുഭൂമിയില്‍നിന്നു കാറ്റുകളില്‍ അകപ്പെട്ട്, ഏറെ ദൂരം കിഴക്കോട്ട് സഞ്ചരിച്ച് വടക്കേ അമേരിക്കയില്‍ കാണപ്പെടുന്ന മാലിന്യ-സമ്മിശ്രിത മണല്‍ത്തരികളുടെ സാന്നിധ്യം പശ്ചിമവാതങ്ങളുടെ ഗതി, മാര്‍ഗം, ശക്തി എന്നിവയെ വെളിപ്പെടുത്തുന്നു.

സമുദ്രത്തില്‍ ഭൂഖണ്ഡങ്ങള്‍, ദ്വീപുകള്‍ തുടങ്ങിയ കരപ്രദേശങ്ങള്‍ വളരെ കുറവ് മാത്രമുള്ള ദക്ഷിണാര്‍ധഗോളത്തില്‍ പശ്ചിമവാതങ്ങള്‍ കൂടുതല്‍ ശക്തമാവുന്നു. അതിവിസ്തൃതവും ഭൂഖണ്ഡസാന്നിധ്യം കുറഞ്ഞതുമായ സമുദ്രമേഖലയുള്ളതിനാല്‍ ദക്ഷിണാര്‍ധഗോളം കാറ്റുകളാല്‍ സമൃദ്ധവും ബാഷ്പീകരണത്തോത് കൂടുതലായതിനാല്‍ മേഘസമ്പന്നവുമാണ്. പശ്ചിമവാതങ്ങള്‍, ഏറ്റവും ശക്തമായ ദക്ഷിണാര്‍ദ്ധഗോളത്തില്‍, അവ വീശുന്ന അക്ഷാംശങ്ങള്‍ക്കനുസരിച്ച് അവയെ 'മുരളുന്ന നാല്‍പ്പതുകള്‍''(Roaring Forties), 'ക്ഷുബ്ധമായ അന്‍പതുകള്‍' (Furious Fifties), 'അലറുന്ന അറുപതുകള്‍''(Screaming Sixties) എന്നിങ്ങനെയാണ് അറിയപ്പെടുന്നത്. അറ്റലാന്റിക് മഹാസമുദ്രം, ശാന്തസമുദ്രം എന്നിവിടങ്ങളിലെ 30 ഡിഗ്രി അക്ഷാംശത്തില്‍ ഒരു അതിമര്‍ദമേഖല നീണ്ടുകിടക്കുന്നുണ്ട്. ഈ മേഖലയില്‍ ഭൂമിയുടെ ഇരു അര്‍ധഗോളങ്ങളിലും സമുദ്രജലപ്രവാഹങ്ങള്‍ക്കും ഗതിമാറ്റം സംഭവിക്കുന്നു. ദക്ഷിണാര്‍ധഗോളത്തെ അപേക്ഷിച്ച്, ഭൂഖണ്ഡങ്ങള്‍ കൂടുതലുള്ള ഉത്തരാര്‍ധഗോളത്തില്‍ പ്രവാഹങ്ങള്‍ ദുര്‍ബലമാണ്.

weather, കാലാവസ്ഥ, kerala wheather, കേരളത്തിലെ കാലാവസ്ഥ, climate change, കാലാവസ്ഥ വ്യതിയാനം, westerlies, പശ്ചിമവാതങ്ങള്‍, warming, താപനം, global warming, ആഗോള താപനം, warming india, താപനം ഇന്ത്യ, warming kerala, താപനം കേരളം, paleo-climatology, പാലിയോക്ലൈമറ്റോളജി, indian express malayalam, ഇന്ത്യൻ എക്‌സ്‌പ്രസ് മലയാളം, ie malayalam, ഐഇ മലയാളം

പശ്ചിമവാതങ്ങള്‍ ധ്രുപ്രദേശങ്ങളിലേക്ക് കടന്നുകയറുന്നുവോ?

പടിഞ്ഞാറന്‍ കാറ്റുകള്‍ (Westerlies) ആഗോളകാലാവസ്ഥാ വ്യൂഹത്തിന്റെ അടിസ്ഥാന നിയന്താക്കളിലൊന്നാണ്. സമുദ്രജലപര്യയന വ്യവസ്ഥ, അന്തരീക്ഷ-സമുദ്രജല താപ നിയന്ത്രണം, കാര്‍ബണ്‍ഡയോക്സൈഡ് വാതകത്തിന്റെ അന്തരീക്ഷ-സമുദ്ര വിനിമയം എന്നീ പ്രവര്‍ത്തനങ്ങളില്‍ ഈ കാറ്റുകള്‍ സുപ്രധാന പങ്ക് വഹിക്കുന്നുണ്ട്. വര്‍ഷപാതക്രമം, സമുദ്രപര്യയന വ്യവസ്ഥകള്‍, ഉഷ്ണമേഖലാ ചുഴലിവാതങ്ങള്‍ എന്നിവയെ സ്വാധീനിക്കുന്നതുമൂലം പ്രാദേശിക കാലാവസ്ഥയിന്മേല്‍ നിര്‍ണായക സ്വാധീനം ചെലുത്തുന്നവയാണ് പശ്ചിമവാതങ്ങള്‍. ആയതിനാല്‍ നിലവിലെ താപനസാഹചര്യങ്ങളില്‍ ഇവ എപ്രകാരം മാറ്റങ്ങള്‍ക്ക് വിധേയമാകുന്നുവെന്ന് വിലയിരുത്തുന്നത് അതിപ്രധാനമാണ്. ഭൂമിയുടെ മധ്യഅക്ഷാംശങ്ങളില്‍ പടിഞ്ഞാറുനിന്ന് കിഴക്ക് ദിശയിലേക്കാണ് സാധാരണ ഗതിയില്‍ പശ്ചിമവാതങ്ങള്‍ വീശാറുള്ളത്. എന്നാല്‍, കഴിഞ്ഞ ഏതാനും ദശകങ്ങളായി ഈ കാറ്റുകളുടെ സഞ്ചാരപഥം മധ്യ അക്ഷാംശങ്ങളും മറികടന്ന് ധ്രുവമേഖലയിലേക്ക് കടക്കുന്നതായി നിരീക്ഷിക്കപ്പെടുന്നു. താപവര്‍ധനവില്‍ അധിഷ്ഠിതമായ കാലാവസ്ഥാവ്യതിയാനമാണ് ഇതിനു കാരണമെന്നാണ് കണ്ടെത്തല്‍.

അന്തരീക്ഷത്തിലേക്കു കൂടിയതോതില്‍ കാര്‍ബണ്‍ഡയോക്സൈഡ് എത്തിച്ചേരുകയും തല്‍ഫലമായി താപനമേറുകയും ചെയ്യുന്ന സാഹചര്യങ്ങളില്‍ പശ്ചിമവാതങ്ങളുടെ ധ്രുവോന്മുഖസഞ്ചാരം തുടരുമോയെന്നാണ് ശാസ്ത്രലോകം ചര്‍ച്ച ചെയ്യുന്നത്. പൗരാണിക കാലഘട്ടങ്ങളില്‍ സമാനസാഹചര്യങ്ങള്‍ ഉണ്ടായിട്ടുണ്ടെങ്കിലും അക്കാലത്ത് പശ്ചിമവാതങ്ങളുടെ പ്രകൃതം സംബന്ധിച്ചുള്ള അറിവ് പരിമിതമായതിനാല്‍ ഈ പ്രശ്‌നത്തിന് ഉത്തരം കണ്ടെത്തുന്നത് അതീവദുഷ്‌കരമാണ്.

ഫോസില്‍ സങ്കേതങ്ങള്‍ ഉപയോഗിച്ച് പൗരാണികകാലത്തെ കാലാവസ്ഥയും പശ്ചിമവാതങ്ങളുടെ സഞ്ചാരപഥങ്ങളും അപഗ്രഥിക്കപ്പെട്ടിട്ടുണ്ട്. പുരാതനകാലങ്ങളിലെ കാലാവസ്ഥാവ്യതിയാന സാഹചര്യങ്ങളില്‍ അന്തരീക്ഷപര്യയന വ്യവസ്ഥ, പശ്ചിമവാതങ്ങളുടെ സഞ്ചാരപഥങ്ങള്‍, പ്രകൃതങ്ങള്‍ എന്നിവ എപ്രകാരമായിരുന്നുവെന്നുള്ള ചോദ്യങ്ങള്‍ക്ക് പാലിയോക്ലൈമറ്റോളജി (Paleo-Climatology) എന്ന ശാസ്ത്രശാഖ അഥവാ ഫോസില്‍- പഠനാധിഷ്ഠിത കാലാവസ്ഥാ ശാസ്ത്രം സൂചനകള്‍ നല്‍കുന്നു. ഇന്നത്തെ തലമുറയ്ക്ക് അജ്ഞാതമായ പൗരാണികമായ കാലങ്ങളില്‍ മാത്രമല്ല, വിദൂരഭാവിയില്‍ പോലും താപനം, കാലാവസ്ഥാവ്യതിയാനം എന്നീ സാഹചര്യങ്ങളില്‍ കാറ്റുകളുടെ സഞ്ചാരപഥം, പ്രകൃതം എന്നിവയില്‍ ഉണ്ടാകാനിടയുള്ള വ്യതിയാനങ്ങളെക്കുറിച്ച് ഒരു ധാരണ ലഭിക്കുന്നുവെന്നതാണ് ഇതുകൊണ്ടുണ്ടായ നേട്ടം.

അപഗ്രഥനം എങ്ങനെ?

അഗാധ സമുദ്രതലങ്ങളില്‍നിന്ന് ശേഖരിച്ച പഴക്കം ചെന്ന അവസാദങ്ങളില്‍ അടങ്ങിയിട്ടുള്ള പൊടിമണലിന്റെ യഥാര്‍ത്ഥ ഉറവിടം, പ്രകൃതം, തോത് എന്നിവ കാറ്റുകളുടെ സഞ്ചാര പഥം അറിയാനുള്ള ഒരു ഉപാധി എന്ന നിലയില്‍ സ്വീകരിക്കപ്പെട്ടിട്ടുണ്ട്. മൂന്ന് മുതല്‍ അഞ്ച് ദശലക്ഷം വര്‍ഷങ്ങള്‍ക്കുമുന്‍പ് വരെയുള്ള കാലഘട്ടത്തിലെ കാറ്റുകളുടെ ഗതിവിഗതികള്‍ വിശകലനം ചെയ്യുവാന്‍ ഇത്തരം പ്രാകൃതമണല്‍തരികളുടെ അപഗ്രഥനം വഴി കഴിഞ്ഞിട്ടുണ്ട്. മരുഭൂമികളില്‍നിന്ന് വിദൂര സ്ഥലങ്ങളിലേക്കു കാറ്റുകള്‍ വഹിച്ചുകൊണ്ട് പോകുന്ന ലക്ഷക്കണക്കിന ധൂളീ / മണല്‍ത്തരികളില്‍ പലതും ചിലത് സമുദ്രങ്ങളില്‍ (ഉത്തര-ശാന്തസമുദ്രം) പതിക്കാനിടയാകുന്നു. അഗാധസമുദ്രതലങ്ങളിലെത്തിച്ചേരുന്ന ഇവ അവസാദങ്ങളോടൊപ്പം കൂടിക്കലരുന്നു.

പൗരാണികകാലം മുതല്‍ വീശിയിരുന്ന പടിഞ്ഞാറന്‍കാറ്റുകളുടെ ഗതിയും പ്രകൃതിയും വിശകലനം ചെയ്യാന്‍ ഉത്തര-ശാന്തസമുദ്രത്തിലെ അഗാധതലങ്ങളില്‍ നിന്നെടുത്ത അവസാദങ്ങള്‍ ശാസ്ത്രകാരന്മാര്‍ പരിശോധനാ വിധേയമാക്കി. മരുസമ്പന്നമായ പൂര്‍വേഷ്യയില്‍നിന്ന് വീശുന്ന കാറ്റുകള്‍ കടന്നുപോകുന്ന പ്രദേശം കൂടിയാണ് ഉത്തര-ശാന്തസമുദ്രമേഖല. ദശലക്ഷക്കണക്കിന് വര്‍ഷങ്ങള്‍ക്കുമുന്‍പ് തന്നെ പൂര്‍വേഷ്യന്‍ പ്രദേശങ്ങള്‍ മണലാരണ്യങ്ങളായിരുന്നു.

പരസ്പരം ആയിരക്കണക്കിന് കിലോമീറ്റര്‍ അകലങ്ങളില്‍ സ്ഥിതിചെയ്യുന്ന ഉത്തര-പസഫിക് സമുദ്രത്തിലെ രണ്ട് വ്യത്യസ്ത ഇടങ്ങളില്‍നിന്ന് ശേഖരിച്ച അഗാധസമുദ്രതലാവശിഷ്ടങ്ങള്‍ പരിശോധിക്കപ്പെട്ടപ്പോള്‍ അവയില്‍ പൂര്‍വേഷ്യന്‍ മണലാരണ്യങ്ങളില്‍നിന്നുള്ള പൊടിമണലിന്റെ സാന്നിധ്യം തിരിച്ചറിയപ്പെട്ടു. വിദൂരപ്രദേശങ്ങളില്‍നിന്ന എത്തിച്ചേര്‍ന്ന മണല്‍ത്തരികള്‍, മാലിന്യാവശിഷ്ടങ്ങള്‍ എന്നിവ അവയുടെ ഉത്ഭവസ്ഥലങ്ങള്‍, അവയെ വഹിച്ചുകൊണ്ട് വന്നിരിക്കാനിടയുള്ള കാറ്റുകളുടെ സഞ്ചാരപഥം, സഞ്ചാരദൂരം, സഞ്ചാരകാലഘട്ടം, ശക്തി എന്നിവ സംബന്ധിച്ച വിവരങ്ങളുടെ ഒരു ഏകോപിത ചിത്രം നല്‍കുന്നു.

ഇതുകൂടാതെ, അറ്റ്‌ലാന്റ്റിക് സമുദ്രത്തിലെ മാരിയോണ്‍ ദ്വീപിലെ ഒരു തീരദേശ തടാകത്തില്‍നിന്നുംശേഖരിച്ച റേഡിയോകാര്‍ബണ്‍-അങ്കിത അവശിഷ്ടങ്ങളുടെ അപഗ്രഥനത്തിലൂടെ കഴിഞ്ഞ 700 വര്‍ഷങ്ങളിലെ കാറ്റുകളുടെ വിന്യാസവും പ്രകൃതവും പര്യയനവും ശാസ്ത്രജ്ഞര്‍ വെളിപ്പെടുത്തുകയുണ്ടായി. ദക്ഷിണാഫ്രിക്കയുടെ തെക്കുകിഴക്കായി സ്ഥിതിചെയ്യുന്ന മാരിയോണ്‍ ദ്വീപ് കാറ്റുകളുടെ സഞ്ചാരപാതയില്‍ സ്ഥിതി ചെയ്യുന്ന ഇടമാണ്. അതിസൂക്ഷ്മ കടല്‍ പായലുകളില്‍ അടങ്ങിയിട്ടുള്ള ലവണാംശങ്ങള്‍, അഗാധസമുദ്രതലങ്ങളില്‍നിന്ന് ശേഖരിക്കപ്പെട്ട അവസാദങ്ങളില്‍ അടങ്ങിയിട്ടുള്ളതും കാറ്റ് വഴി വിദൂരസ്ഥലങ്ങളില്‍നിന്ന് എത്തിച്ചേരാനിടയുള്ളതുമായ പൊടിപടലങ്ങള്‍ എന്നിവയെ താരതമ്യ പഠനം ചെയ്തുകൊണ്ടാണ് പൗരാണികകാലങ്ങളിലെ കാറ്റുകളുടെ ശക്തി, സഞ്ചാരപഥം എന്നിവ ശാസ്ത്രജ്ഞര്‍ തിട്ടപ്പെടുത്തിയത്.

താപനത്തിലുണ്ടാകുന്ന ഏറ്റക്കുറച്ചിലുകള്‍ക്കനുസൃതമായി കാറ്റുകളുടെ വിന്യാസത്തിലും മാറ്റം വരുന്നുവെന്നതാണ് പൊതുവെ കാണപ്പെടുന്ന വസ്തുത. അഞ്ചു മുതല്‍ മൂന്നു വരെ ദശലക്ഷം വര്‍ഷങ്ങള്‍ക്കുമുന്‍പ് നിലനിന്നിരുന്ന പ്ലിയോസീന്‍ (Pleocene) കാലഘട്ടത്തില്‍ ഇന്ന് അനുഭവപ്പെടുന്നതിനേക്കാള്‍ രണ്ട് മുതല്‍ നാല് വരെ ഡിഗ്രി സെന്റിഗ്രേഡ് കൂടിയ തോതില്‍ താപനം അനുഭവപ്പെട്ടിരുന്നു. കാര്‍ബണ്‍ഡയോക്സൈഡിന്റെ അന്തരീക്ഷ സാന്ദ്രതയാകട്ടെ ഏറെക്കുറെ ഇന്നത്തേതിന് സമാനവുമായിരുന്നു. പ്ലിയോസീന്‍ കാലഘട്ടത്തില്‍ കാര്‍ബണ്‍ഡയോക്സൈഡ് സാന്ദ്രത 350ppm-450ppനും ഇടയിലായിരുന്നുവെന്നാണ് അനുമാനം. അന്തരീക്ഷതാപമാകട്ടെ, ഇന്നത്തേതിനേക്കാള്‍ രണ്ടു മുതല്‍ നാലു വരെ ഡിഗ്രി സെന്റിഗ്രേഡ് കൂടുതലും. പ്രസ്തുത കാലഘട്ടത്തിലും പശ്ചിമവാതങ്ങളുടെ ധ്രുവമേഖലയിലേക്കുള്ള അധിനിവേശം കൂടുതലായിരുന്നു. തുടര്‍ന്ന് വന്ന തണുപ്പേറിയ ഹിമയുഗ കാലഘട്ടത്തില്‍ പശ്ചിമവാതങ്ങളുടെ ധ്രുവമേഖലയിലേക്കുള്ള അധിനിവേശ വിസ്തൃതി കുറയുകയും ചെയ്തു. ഇന്നത്തെ താപനകാലഘട്ടത്തിന് സദൃശ്യമായ ഒന്നായിരുന്നു പ്ലിയോസീന്‍ (Pleocene) കാലഘട്ടം. മനുഷ്യപ്രേരിത പ്രവൃത്തികള്‍ വഴി അന്തരീക്ഷത്തിന് ചൂടേറുന്ന പക്ഷം പ്ലീയോസീന്‍ (Pleocene) കാലഘട്ടത്തില്‍ പശ്ചിമവാതങ്ങള്‍ക്കു സംഭവിച്ച പ്രാകൃത മാറ്റത്തിന്റെ പുനരാവര്‍ത്തനം ഈ കാലഘട്ടത്തില്‍ നാം തീര്‍ച്ചയായും പ്രതീക്ഷിക്കേണ്ടി വരും.

അന്റാര്‍ട്ടിക്ക ഭൂഖണ്ഡത്തില്‍ നിന്ന് 100 കിലോമീറ്റര്‍ വടക്കായി ഭൂഖണ്ഡത്തിനുചുറ്റുമുള്ള മേഖലയിലാണ് ഏറ്റവും ശക്തമായ പശ്ചിമവാതങ്ങള്‍ കാണപ്പെടുന്നത്. പശ്ചിമവാതങ്ങള്‍ ശക്തമായി വീശുമ്പോള്‍ ഉണ്ടാകുന്ന സമ്മര്‍ദം അന്റാര്‍ട്ടിക്ക ഭൂഖണ്ഡത്തെ ചുറ്റി ഒഴുകുന്ന പ്രവാഹവ്യൂഹങ്ങളെ ( അന്റാര്‍ട്ടിക്ക പ്രദക്ഷിണപ്രവാഹങ്ങള്‍ - Antarctic Circumpolar Current) ഉടനീളം സ്വാധീനിക്കുന്നു. പശ്ചിമവാതങ്ങളുടെ സമ്മര്‍ദം മൂലം അന്റാര്‍ട്ടിക്ക പ്രദക്ഷിണ പ്രവാഹങ്ങളുടെ വടക്കുഭാഗത്തുള്ള സമുദ്രമേഖലയിലെ ഇടത്തട്ടിലുള്ള സമുദ്രജലം അന്റാര്‍ട്ടിക്ക മേഖലയിലെ സമുദ്രോപരിതലത്തിലേക്ക് എത്തിച്ചേരുന്നു.

കഴിഞ്ഞ അന്‍പതോളം വര്‍ഷമായി പശ്ചിമവാതങ്ങള്‍ ദക്ഷിണ ധ്രുവോന്മുഖമായി അവയുടെ കടന്നുകയറ്റം ആരംഭിച്ചതിനാല്‍ അന്റാര്‍ട്ടിക്ക പ്രദക്ഷിണ പ്രവാഹങ്ങളുമായി കൂടുതല്‍ ചേര്‍ന്ന് പോകുകയും അതുവഴി സമുദ്രത്തിന്റെ ഇടത്തട്ടിലുള്ള ജലം മുന്‍പെന്നത്തേക്കാള്‍ അധികം സമുദ്രോപരിതലത്തില്‍ എത്തിചേരാനിടയാകുകയും ചെയ്യുന്നു. അവസാന ഹിമയുഗത്തിന്റെ പാരമ്യഘട്ടത്തില്‍, മേല്‍ സൂചിപ്പിച്ചതില്‍നിന്നു തികച്ചും വിരുദ്ധമായ സ്ഥിതിഗതികളാണ് ഉണ്ടായിരുന്നത്. അക്കാലത്ത് ദക്ഷിണാര്‍ധഗോളത്തിലെ പശ്ചിമ വാതങ്ങള്‍ ഇന്നത്തേതിക്കാള്‍ വളരെയേറെ വടക്കുനീങ്ങിയാണ് വീശിയിരുന്നത്. അതുകൊണ്ട് തന്നെ അന്റാര്‍ട്ടിക്ക പ്രദക്ഷിണ പ്രവാഹങ്ങളുമായി ഇഴുകിച്ചേരുവാന്‍ സാഹചര്യമുണ്ടായിരുന്നില്ല. അതുകൊണ്ട് തന്നെ, ഇടത്തട്ടില്‍ നിന്നുള്ള കാര്‍ബണ്‍ഡയോക്ള്‍സൈഡ് സമ്പന്നമായ സമുദ്രജലം അവിടെ നിന്ന് സമുദ്രോപരിതലത്തില്‍ എത്തിച്ചേര്‍ന്നിരുന്നുമില്ല.

പടിഞ്ഞാറന്‍ കാറ്റുകള്‍ വീശുന്ന സാഹചര്യത്തില്‍ സമുദ്രത്തിന്റെ ഇടത്തട്ടില്‍ നിന്ന് ഇളകി മറിഞ്ഞ സമുദ്രോപരിതലത്തിലെത്തുന്ന ജലം കാര്‍ബണ്‍ ഡയോക്സൈഡ്, സിലിക്ക, ഇതര പോഷകങ്ങള്‍ എന്നിവയാല്‍ സമ്പന്നമാണ്. അന്റാര്‍ട്ടിക്ക ഭൂഖണ്ഡത്തിന് ചുറ്റുമുള്ള സമുദ്രോപരിതല ജലത്തിലെ ജൈവോല്‍പാദനത്തിന് ഇന്ധനമായി വര്‍ത്തിക്കുന്നതും ഇവയാണ്. ജീവികളില്‍ നിന്നുള്ള സിലിക്ക കലര്‍ന്ന അവശിഷ്ടങ്ങള്‍ സമുദ്രത്തിന്റെ അടിത്തട്ടിലെത്തിച്ചേര്‍ന്ന് അവസാദങ്ങളില്‍ ശേഖരിക്കപ്പെടുന്നു. ഏറ്റവും അവസാനത്തെ ഹിമയുഗത്തിന് ശേഷം സിലിക്ക കലര്‍ന്ന ഇത്തരം നിക്ഷേപങ്ങളുടെ തോത് വര്‍ധിച്ചുവരുന്നതായിട്ടാണ് കാണപ്പെടുന്നത്. ഹിമയുഗശേഷം താപനം അധികരിച്ചുവന്ന സാഹചര്യത്തില്‍ പടിഞ്ഞാറന്‍ കാറ്റുകളുടെ ധ്രുവോന്മുഖ അധിനിവേശം കൂടിയതു മൂലം പോഷക സമൃദ്ധമായ സമുദ്രജലത്തിന്റെ മേല്‍ത്തള്ളല്‍ കൂടുതല്‍ ഇടങ്ങളിലേക്ക് വ്യാപിക്കുകയും, അതിനനുസൃതമായി സമുദ്രോപരിതലത്തിലെ ജൈവോത്പദന പ്രക്രിയയും, അതിനെ തുടര്‍ന്ന് സിലിക്ക സംയുക്തങ്ങളുടെ പുറം തള്ളലും ഏറിയതാണ് ഇതിനു കാരണം.

weather, കാലാവസ്ഥ, kerala wheather, കേരളത്തിലെ കാലാവസ്ഥ, climate change, കാലാവസ്ഥ വ്യതിയാനം, westerlies, പശ്ചിമവാതങ്ങള്‍, warming, താപനം, global warming, ആഗോള താപനം, warming india, താപനം ഇന്ത്യ, warming kerala, താപനം കേരളം, paleo-climatology, പാലിയോക്ലൈമറ്റോളജി, indian express malayalam, ഇന്ത്യൻ എക്‌സ്‌പ്രസ് മലയാളം, ie malayalam, ഐഇ മലയാളം

ഭൂമിയുടെ ചരിതരേഖകള്‍ പരിശോധിച്ച്, കാറ്റുകളുടെ ഗതിയും കാലാകാലങ്ങളില്‍ അവക്കുണ്ടാവുന്ന വ്യതിയാനങ്ങളും സൂക്ഷ്മമായി പിന്തുടരുന്നതിന് കൃത്യമായ ഉപാധികള്‍ ഇല്ല എന്നത് ഒരു പ്രതിസന്ധിയാണ്. ഇത്തരം പഠനങ്ങളിലെല്ലാം തന്നെ തണുപ്പേറിയ കാലാവസ്ഥ അനുഭവപ്പെടുന്ന കാലഘട്ടങ്ങളില്‍ (ഉദാ: ഹിമയുഗം) കാറ്റുകള്‍ ദുര്‍ബലമാവുകയും ഭൂമധ്യരേഖാപ്രദേശങ്ങളില്‍ മാത്രമായി അവയുടെ സാന്നിധ്യം കൂടുതലായി അനുഭവപ്പെടുകയും ധ്രുവമേഖലാ അധിനിവേശം കുറയുകയും ചെയ്തപ്പോള്‍, താപന കാലഘട്ടങ്ങളില്‍ (1450 കള്‍ക്ക് മുന്‍പും 1920 ന് ശേഷവും) ഇവ ശക്തിയാര്‍ജിക്കുകയും ചെയ്യുന്നതായി കാണപ്പെടുന്നു.

വിവരശേഖരണങ്ങളുടെ അപഗ്രഥനങ്ങളില്‍നിന്നും നിലവിലെ സാഹചര്യത്തില്‍ പശ്ചിമവാതങ്ങളുടെ പ്രകൃതം എപ്രകാരമായിരിക്കുമെന്നും ഭാവിയിലെ അനുമാനിതകാലാവസ്ഥാ സാഹചര്യങ്ങളില്‍ അത് എപ്രകാരമാകുമെന്നുമുള്ള നിഗമങ്ങഗളില്‍ എത്തിച്ചേരാനാകും. 1920 കള്‍ക്ക് ശേഷം ദക്ഷിണ ധ്രുവദിശയിലേക്ക് തുടര്‍ന്നുകൊണ്ടിരിക്കുന്ന പശ്ചിമവാതങ്ങളുടെ അധിനിവേശം വര്‍ധിതതാപന സാഹചര്യങ്ങളില്‍ വ്യാപകമാവാന്‍ തുടരുവാന്‍ തന്നെയാണ് സാധ്യത.

കാത്തിരിക്കുന്നത് വ്യാപക മാറ്റങ്ങള്‍

ലോകത്തിന്റെ പല ഭാഗത്തും അനുഭവപ്പെടുന്ന വരള്‍ച്ചാവേളകള്‍, കാട്ടുതീ, സമുദ്രഹിമ ശോഷണം, സമുദ്രപര്യയനം, ഹിമാനികളുടെ സ്ഥിരത എന്നിവയുമായും പശ്ചിമ വാതങ്ങള്‍ക്ക് അഭേദ്യ ബന്ധമുണ്ട്. അന്തരീക്ഷ താപവര്‍ധനവ് മൂലം ഓസ്‌ട്രേലിയ, ദക്ഷിണാഫ്രിക്ക, തെക്കേ അമേരിക്ക എന്നിവിടങ്ങളില്‍നിന്നും ഈര്‍പ്പത്തെ വഹിച്ചുകൊണ്ടുവരുന്ന പടിഞ്ഞാറന്‍ കാറ്റുകള്‍ ദക്ഷിണധ്രുവദിശയിലേക്ക് പലായനം ചെയ്യുന്നത് മൂലം പൊതുവെ മഴ കുറഞ്ഞ് വരള്‍ച്ച, കാട്ടുതീ എന്നിവയ്ക്കുള്ള സാധ്യതകളേറുന്നു. മനുഷ്യപ്രേരിത ഘടകങ്ങള്‍ മൂലമുള്ള താപനം ഇത്തരം സാഹചര്യങ്ങളെ കൂടുതല്‍ കടുപ്പിക്കുകയും ചെയ്യുന്നു.

ദക്ഷിണാര്‍ധഗോളത്തിലെ ശക്തിയേറിയ പടിഞ്ഞാറന്‍കാറ്റുകള്‍, സമുദ്രപര്യയന വ്യവസ്ഥകളെ സ്വാധീനിക്കുകവഴി ചൂടേറിയസമുദ്രജലത്തെ അന്റാര്‍ട്ടിക്ക മേഖലയിലേക്ക് തള്ളിവിടുകയും, അതുവഴി ആ മേഖലയിലെ മഞ്ഞുരുക്കത്തിനും ഹിമപാളികളുടെ ശോഷണത്തിനും വഴിയൊരുക്കുകയും ചെയ്യുന്നു. ധ്രുവമേഖലയിലേക്ക് കടന്നുകയറാനുള്ള പടിഞ്ഞാറന്‍ കാറ്റുകളുടെ നിലവിലെ പ്രവണത, ഇപ്പോള്‍ തന്നെ അസ്ഥിര സ്വാഭാവം പ്രകടിപ്പിക്കുന്ന അന്റാര്‍ട്ടിക്കമേഖലയിലെ ഐസ് പാളികളുടെ ശിഥിലീകരണത്തിന് വേഗത കൂട്ടുമെന്നാണ് കരുതുന്നത്. സഞ്ചാര മേഖലകളുടെ അതിവിസ്തൃതി, അക്ഷാംശാന്തര സഞ്ചാര സംഭവം, അന്തരീക്ഷ-സമുദ്ര പര്യയന വ്യവസ്ഥകളിലിന്‍ മേല്‍ ഉള്ള സാധീനം എന്നിവ മൂലം , പശ്ചിമ വത്തനാളുടെ പ്രകൃതത്തിലുണ്ടായേക്കാവുന്ന ഏതൊരു മാറ്റവും ആഗോള കാലാവസ്ഥയില്‍ പ്രതിഫലിക്കും എന്നത് തര്‍ക്കമറ്റ വസ്തുതയാണ്.

കഴിഞ്ഞ 50 വര്‍ഷങ്ങളില്‍ പശ്ചിമ വാതങ്ങളുടെ പ്രകൃതത്തിലുണ്ടായ മാറ്റങ്ങള്‍ പ്രധാനമായും കാര്‍ബണ്‍ഡയോക്സൈഡിന്റെ ഉയര്‍ന്ന തോത് മൂലം ഉളവായ താപനം മൂലമാണെന്ന് വിലയിരുത്തപ്പെടുന്നു. ഉത്തരാര്‍ധ ഗോളത്തെ അപേക്ഷിച്ച് ദക്ഷിണാര്‍ധഗോളത്തിലാണ് പ്രകടമായ മാറ്റങ്ങള്‍ നിരീക്ഷിക്കപ്പെടുന്നത്. മുന്‍കാലങ്ങളില്‍ ഇരുഅര്‍ധഗോളങ്ങളും തമ്മില്‍ നിലനിന്നിരുന്ന താപന വൈവിധ്യത്തിന്റെ ഫലമായി പശ്ചിമവാതങ്ങള്‍ ദക്ഷിണദിശയിലേക്ക് കൂടുതല്‍ അധിനിവേശിച്ചു. എന്നാല്‍, കഴിഞ്ഞ ഹിമയുഗാവസാനത്തില്‍, ഉണ്ടായിരുന്നതുപോലെ ഉത്തര-ദക്ഷിണ അര്‍ധഗോളങ്ങള്‍ തമ്മിലുള്ള താപന വൈവിധ്യം നിലവില്‍ അത്ര പ്രകടമല്ല. എങ്കില്‍, പോലും താപന തോതിലുണ്ടാകുന്ന ചെറു വ്യതിയാനങ്ങള്‍ പോലും കാലാവസ്ഥാ വ്യതിയാനത്തിന് കാരണമായി ഭവിച്ചേക്കാം.

  • കേരള കാര്‍ഷിക സര്‍വകലാശാലയുടെ കാലാവസ്ഥാ വ്യതിയാന-പരിസ്ഥിതി ശാസ്ത്ര കോളജിലെ സയന്റിഫിക് ഓഫീസറാണ് ലേഖകന്‍

Stay updated with the latest news headlines and all the latest Lifestyle news. Download Indian Express Malayalam App - Android or iOS .

ഈ ലേഖനം പങ്കിടുക

നിങ്ങൾക്ക് ഈ ലേഖനം ഇഷ്ടപ്പെട്ടെങ്കിൽ, ഇത് നിങ്ങളുടെ സുഹൃത്തുക്കളുമായി പങ്കിടുക അവർ പിന്നീട് നന്ദി പറയും

Subscribe to our Newsletter

  • Latest News
  • Grihalakshmi
  • Forgot password
  • My bookmarks
  • remya harikumar

'കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയങ്ങോട്ട് ഉണ്ടാകില്ലെന്നത് യാഥാര്‍ത്ഥ്യം'

കെ.സഹദേവന്‍/ രമ്യ ഹരികുമാര്‍, 13 october 2021, 02:27 pm ist.

essay on climate change in malayalam

കനത്തമഴയെ തുടർന്ന് നിറഞ്ഞൊഴുകുന്ന അതിരപ്പള്ളി വെള്ളച്ചാട്ടം| ഫോട്ടോ: ജെ ഫിലിപ്പ്‌

മ നോഹരമായ ഭൂപ്രകൃതിയും കാലാവസ്ഥയുമായിരുന്നു കേരളത്തിലേക്ക് സഞ്ചാരികളെ ആകര്‍ഷിച്ചിരുന്നത്. എന്നാല്‍ കുറച്ചുനാളായി മഴയൊന്ന് ശക്തിയോടെ പെയ്താല്‍ വീട്ടുമുറ്റത്ത് വെളളമുയരുന്നതിനൊപ്പം മലയാളിയുടെ നെഞ്ചിടിപ്പുമുയരും. വര്‍ഷകാലത്തില്‍ പ്രളയത്തെ മുന്‍കൂട്ടി കണ്ട് തയ്യാറെടുക്കാന്‍ കഴിഞ്ഞ രണ്ടുവര്‍ഷം കൊണ്ട് മലയാളി പഠിച്ചുകഴിഞ്ഞു. ന്യൂനമര്‍ദവും റെഡ് അലര്‍ട്ടും യെല്ലോ അലര്‍ട്ടുമെല്ലാം പതിവുശീലങ്ങളായി തുടങ്ങി. കേരളത്തിന് ഇതുവരെ ലഭിച്ചുകൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയുണ്ടാകില്ലെന്നുളളത് യാഥാര്‍ഥ്യമാണെന്ന് പറയുകയാണ് പരിസ്ഥിതി പ്രവര്‍ത്തകനായ കെ.സഹദേവന്‍ .ആഗോളതലത്തിലുണ്ടായ കാലവസ്ഥാ വ്യതിയാനം ഇന്ത്യയുടെ തെക്കേയറ്റത്തുകിടക്കുന്ന ഈ കൊച്ചുകേരളത്തെ എത്രത്തോളം പ്രതികൂലമായി ബാധിച്ചു എന്നതിന്റെ മുന്നറിയിപ്പായി വേണം കാലവസ്ഥാ മാറ്റങ്ങളെ വിലയിരുത്തേണ്ടതെന്നും അദ്ദേഹം വ്യക്തമാക്കുന്നു.

ദൈവത്തിന്റെ സ്വന്തം നാടെന്നാണ് കേരളത്തിന്റെ വിശേഷണം, മനോഹരമായ കാലാവസ്ഥയ്ക്ക് പേരുകേട്ട ഇടം. പക്ഷേ കഴിഞ്ഞ കുറച്ചുവര്‍ഷങ്ങളായി കേരളം ഭയപ്പാടിലാണ്. കാലം തെറ്റിപ്പെയ്യുന്ന മഴ, പ്രളയം, കടുത്ത ചൂട്, ആഗോളതലത്തിലുണ്ടായ കാലാവസ്ഥാ വ്യതിയാനം കേരളത്തിലെ കാലാവസ്ഥയെ എങ്ങനെയാണ് ബാധിച്ചിരിക്കുന്നത്?

നാളിതുവരെ കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയങ്ങോട്ട് ഉണ്ടാകില്ല എന്നത് യാഥാര്‍ത്ഥ്യമാണ്. അതിതീവ്ര കാലാവസ്ഥാ സംഭവങ്ങള്‍ ഇനിയങ്ങോട്ട് കേരളത്തില്‍ നിത്യസംഭവങ്ങളായി മാറും. ഇത് ആഗോള കാലാവസ്ഥാ വ്യതിയാനവുമായി ബന്ധപ്പെട്ട് ഉണ്ടായി വന്ന മാറ്റം തന്നെയാണ്. കഴിഞ്ഞ അരനൂറ്റാണ്ട് കാലയളവില്‍ ആഗോള ശരാശരിയിലും കൂടിയ താപവര്‍ദ്ധനവാണ് ഇന്ത്യന്‍ സമുദ്രമേഖലയില്‍ സംഭവിച്ചിരിക്കുന്നത്. ഇത് സമുദ്ര ജല താപനത്തിലും വര്‍ദ്ധനവ് സൃഷ്ടിച്ചു. അറബിക്കടലിന്റെ ഉപരിതല ഊഷ്മാവ് 28 ഡിഗ്രി ആയി ഉയര്‍ന്നുവെന്ന് കണക്കാക്കപ്പെടുന്നു. അതുകൊണ്ടുതന്നെ ഈ മേഖലയില്‍ അതി തീവ്ര ചുഴലിക്കാറ്റുകളുടെയും കടല്‍ക്ഷോഭങ്ങളുടെയും ആവൃത്തിയില്‍ വലിയ വര്‍ദ്ധനവാണ് സംഭവിക്കുവാന്‍ പോകുന്നത്. താപനിലയിലെ ഈ വര്‍ദ്ധനവ് ചുഴലിക്കൊടുങ്കാറ്റുകളുടെ എണ്ണം വര്‍ദ്ധിപ്പിക്കുന്നുവെന്നത് മാത്രമല്ല, മഴപ്പെയ്ത്തിലും മാറ്റങ്ങള്‍ സൃഷ്ടിക്കുവാന്‍ പര്യാപ്തമാണ്. ഒരു സീസണില്‍ പെയ്യേണ്ടുന്ന മഴ ചിലപ്പോള്‍ ഏതാനും ദിവസങ്ങള്‍ കൊണ്ട് പെയ്ത് തീര്‍ത്തേക്കാം. പശ്ചിമഘട്ടത്തിലടക്കം പെയ്യുന്ന അതിതീവ്ര മഴയില്‍ മൂന്നിരട്ടി വര്‍ദ്ധനവെങ്കിലും സംഭവിച്ചിട്ടുള്ളതായി രേഖപ്പെടുത്തപ്പെട്ടിട്ടുണ്ട്. മഴയുടെ അളവില്‍ ഉണ്ടാകുന്ന ഈ മാറ്റങ്ങള്‍ ഉരുള്‍പൊട്ടല്‍, കടുത്ത വരള്‍ച്ച തുടങ്ങിയ പ്രതിസന്ധികളിലേക്കും കൊണ്ടുചെന്നെത്തിക്കും. 2018ലും 19ലും കേരളത്തിന്റെ പശ്ചിമഘട്ടത്തിലുടനീളം ഉണ്ടായ ഉരുള്‍പൊട്ടലുകള്‍ ശ്രദ്ധിച്ചാല്‍ ഇക്കാര്യം വ്യക്തമാകും. അതുപോലെത്തന്നെ കേരളത്തിന്റെ വിവിധ ജില്ലകള്‍ വേനല്‍ക്കാലത്തിന്റെ ആരംഭത്തോടെ തന്നെ കടുത്ത ജലക്ഷാമത്തെ അഭിമുഖീകരിക്കേണ്ടി വരുന്നതും നാം കാണുന്നു. ഇവയൊക്കെ സൂചിപ്പിക്കുന്നത്, കേരളത്തില്‍ കാലാകാലങ്ങളായി നാം അനുഭവിച്ചുപോരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം നമുക്ക് നഷ്ടമായിക്കഴിഞ്ഞു എന്നാണ്.

മുന്‍പത്തേതില്‍ നിന്ന് വ്യത്യസ്തമായി അടിക്കടി ന്യൂനമര്‍ദങ്ങള്‍ നാം അഭിമുഖീകരിക്കുന്ന ഒരു അവസ്ഥയുണ്ട്. ഇതേ തുടര്‍ന്നുണ്ടാകുന്ന ചുഴലിക്കാറ്റും കനത്തമഴയും നാശനഷ്ടങ്ങളും റിപ്പോര്‍ട്ട് ചെയ്യപ്പെടുന്നുമുണ്ട്. കാലാവസ്ഥ വ്യതിയാനവുമായി ഇതിനെ കൂട്ടിവായിക്കാമോ?

അതിതീവ്രമഴ, ചുഴലിക്കൊടുങ്കാറ്റ്, ഹിമ തടാക വിസ്‌ഫോടനം, മേഘ വിസ്‌ഫോടനം തുടങ്ങിയ പ്രകൃതി പ്രതിഭാസങ്ങളുടെ ആവൃത്തിയിലും തീവ്രതയിലും വലിയ മാറ്റങ്ങള്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്നുവെന്നത് യാഥാര്‍ത്ഥ്യമാണ്. ഇത് കേരളത്തിന്റെയോ ഇന്ത്യയുടെയോ മാത്രം കാര്യമല്ല. ആഗോളതലത്തില്‍ തന്നെ കാലാവസ്ഥാ വ്യതിയാനം എന്നത് നിഷേധിക്കാന്‍ കഴിയാത്ത യാഥാര്‍ത്ഥ്യമായി മാറിക്കഴിഞ്ഞിരിക്കുന്നു. ഇത്തരത്തിലുള്ള അതിതീവ്ര കാലാവസ്ഥാ സംഭവങ്ങള്‍ രാജ്യത്തിന്റെ സാമ്പത്തിക-ഉത്പാദന മേഖലയില്‍ സൃഷ്ടിക്കുന്ന പ്രതിസന്ധികള്‍ രൂക്ഷമാണ്. ഓരോ വര്‍ഷം കൂടുന്തോറും സമ്പദ്‌വ്യവസ്ഥയില്‍ അവയുണ്ടാക്കുന്ന ആഘാതം വര്‍ദ്ധിച്ചുവരികയാണ്.

കാലാവസ്ഥാ വ്യതിയാനവുമായിട്ടുതന്നെയാണ് ഇവയ്ക്കുള്ള ബന്ധം. മണ്‍സൂണ്‍ കാലത്തിന് ശേഷം അറബിക്കടലില്‍ തീവ്ര സ്വഭാവമുള്ള കൊടുങ്കാറ്റുകളുടെ എണ്ണത്തില്‍ വര്‍ദ്ധനവുണ്ടാകുമെന്ന് പ്രവചിക്കപ്പെട്ടുണ്ട്. 2015 തൊട്ട് ഈ പ്രവചനം യാഥാര്‍ത്ഥ്യമായിക്കൊണ്ടിരിക്കുന്നത് നമുക്ക് കാണാം.

2018, 2019 വര്‍ഷങ്ങളില്‍ കേരളത്തിലുണ്ടായ മഴപ്പെയ്ത്തില്‍ കൂടുതല്‍ പ്രകടമായ വ്യത്യാസം കാണാവുന്നതാണ്. ഈ വര്‍ഷങ്ങളിലെ മഴപ്പെയ്ത്തിനെ കൂടുതല്‍ സൂക്ഷ്മ നിരീക്ഷണത്തിന് വിധേയമാക്കിയാല്‍ അവ തമ്മിലും വ്യത്യാസങ്ങളുണ്ടെന്ന് കണ്ടെത്താം. അതിവൃഷ്ടിയും പ്രളയദുരിതങ്ങളും ഏറ്റവും കൂടുതല്‍ സംഭവിച്ചത് 2018ലെ മഴക്കാലത്തായിരുന്നുവെങ്കിലും മഴയുടെ പെയ്ത്തില്‍ സംഭവിച്ച വര്‍ദ്ധനവിനെ അടിസ്ഥാനമാക്കുകയാണെങ്കില്‍ 2019ല്‍ അതിവൃഷ്ടിയുടെ തോത് വലുതായിരുന്നു. മേഘവിസ്‌ഫോടനം പോലുള്ള പ്രകൃതി പ്രതിഭാസങ്ങളോട് (ഒരു മണിക്കൂറില്‍ 10സെന്റീമീറ്ററില്‍ കൂടിയ മഴ കുറഞ്ഞ പ്രദേശത്ത് ലഭിക്കുന്നത്) അടുത്തുനില്‍ക്കുന്ന സംഭവങ്ങള്‍ ഈ വര്‍ഷത്തില്‍ കേരളത്തില്‍ സംഭവിച്ചിട്ടുണ്ട്. മഴപ്പെയ്ത്തിലെ ഈ മാറ്റങ്ങളെ ഗൗരവത്തോടെ കാണാന്‍ നമുക്ക് സാധിക്കേണ്ടതാണ്. കാലവര്‍ഷം പിന്‍വാങ്ങുന്ന ഘട്ടത്തില്‍ സംഭവിക്കുന്ന അതിവൃഷ്ടിയും ന്യൂനമര്‍ദ്ദങ്ങളും കാലാവസ്ഥാ വ്യതിയാനത്തിന്റെ സൂചനകള്‍ തന്നെയാണ്. അതിവൃഷ്ടിയും പ്രളയവും ഏതോ വിദൂര പ്രദേശങ്ങളിലെ പ്രശ്‌നങ്ങളായി കണ്ടുകൊണ്ട് അലസ സമീപനം സ്വീകരിക്കാന്‍ നമുക്ക് ഇനിയും സാധ്യമല്ല.

ആയിരം വര്‍ഷത്തിനിടയിലെ കനത്തമഴയാണ് കഴിഞ്ഞ ജൂലായില്‍ ചൈന അഭിമുഖീകരിച്ചത്. മുന്നൂറിലേറെപ്പേര്‍ക്ക് ജീവന്‍ നഷ്ടപ്പെട്ടു.ഇപ്പോഴും ചൈനയിലെ ഷാന്‍ക്സി പ്രവിശ്യയില്‍ കനത്തമഴ തുടരുകയാണ്. 1.76 ദശലക്ഷം പേരാണ് മഴയില്‍ കഷ്ടത അനുഭവിക്കുന്നത്. ആയിരക്കണക്കിന് വീടുകള്‍ തകര്‍ന്നു, ഹെക്ടറുകണക്കിന് കൃഷിയിടങ്ങള്‍ നശിച്ചതായും റിപ്പോര്‍ട്ടുകള്‍ പുറത്തുവന്നുകൊണ്ടിരിക്കുകയാണ്. കാലാവസ്ഥാ വ്യതിയാനത്തിന്റെ മുന്നറിയിപ്പായാണോ ഇതിനെ കണക്കാക്കേണ്ടത് ?

അതി തീവ്ര കാലാവസ്ഥാ സംഭവങ്ങളില്‍ നിന്ന് ഇനി ഒരു രാജ്യവും സുരക്ഷിതമല്ല എന്നതാണ് ചൈനയിലും ജര്‍മ്മനിയിലും അമേരിക്കയിലും ഒക്കെ അടുത്ത കാലത്തുണ്ടായ പ്രകൃതി ദുരന്തങ്ങള്‍ തെളിയിക്കുന്നത്. ഇക്കഴിഞ്ഞ ജൂലൈ മാസത്തില്‍ പടിഞ്ഞാറന്‍ ജര്‍മ്മനിയിലും ബെല്‍ജിയത്തിലും ഉണ്ടായ അതിതീവ്ര മഴയില്‍ നൂറുകണക്കിന് ആളുകളുടെ ജീവന്‍ നഷ്ടപ്പെടുകയുണ്ടായി. കാലാവസ്ഥാ മാറ്റങ്ങള്‍ പ്രവചനാതീതമായിക്കൊണ്ടിരിക്കുന്നു എന്നതാണ് ജര്‍മ്മനി പോലുള്ള സാങ്കേതിക സൗകര്യങ്ങള്‍ കൂടുതലുള്ള ഒരു രാജ്യത്ത് സംഭവിച്ച ഇത്രയധികം മരണങ്ങള്‍ക്ക് കാരണം. ചൈന അടക്കമുള്ള ഏഷ്യന്‍, തെക്കനേഷ്യന്‍ രാജ്യങ്ങളെ കാലാവസ്ഥാ പ്രതിസന്ധി കൂടുതല്‍ രൂക്ഷമായി ബാധിക്കാന്‍ പോകുന്നതേയുള്ളൂ. കാലാവസ്ഥാ അഭയാര്‍ത്ഥികളുടെ എണ്ണത്തില്‍ അടുത്ത ഏതാനും ദശകങ്ങളില്‍ വലിയ വര്‍ദ്ധനവ് സംഭവിക്കും. ബംഗ്ലാദേശ്, ഇന്ത്യ പോലുള്ള രാജ്യങ്ങള്‍ കടല്‍ കയറ്റത്തിന്റെയും വെള്ളപ്പൊക്കത്തിന്റെയും രൂക്ഷത അനുഭവിക്കേണ്ടിവരും. കാലാവസ്ഥയില്‍ സംഭവിക്കുന്ന ഈ മാറ്റങ്ങള്‍ ഏഷ്യന്‍ രാജ്യങ്ങളിലെ കാര്‍ഷിക മേഖലയെ, പ്രത്യേകിച്ചും നെല്ല്, ഗോതമ്പ് തുടങ്ങിയ വിളകളെ, കൂടുതല്‍ പ്രതിസന്ധിയിലേക്ക് കൊണ്ടുചെന്നെത്തിക്കും. കഴിഞ്ഞ ഏതാനും ദശകങ്ങളായി കാലാവസ്ഥയിലെ ഈ മാറ്റങ്ങള്‍ പ്രകടമാണെങ്കിലും ഇതിനെ ഒരു മുന്നറിയിപ്പായി കണക്കാക്കുവാന്‍ നാം തയ്യാറായിട്ടില്ല. മഴ പെയ്യുമ്പോള്‍ മഴയെക്കുറിച്ചും ജലക്ഷാമം അനുഭവിക്കുമ്പോള്‍ വരള്‍ച്ചയെക്കുറിച്ചും മാത്രം ചിന്തിക്കുക എന്നതാണ് നമ്മുടെ ശീലം. ഇവ തമ്മിലുള്ള ബന്ധത്തെക്കുറിച്ചോ, കാലാവസ്ഥയിലെ മാറ്റങ്ങളെക്കുറിച്ചോ ഗൗരവമായി കണക്കിലെടുക്കാന്‍ നമുക്ക് സാധിച്ചിട്ടില്ല.

ഇന്ത്യയില്‍ ഓരോ പത്തുവര്‍ഷം കൂടുമ്പോഴും 17 മീറ്റര്‍ കടല്‍ കരയിലേക്ക് കയറുമെന്ന് ഐക്യരാഷ്ട്ര സംഘടന രൂപീകരിച്ച ഐപിസിസി റിപ്പോര്‍ട്ടില്‍ ഉണ്ടായിരുന്നു. പടിഞ്ഞാറ് അതിര് അറബിക്കടലായ കേരളത്തെ ഇത് എങ്ങനെയാണ് ബാധിക്കുക?

കടല്‍ക്ഷോഭം, വെള്ളപ്പൊക്കം തുടങ്ങിയ പ്രകൃതി ദുരന്തങ്ങളെക്കുറിച്ച് കേരളം അടുത്തകാലത്ത് മാത്രമാണ് കൂടുതല്‍ ഗൗരവമായി ചര്‍ച്ച ചെയ്യാന്‍ തുടങ്ങിയത്. ഇതിന് കാരണം 2018ലെ പ്രളയം കേരളത്തിലെ നഗര ജീവിതത്തെ കടുത്ത പ്രതിസന്ധിയിലേക്ക് തള്ളിവിട്ടു എന്നതാണ്. നഗരജീവിതത്തിന്റെ സുരക്ഷിതത്വത്തില്‍ കാലാവസ്ഥയില്‍ ഉണ്ടായിക്കൊണ്ടിരിക്കുന്ന മാറ്റങ്ങളെയും തീരപ്രദേശങ്ങളിലും കായല്‍നിലങ്ങളിലും കാടിനോട് ചേര്‍ന്നും ജീവിച്ചുപോരുന്ന പാരിസ്ഥിതിക സമൂഹങ്ങള്‍ (ecosystem people) ഏറെക്കാലങ്ങളായി അനുഭവിച്ചുപോരുന്ന ദുരിതങ്ങളെ മനസ്സിലാക്കുവാനോ അവരുടെ മുന്നറിയിപ്പുകളില്‍ നിന്ന് പാഠങ്ങള്‍ ഉള്‍ക്കൊള്ളുവാനോ നാം തയ്യാറായില്ല എന്നതാണ് വസ്തുത. കേരളത്തിന്റെ തീരദേശ മേഖലയില്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്ന മാറ്റങ്ങളും കടല്‍കയറ്റവും സംബന്ധിച്ച മുന്നറിയിപ്പുകള്‍ മത്സ്യത്തൊഴിലാളി സമൂഹം വളരെക്കാലമായി നല്‍കിക്കൊണ്ടിരിക്കുന്നു. സംസ്ഥാനത്തിന്റെ ഭൂവിസ്തൃതിയില്‍ 15% മാത്രം വരുന്ന തീരമേഖലയിലാണ് ജനസംഖ്യയുടെ 30%വും അധിവസിക്കുന്നതെന്ന വസ്തുതയെ നാം കാര്യമായി പരിഗണിക്കുന്നില്ല. ജനസാന്ദ്രതയുടെ കാര്യത്തില്‍ കേരളത്തിന്റെ ഇതര പ്രദേശങ്ങളേക്കാള്‍ 2.5 ഇരട്ടിയാണ് തീരദേശ മേഖലയില്‍. അതുകൊണ്ടുതന്നെ കടല്‍ക്ഷോഭം, തീരശോഷണം, കടല്‍ കയറല്‍ തുടങ്ങിയ പ്രതിഭാസങ്ങള്‍ വലിയൊരു വിഭാഗം ജനങ്ങളുടെ ജീവിതത്തെ ദുരിതമയമാക്കും.

സമുദ്ര നിരപ്പില്‍ സംഭവിക്കുന്ന വര്‍ദ്ധനവ്, കരയിലേക്കുള്ള കടല്‍ കയറ്റത്തിന്റെ ആക്കം വര്‍ദ്ധിപ്പിക്കുമെന്നത് യാഥാര്‍ത്ഥ്യമാണ്. അടുത്ത ഏതാനും ദശകങ്ങള്‍ക്കുള്ളില്‍ത്തന്നെ കൊച്ചി അടക്കമുള്ള നഗരങ്ങള്‍ കടല്‍കയറ്റത്തിന്റെ തീവ്രത അനുഭവിക്കാന്‍ പോകുകയാണെന്നാണ് മുന്നറിയിപ്പ്. ഇതര തീരദേശ സംസ്ഥാനങ്ങളില്‍ നിന്ന് ഭിന്നമായി വിശാലമായ കടല്‍ത്തീരമുണ്ടായിരുന്ന കേരളത്തില്‍ കഴിഞ്ഞ അരനൂറ്റാണ്ട് കാലമായെങ്കിലുമായി നാം നടത്തിവരുന്ന അശാസ്ത്രീയമായ വികസന പദ്ധതികളും തീരപരിപാലന നടപടികളും മൂലം നമ്മുടെ തീരമേഖല നാശത്തെ നേരിട്ടുകൊണ്ടിരിക്കുകയാണ്. തീരസ്ഥിരത നഷ്ടപ്പെട്ട കേരളത്തിന്റെ കടല്‍ത്തീരം അറബിക്കടലില്‍ സംഭവിക്കുന്ന ഏതുവിധത്തിലുള്ള കാലാവസ്ഥാ മാറ്റങ്ങളുടെയും ഏറ്റവും അടുത്ത ഇരകളായിരിക്കും. കേരളത്തിലെ ഒമ്പത് തീരദേശ ജില്ലകളില്‍ ഏറ്റവും ഉയര്‍ന്ന ജനസാന്ദ്രതയുള്ള ആലപ്പുഴ, തിരുവനന്തപുരം എന്നീ ജില്ലകള്‍ കൂടുതല്‍ വള്‍നറബ്ള്‍ ആയ അവസ്ഥയിലാണ്. ആയിരം ചതുരശ്ര കിലോമീറ്റര്‍ ചുറ്റളവുള്ള കുട്ടനാടിന്റെ മൂന്നിലൊന്ന് സമുദ്ര നിരപ്പിന് താഴെയാണുള്ളതെന്നത് കടല്‍ കയറ്റത്തിന്റെ ഗൗരവം വര്‍ദ്ധിപ്പിക്കുന്നു.

തീരമേഖലയൂടെ പാരിസ്ഥിതിക സുസ്ഥിരത കണക്കിലെടുക്കാതെയുള്ള നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങള്‍ (തീരപരിപാലനം ഉദ്ദേശിച്ചുകൊണ്ടുള്ള പുലിമുട്ടുകളുടെ നിര്‍മ്മാണം അടക്കം) കേരളത്തിന്റെ തീരമേഖലയില്‍ ദീര്‍ഘകാല പ്രത്യാഘാതങ്ങള്‍ സൃഷ്ടിക്കാന്‍ പോകുന്നതേയുള്ളൂ. ഇന്ത്യയില്‍ത്തന്നെ ഏറ്റവും കൂടുതല്‍ മത്സ്യബന്ധനം നടക്കുന്ന കേരളത്തിന്റെ തീരപ്രദേശത്ത് സംഭവിക്കുന്ന മാറ്റങ്ങള്‍ മത്സ്യത്തൊഴിലാളി സമൂഹത്തിന്റെ ജീവനും ജീവനോപാധികള്‍ക്കും വലിയ പ്രതിസന്ധികള്‍ സൃഷ്ടിക്കും.

കാലിഫോര്‍ണിയയില്‍ കാട്ടുതീ റിപ്പോര്‍ട്ട് ചെയ്യപ്പെട്ടിരുന്നു, ആമസോണ്‍ നിന്നുകത്തുന്നതും കഴിഞ്ഞ വര്‍ഷം നാം കണ്ടു. പ്രകൃതി പലതരത്തിലാണ് നമ്മോട് പ്രതികരിക്കുന്നത്. ചില രാജ്യങ്ങള്‍ കനത്തമഴയില്‍ മുങ്ങുമ്പോള്‍ അവശേഷിക്കുന്ന കാടകങ്ങള്‍ കത്തുകയാണ്..

കാട്ടു തീ, ചുഴലിക്കൊടുങ്കാറ്റുകള്‍, അതിവൃഷ്ടി, മേഘവിസ്‌ഫോടനം, മഞ്ഞുപാളികളുടെ നാശം തുടങ്ങിയ പ്രകൃതി ദുരന്തങ്ങളെയും അത്തരം അതിതീവ്ര കാലാവസ്ഥാ സംഭവങ്ങളിലേക്ക് നയിച്ച മനുഷ്യ ജന്യ കാരണങ്ങളെക്കുറിച്ചും ശാസ്ത്രലോകം മുന്നറിയിപ്പ് നല്‍കാന്‍ തുടങ്ങിയിട്ട് പതിറ്റാണ്ടുകള്‍ കഴിഞ്ഞു. പ്രകൃതിയുടെ മേലുള്ള മനുഷ്യന്റെ കൈകടത്തലുകള്‍ക്ക് പോകാന്‍ കഴിയുന്ന ദൂരം എത്തിക്കഴിഞ്ഞുവെന്നാണ് ഈ സൂചനകളില്‍ നിന്ന് മനസ്സിലാക്കേണ്ടത്. പ്രകൃതി നല്‍കുന്ന മുന്നറിയിപ്പുകളെ മനസ്സിലാക്കാതെ നിലവിലുള്ള കാലാവസ്ഥാ പ്രതിസന്ധികളെ സാങ്കേതികമായ പരിഹാരങ്ങളിലൂടെ മറികടക്കാം എന്ന തെറ്റുദ്ധാരണയാണ് ആഗോളതലത്തില്‍ തന്നെ രാഷ്ട്രീയ ഭരണകൂടങ്ങള്‍ സൂക്ഷിക്കുന്നത്. പ്രകൃതിയില്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്ന മാറ്റങ്ങള്‍ ഒരു ജീവജാതി എന്ന നിലയില്‍ ഏറ്റവും കൂടുതല്‍ ബാധിക്കുക മനുഷ്യനെത്തന്നെയായിരിക്കും. കാരണം, പ്രകൃതിയുടെ സ്വാഭാവിക താളത്തില്‍ നിന്ന് ഭിന്നമായൊരു ജീവിതശൈലി കെട്ടിപ്പൊക്കിയെന്ന് നാം അവകാശപ്പെടുമ്പോഴും അടിസ്ഥാനപരമായി പ്രകൃതി വിഭവങ്ങളെയും ഭൂമിയിലെ കാലാവസ്ഥയെയും ആധാരമാക്കിയാണ് മനുഷ്യന്റെ നിലനില്‍പ് സാധ്യമാക്കുന്നത്. അതുകൊണ്ടുതന്നെ കാലാവസ്ഥയിലും പ്രകൃതി വിഭവങ്ങളുടെ ലഭ്യതയിലും സംഭവവിക്കുന്ന ഏറ്റക്കുറച്ചിലുകള്‍ മനുഷ്യന്റെ സാമൂഹ്യജീവിത സംഘാടനത്തെയും സമ്പദ്ഘടനയെയും പ്രതികൂലമായി ബാധിക്കും എന്ന കാര്യത്തില്‍ യാതൊരു സംശയവുമില്ല. പ്രകൃതി നല്‍കുന്ന മുന്നറിയിപ്പുകളെ കണക്കിലെടുത്തുകൊണ്ട് പ്രകൃതിയിന്മേലുള്ള മനുഷ്യ ഇടപെടലുകളില്‍ മാറ്റം വരുത്താതെ ഇനിയും മുന്നോട്ടുപോകാന്‍ കഴിയില്ലെന്ന് തന്നെയാണ് വിലയിരുത്തപ്പെടേണ്ടത്. പ്രകൃതിക്ക് നേരെ സഹസ്രാബ്ദങ്ങളായി നടത്തിപ്പോരുന്ന യുദ്ധത്തില്‍ ജയം കൈവരിക്കാന്‍ മനുഷ്യന് സാധിക്കില്ലെന്ന് ഇനിയെങ്കിലും നാം മനസ്സിലാക്കേണ്ടതുണ്ട്.

കഴിഞ്ഞ പത്തുവര്‍ഷത്തെ കണക്കുനോക്കിയാല്‍ പ്രളയവും ചൂടുമെല്ലാം കൂടുകയാണ്. പ്രളയം കേരളത്തിന് ഒരു ശീലമായി മാറിക്കൊണ്ടിരിക്കുകയാണ്. അടുത്ത പത്തുവര്‍ഷം കൂടി കഴിയുമ്പോള്‍ കേരളത്തിന്റെ അവസ്ഥ എന്തായിരിക്കും?

കേരളത്തിന്റെ മഴപ്പെയ്ത്തില്‍ വലിയ മാറ്റങ്ങള്‍ സംഭവിച്ചുവെന്നത് നേരത്തെ സൂചിപ്പിച്ച കാര്യമാണ്. ആന്ധ്രപ്രദേശ്, ഒഡീഷ, പശ്ചിമ ബംഗാള്‍ തുടങ്ങിയ കിഴക്കന്‍ തീരപ്രദേശത്തോട് ചേര്‍ന്ന് നില്‍ക്കുന്ന സംസ്ഥാനങ്ങളുടേത് പോലെ പ്രളയക്കെടുതികള്‍ വര്‍ഷാവര്‍ഷം അനുഭവിക്കാന്‍ വിധിക്കപ്പെട്ടവരായി കേരള സമൂഹവും മാറിക്കൊണ്ടിരിക്കുകയാണ്. ആഗോളതലത്തില്‍ തന്നെ ചുഴലിക്കൊടുങ്കാറ്റുകളുടെ എണ്ണത്തില്‍ 52ശതമാനം വര്‍ദ്ധനവ് രേഖപ്പെടുത്തപ്പെട്ടിട്ടുണ്ടെന്നതും ഈയൊരു പ്രവണത വര്‍ദ്ധിച്ചുകൊണ്ടിരിക്കുകയാണെന്നും ഉള്ള മുന്നറിയിപ്പും കേരളത്തെ കൂടുതല്‍ പ്രതിസന്ധികളിലേക്ക് എത്തിക്കും.

അതേസമയം, കാലാവസ്ഥാ മാറ്റത്തിന്റെ ദുരന്തഫലങ്ങള്‍ പ്രളയരൂപത്തില്‍ മാത്രമായിരിക്കില്ലെന്ന് കൂടി തിരിച്ചറിയേണ്ടതുണ്ട്. വരള്‍ച്ച, ജലക്ഷാമം തുടങ്ങിയ അവസ്ഥയെയും നമുക്ക് പ്രതീക്ഷിക്കേണ്ടതുണ്ട്. വരള്‍ച്ച കൂടിയ കാലങ്ങളില്‍ എല്‍ നിനോ പോലുള്ള പ്രതിഭാസങ്ങള്‍ സംഭവിക്കുകയാണെങ്കില്‍ തീവ്ര സ്വഭാവത്തിലേക്കുള്ള വരള്‍ച്ചയിലേക്ക് നയിക്കും. കൊടും ചൂട് മൂലമുണ്ടാകുന്ന ഉഷ്ണതരംഗങ്ങളും ഒക്കെ നമുക്ക് പ്രതീക്ഷിക്കേണ്ടതായി വരും. കാലാവസ്ഥയില്‍ സംഭവിച്ചുകൊണ്ടിരിക്കുന്ന മാറ്റങ്ങളെ സമഗ്രമായി കണ്ടുകൊണ്ടുമാത്രമേ അവയെ നേരിടാനും ദുരന്തങ്ങള്‍ ലഘൂകരിക്കാനും ഉള്ള നടപടികള്‍ സ്വീകരിക്കാന്‍ പാടുള്ളൂ. താല്‍ക്കാലിക പരിഹാരങ്ങള്‍ കൂടുതല്‍ ഗുരുതരമായ പ്രതിസന്ധികളിലേക്ക് കൊണ്ടുചെന്നെത്തിക്കുന്നതിലേക്ക് നയിക്കുമെന്നതിന് പല ഉദാഹരണങ്ങളും നമ്മുടെ മുന്നിലുണ്ട്.

തീരദേശത്ത് കടലേറ്റം, ഹൈറേഞ്ചില്‍ മണ്ണിടിച്ചില്‍..വരും വര്‍ഷങ്ങളില്‍ കേരളം അഭിമുഖീകരിക്കുന്ന ഈ പ്രകൃതി ദുരന്തങ്ങള്‍ എത്രത്തോളം ശക്തമാകും. ഇവ മുന്നില്‍ കണ്ട് പ്രതിരോധിക്കാന്‍ എന്താണ് നമുക്ക് ചെയ്യാനാകുക.

പശ്ചിമഘട്ട മേഖലകളില്‍ ഉരുള്‍പൊട്ടല്‍ മുമ്പെ തന്നെ ഉണ്ടായിട്ടുണ്ടെങ്കിലും 2018ലെ മഴക്കാലത്ത് അത് വ്യാപകമായി സംഭവിച്ചു. ഏതാണ്ട് 250ഓളം പ്രദേശങ്ങളിലായി ആയിരക്കണക്കിന് ഉരുള്‍പൊട്ടലുകളാണ് ആ വര്‍ഷത്തില്‍ സംഭവിച്ചത്. വയനാട്, കോഴിക്കോട്, മലപ്പുറം, പാലക്കാട്, ഇടുക്കി, പത്തനംതിട്ട ജില്ലകളിലായിരുന്നു ഏറ്റവും കൂടുതല്‍ ഉരുള്‍പൊട്ടലുകള്‍ സംഭവിച്ചത്. ഇവ കൂടാതെ മണ്ണമരല്‍ (ലാന്റ് സബ്‌സിഡന്‍സ്), മണ്ണിടിച്ചില്‍ (ലാന്റ് ഫാള്‍) തുടങ്ങിയ പ്രതിഭാസങ്ങളും വലിയ തോതില്‍ സംഭവിച്ചു. മണ്ണിലെ ജൈവാംശത്തില്‍ സംഭവിക്കുന്ന ശോഷണം ജലം പിടിച്ചുവെക്കാനുള്ള മണ്ണിന്റെ ശേഷിയെ ദുര്‍ബലപ്പെടുത്തുന്നുവെന്നത് കൂടാതെ ചരിഞ്ഞ പ്രദേശങ്ങളിലെ നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങളും അനുയോജ്യമല്ലാത്ത കൃഷി രീതികളും ഒക്കെച്ചേര്‍ന്ന് ഉരുള്‍പൊട്ടല്‍ സാധ്യകള്‍ വര്‍ദ്ധിപ്പിക്കുന്നുണ്ട്.

പശ്ചിമഘട്ട മേഖലയിലെ ഉരുള്‍പൊട്ടല്‍ സാധ്യതാ പ്രദേശങ്ങളുടെ ഭൂപടം ദുരന്ത കൈകാര്യകര്‍തൃ സമിതി തയ്യാറാക്കിയിട്ടുണ്ടെങ്കിലും ഉരുള്‍പൊട്ടല്‍ മേഖലകളിലെ നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങള്‍ക്ക് തടയിടുന്നതിനോ, ഉരുള്‍പൊട്ടല്‍ മേഖലകളില്‍ നിന്ന് ജനങ്ങളെ പുരധിവസിപ്പിക്കാനോ, അത്തരം പ്രദേശങ്ങളില്‍ മണ്ണൊലിപ്പ് തടയുന്നതിനും മറ്റും ആവശ്യമായ നടപടികള്‍ സ്വീകരിക്കാനോ അധികൃതര്‍ തയ്യാറായിട്ടില്ല. നമ്മുടെ ദുരന്ത കൈകാര്യകര്‍തൃ നയം ദുരന്തങ്ങള്‍ സംഭവിച്ചതിന് ശേഷം നേരിടുന്നതിന് വേണ്ടി തയ്യാറാക്കപ്പെട്ട ഒന്നാണെന്ന് കാണാം. ദുരന്തങ്ങള്‍ തടയാനോ ലഘൂകരിക്കാനോ ഉള്ള ദുരന്തപൂര്‍വ്വഘട്ടത്തെ (പ്രീ ഡിസാസ്റ്റര്‍ ഫേസ്)ക്കുറിച്ച് നാം കാര്യമായി ആലോചിക്കാറില്ല എന്നതാണ് യാഥാര്‍ത്ഥ്യം. ഉരുള്‍പൊട്ടലിന് ഇടയാക്കുന്ന കാരണങ്ങളെക്കുറിച്ച് വ്യക്തമായ ധാരണ ഉണ്ടാക്കിയെടുക്കുകയും ആ മേഖലയിലെ പരിസ്ഥിതി പുനരുജ്ജീവനത്തിനുള്ള നടപടികള്‍ സ്വീകരിക്കുകയോ ചെയ്യുന്നതില്‍ നാം ഇപ്പോഴും വിമുഖരാണ്. പ്രളയം വരുമ്പോഴും മണ്ണിടിച്ചില്‍ ഉണ്ടാകുമ്പോഴും മാത്രം അവയെക്കുറിച്ച് ചിന്തിക്കുകയും പദ്ധതികള്‍ പ്രഖ്യാപിക്കുകയും ചെയ്യുന്നത്രയും ദീര്‍ഘ വീക്ഷണമേ നമ്മുടെ ആസൂത്രണ വിദഗ്ദ്ധന്മാര്‍ക്ക് ഉള്ളൂ എന്ന് പറയേണ്ടതുണ്ട്.

മണ്ണൊലിപ്പും ഉരുള്‍പൊട്ടലും പോലുള്ള പ്രാദേശിക പരിസ്ഥിതി പ്രശ്‌നങ്ങളെ നേരിടാന്‍ നമുക്ക് സാധിക്കേണ്ടതാണ്. ചരിഞ്ഞ പ്രദേശങ്ങളിലെ വനനാശം തടയുക. ഭൂമിയുടെ കിടപ്പ് മനസ്സിലാക്കാതെയുള്ള നിര്‍മ്മാണ പ്രവര്‍ത്തനങ്ങള്‍ നിയന്ത്രിക്കുക, സ്വാഭാവിക ജല നിര്‍ഗ്ഗമന മാര്‍ഗ്ഗങ്ങള്‍ സംരക്ഷിക്കുക, ഉരുള്‍പൊട്ടല്‍ സാധ്യതയുള്ള മേഖലകളില്‍ താങ്ങ് ഭിത്തികള്‍ (റീട്ടെയ്ന്‍ വാള്‍) നിര്‍മ്മിക്കുക, ഭൂമിയുടെ ഹരിത മേലാപ്പ് (ഗ്രീന്‍ കവര്‍) സംരക്ഷിക്കുക, ആഴത്തില്‍ വേരുകള്‍ ഉള്ള മരങ്ങള്‍ ഇത്തരം പ്രദേശങ്ങളില്‍ വെച്ചുപിടിപ്പിക്കുക തുടങ്ങിയ നിരവധി പ്രവര്‍ത്തനങ്ങളിലൂടെ ഉരുള്‍പൊട്ടല്‍ മണ്ണൊലിപ്പ് തുടങ്ങിയ പ്രകൃതി ദുരന്തങ്ങള്‍ക്ക് തടയിടാനാകും.

കേരളം വികസനത്തിന്റെ പാതയിലാണ്. മെട്രോ വന്നു, സില്‍വര്‍ ലൈന്‍ വരുന്നു ഇത്തരം വികസനങ്ങള്‍ കേരളത്തിന്റെ ഭൂപ്രകൃതിക്ക് താങ്ങാനാകുമോ? വീട്, കിണര്‍ തുടങ്ങിയവ ഇടിഞ്ഞുതാഴുന്ന പ്രതിഭാസങ്ങള്‍ കേരളത്തിന്റെ ഭൂപ്രകൃതി മനസ്സിലാക്കാതെയുളള വികസന പ്രവര്‍ത്തനങ്ങളുടെ ഉപോല്പനങ്ങളാണോ?

വികസനത്തെ സംബന്ധിച്ച തെറ്റായ ബോധ്യങ്ങളില്‍ നിന്നാണ് ഇക്കാണുന്ന പാരിസ്ഥിതിക ദുരന്തങ്ങളിലേക്ക് നാം വഴിവെട്ടിയിരിക്കുന്നത്. നൂറ്റാണ്ടുകള്‍ക്കിടയില്‍ സംഭവിക്കുന്ന പ്രകൃതി ദുരന്തങ്ങളില്‍ നിന്ന് അവയൊക്കെ വാര്‍ഷിക പ്രതിഭാസങ്ങളായി മാറ്റുന്നതിന് മനുഷ്യ ഇടപെടല്‍ കൊണ്ട് സാധിച്ചു. ഇത് കേരളത്തിന്റെ മാത്രം കാര്യമല്ല. കാലാവസ്ഥാ വ്യതിയാനങ്ങള്‍ക്ക് പിന്നിലെ മനുഷ്യജന്യ ഘടകങ്ങളെ (ആന്ത്രപോജെനിക് ഫാക്ടര്‍)ക്കുറിച്ച് ഇന്ന് പൊതുവില്‍ ചര്‍ച്ച ചെയ്യുന്നുണ്ട്. എങ്കില്‍ കൂടിയും നമ്മുടെ വികസന ബോദ്ധ്യങ്ങളില്‍ മാറ്റം വരുത്താന്‍ ഭരണകൂടങ്ങള്‍ തയ്യാറായിട്ടില്ലെന്നത് നിരാശാജനകമാണ്.

കേരളത്തിന്റെ പശ്ചിമഘട്ട മേഖലകളില്‍ സ്വാഭാവിക വന മേഖലകള്‍ വെട്ടിമാറ്റി, അക്കേഷ്യ, യൂക്കാലിപ്റ്റ്‌സ് തുടങ്ങിയ മരങ്ങള്‍ സാമൂഹ്യവനവല്‍ക്കരണത്തിന്റെ ഭാഗമായി വെച്ചുപിടിപ്പിക്കുന്നതിനെതിരെ 80കളുടെ അവസാനത്തില്‍ പരിസ്ഥിതി പ്രവര്‍ത്തകരും ജനകീയ ശാസ്ത്രജ്ഞരും മുന്നറിയിപ്പ് നല്‍കുകയുണ്ടായി. എന്നാല്‍ അവരെയൊക്കെ വികസന വിരോധികളായും പരിസ്ഥിതി മൗലികവാദികളായും ചിത്രീകരിക്കുകയായിരുന്നു, അക്കേഷ്യ-യൂക്കാലിപ്റ്റ്‌സ് തോട്ടങ്ങള്‍ കേരളത്തിന്റെ ഭൂഗര്‍ഭ ജലനിരപ്പ് താഴ്ത്തുന്നതില്‍ മുഖ്യപങ്കുവഹിക്കുന്നുണ്ടെന്ന് കേരള ഇക്കണോമിക് റിവ്യൂ 2021ല്‍ തന്നെ തുറന്ന് സമ്മതിക്കുന്നു. ഈ തോട്ടങ്ങള്‍ ഘട്ടംഘട്ടമായി നീക്കം ചെയ്യുമെന്ന് കേരള സര്‍ക്കാര്‍ തന്നെ പ്രഖ്യാപിച്ചു കഴിഞ്ഞു. നാല് പതിറ്റാണ്ട് കാലം കഴിഞ്ഞു സര്‍ക്കാരിന് ബോധോദയമുണ്ടാകാന്‍! എന്നാല്‍ ആ കാലയളവില്‍ സാധ്യമായ എല്ലാ പാരിസ്ഥിതിക ദുരന്തങ്ങളും ഉണ്ടാക്കിയെടുക്കാന്‍ അവയ്ക്ക് സാധിച്ചു.

വികസനത്തെ സംബന്ധിച്ച ചോദ്യങ്ങള്‍ ഇന്ന് ആഗോളതലത്തില്‍ തന്നെ ശക്തമായി ഉയരുന്നുണ്ട്. സുസ്ഥിരതയും സമതയെയും അടിസ്ഥാനപ്പെടുത്തിയ ഒരു വികസന ബോദ്ധ്യത്തെക്കുറിച്ചാണ് ചര്‍ച്ചകള്‍ ഉയരുന്നത്. എന്നാല്‍ ഇവയൊന്നും കണ്ടില്ലെന്ന് നടിക്കാനും, ആവര്‍ത്തിച്ച് വരുന്ന പ്രകൃതി ദുരന്തങ്ങള്‍ക്കിടയില്‍ നിന്ന് പോലും 'ബിസിനസ് ആസ് യൂഷ്വല്‍' സമീപനം സ്വീകരിക്കാനുമാണ് അധികൃതര്‍ ശ്രമിക്കുന്നത്.

സില്‍വര്‍ പാതയും പശ്ചിമഘട്ടത്തിലെ തുരങ്കപ്പാതയും അടക്കം സംസ്ഥാനം ഏറ്റെടുക്കാന്‍ പോകുന്ന വികസന പദ്ധതികള്‍ പൊതുവെ ദുര്‍ബലമായിക്കഴിഞ്ഞിരിക്കുന്ന കേരള പരിസ്ഥിതിയില്‍ വലിയ പ്രത്യാഘാതങ്ങള്‍ സൃഷ്ടിക്കുമെന്ന കാര്യത്തില്‍ സംശയമൊന്നുമില്ല. ആഗോള കാലാവസ്ഥാ മാറ്റങ്ങള്‍ സംബന്ധിച്ച കാര്യങ്ങളില്‍ ദേശ രാഷ്ട്രങ്ങളുടെ കൂട്ടായ്മകള്‍ക്ക് മാത്രമേ എന്തെങ്കിലും തീരുമാനങ്ങള്‍ കൈക്കൊള്ളാന്‍ സാധിക്കുകയുള്ളൂ എന്നത് വാസ്തവമായിരിക്കുമ്പോഴും കാലാവസ്ഥാ മാറ്റങ്ങള്‍ മൂലമുണ്ടാകുന്ന പ്രാദേശിക പാരിസ്ഥിതിക തകര്‍ച്ചകളെയും ദുരന്തങ്ങളെയും ഒരളവുവരെ പ്രതിരോധിക്കാന്‍ പ്രാദേശിക സര്‍ക്കാരുകളുടെ ഇടപെടല്‍ കൊണ്ട് സാധിക്കും. അതിന് പാരിസ്ഥിതിക വിവേകത്തെ അടിസ്ഥാനപ്പെടുത്തിയ നയരൂപീകരണവും ദീര്‍ഘവീക്ഷണത്തോടു കൂടിയ ആസൂത്രണവും ആവശ്യമാണ്. നമ്മുടെ ഭരണാധികാരികള്‍ക്ക് ഇല്ലാതെ പോകുന്നതും അതാണ്.

Content Highlights: climate change a timely warning for Kerala

essay on climate change in malayalam

Share this Article

Related topics, remya harikumar, get daily updates from mathrubhumi.com, related stories.

clan

കാലാവസ്ഥയെ കാക്കാൻ യൂത്ത്  ആക്ഷൻ പ്ലാൻ

rain

സംസ്ഥാനത്ത് ഇന്ന് പരക്കെ മഴയ്ക്ക് സാധ്യത; 9 ജില്ലകളില്‍ യെല്ലോ അലര്‍ട്ട്, 17 വരെ മഴ തുടരും

Heat

സംസ്ഥാനത്ത് ചൂട് നാലുഡിഗ്രിവരെ ഉയരും; ചൊവ്വാഴ്ച മുതൽ മഴയ്ക്ക് സാധ്യത

climate change (2)

Environment

കാലാവസ്ഥാ വ്യതിയാനം സാമ്പത്തിക മേഖലയിൽ വൻ നഷ്ടമുണ്ടാക്കുമെന്ന് റിപ്പോർട്ട്

വാര്‍ത്തകളോടു പ്രതികരിക്കുന്നവര്‍ അശ്ലീലവും അസഭ്യവും നിയമവിരുദ്ധവും അപകീര്‍ത്തികരവും സ്പര്‍ധ വളര്‍ത്തുന്നതുമായ പരാമര്‍ശങ്ങള്‍ ഒഴിവാക്കുക. വ്യക്തിപരമായ അധിക്ഷേപങ്ങള്‍ പാടില്ല. ഇത്തരം അഭിപ്രായങ്ങള്‍ സൈബര്‍ നിയമപ്രകാരം ശിക്ഷാര്‍ഹമാണ്. വായനക്കാരുടെ അഭിപ്രായങ്ങള്‍ വായനക്കാരുടേതു മാത്രമാണ്, മാതൃഭൂമിയുടേതല്ല. ദയവായി മലയാളത്തിലോ ഇംഗ്ലീഷിലോ മാത്രം അഭിപ്രായം എഴുതുക. മംഗ്ലീഷ് ഒഴിവാക്കുക..

More from this section

MK Narayanan

'അന്ന് ഒബാമ പറഞ്ഞു, മിസ്റ്റർ മൻമോഹൻ താങ്കളാണ് എന്റെ ...

binoy viswam

മോദിയെ പരാജയപ്പെടുത്താൻ പറ്റും; രാഹുൽ മത്സരിക്കേണ്ടത് ...

P Prabhakar

ഗുജറാത്തല്ല കേരളമാണ് മാതൃക: പറക്കാല പ്രഭാകര്‍

സുധ മേനോന്‍

'നിശബ്ദത നമ്മുടെ ആർട്ട് ഓഫ് ലിവിങ് ആയി മാറിക്കഴിഞ്ഞു, ...

Most commented.

  • Mathrubhumi News
  • Media School

itunes

  • Privacy Policy
  • Terms of Use
  • Subscription
  • Classifieds

© Copyright Mathrubhumi 2024. All rights reserved.

  • Other Sports
  • News in Videos
  • Entertainment
  • One Minute Video
  • Stock Market
  • Mutual Fund
  • Personal Finance
  • Savings Center
  • Commodities
  • Products & Services
  • Pregnancy Calendar
  • Arogyamasika
  • Azhchappathippu
  • News & Views
  • Notification
  • All Things Auto
  • Social issues
  • Social Media
  • Destination
  • Spiritual Travel
  • Thiruvananthapuram
  • Pathanamthitta
  • News In Pics
  • Taste & Travel
  • Photos & Videos

Mathrubhumi

Click on ‘Get News Alerts’ to get the latest news alerts from

Mathrubhumi

  • डाउन टू अर्थ
  • Print Edition

Logo

  • Agriculture
  • Data Centre
  • Young Environmentalist
  • Newsletters

Climate crisis in Kerala: An integrated approach is needed to mitigate impact

Climate crisis in Kerala: An integrated approach is needed to mitigate impact

Kerala has been experiencing an onslaught of heavy rains, floods, landslides and droughts over the last few years. The state has received heavy rainfall in 1924, 1961, 2018 and 2021.

The carbon emitted by humans into the atmosphere since the Industrial Revolution is one of the major causes of the current climate crisis . But human interactions have accelerated the impacts of climate change.

In a densely populated (859 per square kilometres) and geographically small state like Kerala (38,863 sq km), it is very important to take appropriate measures to prevent the impact of natural disasters such as floods and landslides.

Climate change in Kerala is likely due to the combined effect of geography, land-use change, urbanisation, development activities and population density of the state.

The maximum distance between the eastern and western parts of Kerala is only 120 km (in some places it is only 35 km). Within this 120 km, there are places above 2,695 metres (Anamudi, Idukki district) and places up to 2 metres below sea level (Alappuzha and Kottayam districts).

One has to travel hardly 120 km to reach sea level, from a height of about 2,695 metres. Therefore, in case of heavy rainfall, water should flow smoothly from the eastern hills of Kerala to the west coast. When this is interrupted, the effects of impacts are likely to increase.

The water of 41 rivers flowing westwards in Kerala has to fall into the sea across 120 km. It is estimated that there are about 58 dams in Kerala. Although dams are a part of development, there are related factors that impede the natural flow of rivers.

Though dams can control flooding, the flow of water through rivers and their tributaries decreases only after the dams have been constructed. When the water recedes, people use the river banks for agricultural and household purposes.

Those living along the river banks are most affected when the dams are opened during the rainy season.

People have migrated to the foothills of the Western Ghats for agriculture and housing. The origin of many rivers in Kerala starts from these portions of the Western Ghats. Buildings, roads, agriculture and construction activities obstruct the natural flow of rainwater.

The total length of roads in Kerala is about 331,904 kilometres. Its total area is around 165,952 hectares if we arbitrarily assume the average width of a road is 5 metres.

Similarly, the total number of households in Kerala is 7.8 million. If we presume the average area of a house is around ​​5 cents, it covers an area of ​​about 157,827 ha of concrete buildings, all of which are permanent blockages. This prevents the infiltration rate of rainwater from reaching the ground.

The myth that plantation crops in Kerala’s Western Ghats are affected by landslides may be widespread, but extreme rainfall in an area can lead to landslides when the water saturation capacity of soils exceeds. It is highly likely to trigger landslides even in forested areas.

Landslides are triggered by the slope of an area, rainfall intensity, soil saturation capacity, soil depth and geological structure of a location. Plantation agriculture doesn’t disturb soils. 

This reduces the risk of a landslide. Science-based practices are crucial to minimise natural disasters. Plantation agriculture such as the rubber sector has issued advisories for rubber plantations grown in landslide-prone areas.

Quarrying, mining and large-scale construction activities, which affect the ecological stability of the landscape, could be the major factors causing these landslides. There are an estimated 5,924 quarries in Kerala.

The low-lying areas in the western part of Kerala are prone to flash floods. If the construction is done in areas with drainages, the natural flow of water can be obstructed. It is then highly likely that water will flow into areas where it can flow.

It can sometimes be through cities or even places where houses are located. Floods at Kochi International Airport in 2018 were an example of this. The airport is located in a low-lying area close to the watersheds / rivers, which is prone to flash floods. It is, therefore, vital to prepare flood risk zones at the micro level to identify, locate and manage the regions most vulnerable to floods.

While Kerala receives an annual average rainfall of 3,000 mm, the possibility of drought also looms large. The state, for example, experienced drought in 2017. The southern parts of the state (Kollam), central Kerala (Palakkad) and North Kerala (Kannur and Kasaragod districts) generally experience summer droughts (February to May).

Although geography and soil characteristics play an important role in drought , the major amount of rainfall received in Kerala falls into the sea in a short time because of the state's sloping terrain.

If more rainwater is infiltrated into the soil, it will enhance the amount of groundwater recharge. Rainwater harvesting and protection of watersheds can help alleviate drought to some extent.

It is essential to regulate climate disasters and create awareness in a densely populated state like Kerala. An integrated approach is needed to manage climate change impacts.

Views expressed are the authors’ own and don't necessarily reflect those of  Down To Earth

  • kerala disaster

Ravages of climate change in Kerala

Mathrubhumi fact check desk, 03 november 2021, 09:31 am ist.

Despite being famed for its moderate tropical climate, the picturesque state of Kerala is now facing threats from extreme climate events. The intensity of climate change was realized by the common folks only when it knocked on their doorsteps in the form of disasters. Climate is not immune to changes. But the increase in the frequency and impact of climate events create panic. Kerala has been experiencing temperature rise, irregular monsoon and water scarcity for the past few years. But in recent times, these have become life-threatening in the form of extreme unforeseen disasters. Uninterrupted human activities have further enhanced the consequences of climate change.

With the onset of Cyclone Ockhi in 2017 unforeseen disasters had begun to haunt Kerala. Shortly afterwards, floods in 2018 and 19 devastated Kerala. Thousands of lives were lost. The time is not far off when natural disasters such as hurricanes, floods, landslides, floods, droughts and tsunamis will haunt us even more severely.

Were these tragedies unexpected?

disaster

Ockhi in 2017 was an unforeseen disaster which struck Kerala after the Tsunami. "Ockhi was an unprecedented cyclone and it quickly turned into a cyclone within 6 hours of low pressure. It was not possible to issue warnings according to the existing rules.” stated Amit Shah, Union Home Minister in Parliament. The catastrophic floods of 2018 and the subsequent floods and landslides from 2018 to 2021 gave Kerala unexpected misfortunes.

Each of these disasters due to climate change affects different regions each time. The disasters of 2019 did not occur where the landslides and floods of 2018 were terribly affected‌. There were landslides in Kerala in 2020 and 2021. They were also in different areas from previous years. There are probable chances that the next incident would happen somewhere else.

There was a special report by the IPCC in 2012 (Special Report on Extreme Events, IPCC 2012) that climate change would increase the number and magnitude of disasters and rainfall would be more intense. The changes we see in that sense are not unexpected, but the natural evolution of a changing climate.

According to the State Disaster Management Plan 2016, the presence of the Arabian Sea, the Western Ghats and the geographically slanting terrain makes Kerala a high risk area for climate change disasters. In connection with the disaster risks in Kerala, Dr. Murali Thummarukudy (Disaster Risk Reduction and Operations Manager, United Nations Environment Program (UNEP)) says: "Is the number of disasters increasing worldwide? Or is it because of the improvement in communication facilities that we are becoming more aware about the disasters? These are questions that baffle many. Disasters occur when forces that cause disasters (earthquakes, rain, wind, explosions in factories and roads) collide with objects that can cause damage (humans, animals, the environment, or immovables). All of them may not occur in the same way, for example, an earthquake is not caused by climate change. But others (the number of factories and road tankers) are increasing daily. The world's population is growing along with per capita wealth. Generally people have started to inhabit those places, where there were no settlements earlier. All this increases the risk of disaster. On top of all this, climate change is acting like a magnifying glass."

Kerala's high population density (860 people per sq km) increases the magnitude of natural disasters in the state. Rapid industrialization and accompanying urbanization are further expanding emission of greenhouse gases into the atmosphere. The illegal encroachments into environmentally sensitive areas, especially for industrial purposes, disrupt the ecological balances and escalate the impact of climate change in the State.

Studies and Observations

The Gadgil Report of 2011, which studied extensively about the environmental degradation happening in the Western Ghats, is one of the most important studies about the environment in Kerala. The report identifies certain areas in Western Ghats as Ecologically Sensitive Areas based on their biological characteristics, elevation, slope, climate, risk and historical significance. The report also pointed out that 64% of the area in Western Ghats constitutes an Ecologically Sensitive Area.

Gadgil had warned that many disasters would follow if the Western Ghats were not protected. Without acknowledging this, the Kasturirangan Committee was appointed to review the Gadgil report. According to the Kasturirangan report, only 37% of the Western Ghats is considered an Ecologically Sensitive Area.

Global warming and climate change affect each region in different ways. The Intergovernmental Panel on Climate Change (IPCC) was established internationally to provide scientific assessments on climate change, its implications and future risks, and to put forward mitigation measures. According to the report released by IPCC in 2021, the sea level will increase by 0.11m, and the sea will engulf shores. By 2130, many of the coastal places, including Kochi, will be submerged.

According to a study by the Indian Network of Climate Change, rainfall is expected to increase by about 6-8% in the Western Ghats and western coastal areas by 2030 when compared to the 1970s, and temperatures are expected to rise by 1-3 degrees Celsius. Ice melting and thermal expansion in the oceans (changes in shape, volume, and density caused by changes in the temperature of an object) will cause water levels to rise. In addition, global warming is causing atmospheric and sea temperatures to rise sharply. This causes more low pressure to form in the atmosphere. They are more likely to turn into hurricanes at any time in the future.

According to the Indian Meteorological Department (IMD), there was a 52% increase in development of cyclone movements in the Arabian Sea from 2001 to 2019 and an 8% increase in the Bay of Bengal. Four of the nine major depressions in 2020 were in the Arabian Sea. This is another central concern for Kerala.

Dangerous Coastline

disaster

The government studies indicate that 322 km of the 580 km long coastline of Kerala is prone to sea turbulence and coastal erosion. If the sea level rises by another one meter, 169 sq km of land off the coast of Kochi will be submerged. According to a report published by the National Centre for Coastal Research (NCCR), 41% of Kerala's coastal land has been degraded and 21% expanded so far.

In the future, the sea level will rise even higher. The existing shores will be washed away by the sea and sedimentation of sand will happen in some parts. Such changes and the resulting disasters will damage the habitat of humans and other organisms.

Irregular Monsoon and Landslides

Low pressure in the ocean causes heavy rainfall over land. In addition, irregular monsoon is a problem faced in Kerala. And 14.5% of the state is prone to floods. In addition to these causes, mining, illegal quarrying, deforestation, land encroachment and changes in farming practices increase the risk of landslides and debris flow in the hilly areas of Kerala. Due to this unpredictable and rapid occurrence of climate events, many lives were lost in landslides in Kerala.

Drought and Wildfire

Search operation at Kavalappara

Kerala is as prone to drought as it is to floods. Water scarcity is another issue. Kerala has experienced severe drought in previous years. If the drought conditions intensify, there is a high risk of wildfires in the future. There are 1,719 fire points in Kerala where there are chances of fires.

The Directorate of Environment & Climate Change works at the state level to coordinate activities against climate change. The department's main objective is to implement the Kerala State Environment Policy, State Action Plan for Climate Change, National Environmental Policy 2016 and Green Protocol. The State Disaster Management Authority and the District Disaster Management Authority are responsible for mitigating and preventing potential disasters in the State. For the necessary training and awareness programs to improve disaster mitigation plans, the state has The Institute for Land and Disaster Management. In addition, there are institutions like the Indian Meteorological Department and the National Center for Earth Science Studies for weather forecasting and monitoring. The Institute of Climate Change Studies has been established in Kottayam for research and study of climate change in Kerala.

Climate change is not something that can be prevented. The state must prepare itself to become more climate resilient. However, the only way to survive such climate events is to minimise the impact of this phenomenon. How is Kerala adapting to climate change and its resulting disasters? How ready is Kerala for this? How should Kerala society change to prevent disasters? The climate change series of Mathrubhumi fact check explores all these relevant issues.

Share this Article

Related topics, kerala disaster, get daily updates from mathrubhumi.com, more from this section.

Movies & Music

jayasurya, sonia malhar

Actress clarifies allegation against Jayasurya: 'He touched me, but no ...

radhika sarathkumar

Nude visuals captured by hidden cameras in caravans: Actress Radhika

woman

Assistant director of 'Bro Daddy' accused of rape, blackmailing actress ...

  • Mathrubhumi News
  • Media School

itunes

  • Privacy Policy
  • Terms of Use
  • Subscription
  • Classifieds

© Copyright Mathrubhumi 2024. All rights reserved.

  • Shashi Tharoor
  • M G Radhakrishnan
  • SR Suryanarayan
  • Mini Krishnan
  • Movie Review
  • Sports News
  • Scholarships
  • Agriculture

Mathrubhumi

Click on ‘Get News Alerts’ to get the latest news alerts from

Mathrubhumi

Logo

  • Let me explain
  • Yen Endra Kelvi
  • SUBSCRIBER ONLY
  • Whats Your Ism?
  • Pakka Politics
  • NEWSLETTERS

Is Wayanad facing the brunt of climate change?

Is Wayanad facing the brunt of climate change?

It rained like never before in many parts of Wayanad in the middle of December 2018. Such freakish weather had never occurred in the past fifty years, as far as Cheruvayil Raman could remember. He knows December rains are bad for the robusta coffee plants that has blossomed across the coffee plantations in Wayanad, and fungal diseases will soon spread over the berries.

‘Mother nature is finally getting back at us,’ he says. ‘The August floods, when half of Wayanad went under water, were just a trailer.’ With his long, curly, jet-black hair, sixty-nine-year-old Raman ettan, as he is fondly called, can pass for a forty-year-old farmer. In the last three decades, Raman has single-handedly done something that research institutes and agriscientists have been attempting to do the world over. Raman has painstakingly conserved fifty-one varieties of paddy seeds, of which thirty-two are endemic to Wayanad. He says he has enough reason to believe the hills of Wayanad are dying. This verdant plateau on the Western Ghats, bordering Tamil Nadu and Karnataka, aptly called the ‘green paradise on earth’ in tourism brochures, with its picture-postcard misty landscapes of coffee, cardamom estates, paddy fields and crystal-clear rivers, is at a tipping point today.

‘We are witnessing the signs of a grave natural calamity that is going to occur in the coming years,’ warns Raman, as he stamps over a bundle of paddy stalk just harvested from his own paddy field. Wayanad is one of the places where the impact of climate change and global warming is acutely felt. The first symptom was, of course, the change of seasons, or to put it more bluntly, the irregular arrival of the phenomenon called monsoon, which used to come uniformly, spread over several months, like a slow train picking up speed as the months went by, in tune with the cropping season.

Rainfall Patterns Disrupted

Wayanad, in particular, had many kinds of rains—rains that came down as a soft drizzle, fondly called   noolmazha (literally: ‘thread rain’), like thin silk threads, falling on your face and shoulders; the misty, dewy rain that suddenly appeared from nowhere and disappeared behind the woods. The romance of the mist and rains was one of the main aspects that lured many tourists to Wayanad. These rains, though, had a great utilitarian value for the estates as they provided a temperate climate conducive to the plantation crops. Raman says Wayanad, like most parts of Kerala, had six different types of rains till very recently. Each came with a distinct sound, pace, colour and even smell. The rains have names starting with the names of Malayalam months. It began with Kumba mazha (rain), the summer rains in February that cleared the dirt in the atmosphere. Then came the Meda mazha or Vishu mazha (in April), which was short and brisk, but this rain makes the parched land ready for farming. Tuber crops like yam and colocasia are planted. At the beginning of Edavapathi (May–June), the south-west monsoon arrives. The paddy fields are set to be irrigated. The Midhuna mazha (August rain) brings copious rainfall, and as the plains get flooded, the groundwater levels are replenished. The Chinga mazha (September rain) is soft and fun-loving, and the rain plays hide-and-seek, drizzling even in the sunshine. The Tula mazha (in October) is accompanied by heavy thunderstorms, signalling the end of the south-west monsoon.

‘For hundreds of years, we have been cultivating crops as per the monsoon calendar. The regular rain pattern has been destroyed forever. In the last few years, except last year, which had heavy rainfall in August, there has been a deficit in rainfall in Wayanad,’ he says. Raman’s observation on the density of rainfall is not off the mark. Several studies conducted by various research agencies in the last decade showed that Wayanad is going to face the brunt of climate change, which can be mitigated only through protection of the remaining forest cover. The density of rainfall in Wayanad has shown a decreasing trend in the four-year period between 2013 and 2017, data from the Indian Meteorological Department showed. In 2013 (between   1 June to 19 August), the district received 2436.2 mm rainfall; in 2014, the rainfall received was 2242.2 mm; by 2015, it was reduced to 1360.2 mm; in 2016, it was further reduced to 991.4 mm; in 2017, there was a slight increase to 1197.8 mm.

Further, a  detailed  study of rainfall  data collected in twenty-eight years, that is between 1983 and 2011, in Wayanad by researchers Danesh Kumar and Pavan Srinath showed that the number of days in a year that received a ‘moderate’ amount of rainfall (20–30 mm) was found to  be decreasing, but the number of  days  receiving  very  low or very high rainfall was increasing. The study said that major climate change trends observed in Wayanad included rising minimum temperatures, weakening in the early phase of the south-west monsoon precipitation, increasing polarization of daily rainfall and more frequent heavy rainfall days. Due to this water stress and climatic variability, the threat of drought looms over all livelihood- related activities in the region. The study noted: ‘Climate change is set to bring about gradual changes like the shift of climatic zones, increased temperature and changes in precipitation patterns. Along with gradual changes, climate change is very likely to increase the frequency and magnitude of extreme weather events such as droughts, floods and storms.’

There has also been a steady increase in temperature in the high ranges of the Western Ghats, temperature data taken from Wayanad and Idukki showed. The Kerala State Action Plan on Climate Change report, based on the temperature data recorded at the Regional Agricultural Research Station, Ambalavayal (Wayanad district) and Cardamom Research Station at Pampadumpara (Idukki district), under the Kerala Agricultural University studies, revealed that the maximum temperature over the high ranges of Kerala had increased by 1.46 degrees Celsius between 1984 and 2009.

‘It reveals that the effect of global warming and deforestation is felt more across the high ranges of Kerala situated in the Western Ghats, one of the hotspots of biodiversity,’ the report said.  The report stated that the microstudy done by Centre for Water Resources Development and Management at Kottamparaba showed that the mean of daily maximum temperature rose to the tune of 0.6 degrees Celsius during winter and 0.55 degrees Celsius during summer between 1983 and 2010.

The Indian Network for Climate Change Assessment, in its first report on the impact of climate change in four regions of the country, submitted to the Government of India, has pointed out that reduced rainfall, increased atmospheric temperature and flooding due to sea-level rise are climate-change scenarios for the Western Ghats and Kerala in the next twenty years. Under the projected climate-change scenario, it is certain that the temperature is likely to increase by 2 degrees Celsius by 2050. The minimum surface air temperature in the Western Ghats region may rise by 2 degrees Celsius to 4.5 degrees Celsius. The average temperature in the region bordering Kerala is likely to rise by 1 degree Celsius to 3 degrees Celsius. The number of rainy days is likely to decrease along the entire western coast, including the Western Ghats.

Excerpted with permission from ‘Flood and Fury: Ecological Devastation in the Western Ghats’ by Viju B, published by Penguin Random House.

Buy the book  here

Related Stories

Advertisement

Advertisement

The 2018 Kerala floods: a climate change perspective

  • Open access
  • Published: 18 January 2020
  • Volume 54 , pages 2433–2446, ( 2020 )

Cite this article

You have full access to this open access article

essay on climate change in malayalam

  • Kieran M. R. Hunt   ORCID: orcid.org/0000-0003-1480-3755 1 &
  • Arathy Menon 1  

37k Accesses

133 Citations

35 Altmetric

Explore all metrics

In August 2018, the Indian state of Kerala received an extended period of very heavy rainfall as a result of a low-pressure system near the beginning of the month being followed several days later by a monsoon depression. The resulting floods killed over 400 people and displaced a million more. Here, a high resolution setup (4 km) of the Weather Research and Forecasting (WRF) model is used in conjunction with a hydrological model (WRF-Hydro, run at 125 m resolution) to explore the circumstances that caused the floods. In addition to a control experiment, two additional experiments are performed by perturbing the boundary conditions to simulate the event in pre-industrial and RCP8.5 background climates. Modelled rainfall closely matched observations over the study period, and it is found that this would this would have been about 18% heavier in the pre-industrial due to recent weakening of monsoon low-pressure systems, but would be 36% heavier in an RCP8.5 climate due to moistening of the tropical troposphere. Modelled river streamflow responds accordingly: it is shown the six major reservoirs that serve the state would have needed to have 34% more capacity to handle the heavy rainfall, and 43% had the deluge been amplified by an RCP8.5 climate. It is further shown that this future climate would have significantly extended the southern boundary of the flooding. Thus it is concluded that while climate change to date may well have mitigated the impacts of the flooding, future climate change would likely exacerbate them.

Similar content being viewed by others

Investigation of the mechanisms leading to the 2017 montreal flood.

essay on climate change in malayalam

Hydroclimatological Perspective of the Kerala Flood of 2018

essay on climate change in malayalam

Climate change impact to Mackenzie river Basin projected by a regional climate model

Avoid common mistakes on your manuscript.

1 Introduction

About 80% of the annual rainfall in India falls during the monsoon season (Parthasarathy et al. 1994 ) and the Indian population depends on this water for agriculture, hydration, and industry. Any variability in timing, duration and intensity of the monsoon rains have a significant impact on the lives of the people in India. In recent years, several parts of India have experienced devastating flooding events. For example, on 26 July 2005, Mumbai experienced the worst flooding in recorded history when the city received 942 mm of rainfall on a single day (Prasad and Singh 2005 ). Similarly, on 17 June 2013, the state of Uttarakhand received more than 340 mm of rainfall resulting in disastrous flood and landslides that lead to unparalleled damage to life and property (Dube et al. 2014 ; Martha et al. 2015 ). The November 2015 Chennai floods, which resulted in over 500 deaths when Chennai experienced three times the usual rainfall, is another such example (Ray et al. 2019 ). Each year, flooding in India from extreme rains results in a loss of around $3 billion, which constitutes about 10% of global economic losses (Roxy et al. 2017 ).

In August 2018, the state of Kerala experienced its worst flooding since 1924. The devastating flood and associated landslides affected 5.4 million people and claimed over 400 lives. The post-disaster assessment commissioned by the Government of Kerala estimated the economic loss to be more than $3.8 million. Footnote 1 These floods, as well as many like the ones listed earlier, occurred during the passage of a monsoon depression. Though depressions are not directly responsible for more than a few percent of the monsoon rainfall over Kerala (Hunt and Fletcher 2019 ), could their broad scale modulate the westerly moisture flux that is responsible?

Kerala is bounded by Arabian Sea to its west and the Western Ghat mountain range to its east. Around 44 rivers flow through Kerala and there are about 50 major dams distributed mostly across the Western Ghats (Ramasamy et al. 2019 ) which provide water for agriculture and hydroelectric power generation. Second to the northeastern states, Kerala receives the most monsoon rainfall in India: the average annual rainfall is around 300 cm spread over 6 months, the highest amounts being received in June and July. Between 1 and 19 August 2018, Kerala received 164% more rainfall than normal, most of which fell during the two torrential rainfall episodes of 8–10 August (contemporaneous with a low-pressure area, see Fig.  1 ) and 14–19 August (contemporaneous with a monsoon depression). During 14–19 August, the Keralan district of Idukki received the most rainfall ( \(\sim 700\)  mm)—about twice the normal amount. According to Mishra et al. ( 2018a ), the one- and two-day extreme precipitation values that occurred in Kerala on 15–16 August had return periods of 75 and 200 years respectively when compared to a long term record from 1901–2017. Periyar basin, one of the most affected areas, received a 145-year return period rainfall amount (Sudheer et al. 2019 ).

The first of these two episodes of rain resulted in flooding along the banks of some of the rivers and water was released from only a few dams as the rain fell mostly over their catchment areas. After the first episode of heavy rain, most of the reservoirs in the state were near their Full Reservoir Level (FRL) and most of the soil in the region became saturated. Thus, when the second episode started several days later, the authorities had to open the shutters of almost all the major dams in Kerala. A combination of these torrential rains and opening of the dam shutters resulted in severe flooding in 13 out of the 14 districts in Kerala (Mishra et al. 2018b ; CWC 2018 ). Given the volume of precipitation that fell during this period, could the dams possibly have prevented the floods that followed?

Sudheer et al. ( 2019 ) used a hydrological model to explore the role of dams in the Periyar river basin in the 2018 floods. They suggested that emptying the reservoirs in advance would not have avoided the flood as a large bulk of the surface runoff was caused by intermediate catchments which do not have controlled reservoir operations. They found that, in the Periyar river basin, improved reservoir management would have only attenuated the flood by 16–21%. Furthermore, they highlighted that the probability of getting extreme rainfall events in the Periyar river basin in August is only 0.6% and hence a reliable extreme rainfall event forecast coupled with a reservoir inflow forecast is needed to plan mitigation. Mishra et al. ( 2018b ) found that the extreme precipitation and subsequent flooding of the 2018 event was unprecedented over a 66-year record. They suggested that while mean monsoon precipitation has decreased and mean temperature has increased over that period, one- and two-day extreme precipitation and extreme runoff conditions in in August 2018 exceeded the 95th percentile of the long-term mean from 1951–2017.

According to the recent Intergovernmental Panel for Climate Change (IPCC) report (Solomon et al. 2007 ), wet extremes are projected to become more severe in many areas where mean precipitation is projected to increase, as is flooding in the Asian monsoon region and other tropical areas. Several studies suggest that rainfall extreme events will increase in India under global warming (Goswami et al. 2006a ; Rajeevan et al. 2008 ; Guhathakurta et al. 2011a ; Menon et al. 2013 ; Roxy et al. 2017 ). Most extreme events over central India are associated with monsoon depressions (Dhar and Nandargi 1995 ), hence intensification of extreme rainfall events could be related to the change in dynamics of the monsoon depressions (Pfahl et al. 2017 ). However, due to the coarse resolution of global climate models, it is unknown if the extreme rainfall events in these models are caused by monsoon depressions (Turner and Annamalai 2012 ). Several observational studies, however suggest that the frequency of monsoon depressions has decreased and the frequency of low-pressure systems has increased in the recent past (Dash et al. 2004 ; Ajayamohan et al. 2010 ), implying a weakening trend in monsoon synoptic activity. So, how did climate change affect the 2018 floods, and to what extent would they differ under future climate change?

In this study, we will use high-resolution WRF and the WRF-Hydro simulations to explore the major factors behind the Kerala floods of August 2018. We also simulate the floods under pre-industrial and RCP8.5 background states to determine the effects of past and future climate change. Section  2 explains the model setup, data and methods used in this study. Section  3 deals with the major results from the precipitation and hydrology analysis. Results are concluded and discussed in Sect.  4 .

figure 1

Coverage of the two WRF domains (red), overlaid on an topographic map of India. The tracks of the monsoon low pressure area and monsoon depression occurring during August 2018 are marked in grey, with markers showing their 00UTC positions for each day

2 Data and methodology

2.1 era-interim.

For the initial and lateral boundary conditions in our regional model setup, we use the European Centre for Medium-Range Weather Forecasts Interim reanalysis (ERA-I; Dee et al. 2011 ). The surface fields, as well as soil temperature and moisture at selected depths are used only for initial conditions; atmospheric variables, which include wind, temperature and moisture defined over pressure levels are used to construct both initial and boundary conditions. All fields are available at 6-h intervals with a horizontal resolution of T255 ( \(\sim 78\)  km at the equator), with the three-dimensional fields further distributed over 37 vertical levels spanning from the surface to 1 hPa. Data are assimilated into the forecasting system from a variety of sources, including satellites, ships, buoys, radiosondes, aircraft, and scatterometers. Fields deriving purely from the model (i.e. not analysed), for example precipitation and cloud cover, are not used in this study.

2.2 Precipitation data

We need a relatively high-resolution observational rainfall dataset with which to compare our model output. Arguably the most suitable such dataset is the NCMRWF merged product (Mitra et al. 2009 , 2013 ), which combines automatic gauge data from the India Meteorological Department with satellite data from the TRMM multisatellite precipitation analysis (Huffman et al. 2007 ). This provides a rainfall dataset covering India and surrounding oceans at daily frequency and \(0.25^\circ\) horizontal resolution.

For this study, we use the 32 freely-accessible CMIP5 models (Taylor et al. 2012 ) for which monthly pressure level data were available. Where possible, the r1p1i1 ensemble member was chosen as the representative of each model, so as not to unfairly weight the results towards any particular model. The exception was EC-EARTH, for which, due to data availability reasons, member r9p1i1 was used. In this study, we use data from three of the CMIP5 experiments: historical, pre-industrial, and RCP8.5. The historical experiments of all models used here are forced with observed natural and anthropogenic contributions, usually from over the period 1850–2005, from which we take a representative period of 1980–2005, against which all perturbations are computed. The pre-industrial experiment comprises longer simulations with no anthropogenic forcings; these have varying baseline periods depending on the model, so we take the representative period as being the last 25 years of the run. The future scenario used here, RCP8.5, corresponds to an effective net change in radiative forcing in 2100 of \(8.5\,\hbox {W}\,\hbox {m}^{-2}\) , equivalent to roughly 1370 ppm \(\hbox {CO}_2\) (Van Vuuren et al. 2011 ). We again choose the final 25 years (2075–2100) as the representative period for the experiment.

Throughout this study we will make use of version 4.0 of the Advanced Research Weather Research and Forecasting (WRF) model (Skamarock et al. 2008 ). Two domains (see Fig.  1 ) were employed for this study: the \(61\times 61\) outer domain had a resolution of 36 km, whereas the \(100\times 181\) inner domain had a resolution of 4 km. We note that though this nesting ratio seems high, previous authors (e.g. Liu et al. 2012 ; Mohan and Sati 2016 ) have found that results are insignificant to the ratio, so long as it is an odd number. The inner domain was chosen to encapsulate the entire state of Kerala, as well as the Western Ghats and an area of the Arabian Sea to the west, allowing us to capture offshore convective development as well as the orographic features that play an important role in monsoon rainfall in the state. The larger domain, which covers most of India, was chosen to include the monsoon depression that was contemporaneous with the flooding.

Convection was parameterised in the outer domain, but explicit in the inner—this and the other physics schemes used are outlined in Table  1 . Here, we use the combination recommended by NCAR and specified in the WRF User’s Guide for convection-permitting simulations of tropical cyclones; it is very similar to that used by previous authors simulating orographic rainfall in South Asia (e.g. Patil and Kumar 2016 ; Norris et al. 2017 ), as well as monsoons in general (e.g. Srinivas et al. 2013 ; Dominguez et al. 2016 ). We use 35 eta levels in the vertical with a model lid at 50 hPa. Lateral boundary conditions were supplied at every 6-h timestep from ERA-Interim reanalysis data, as were initial conditions for the first timestep.

2.5 WRF-Hydro

In this study, we use the WRF-Hydro hydrological model (Gochis et al. 2014 ), coupled to the Noah-MP land surface model (LSM; Gochis and Chen 2003 ; Niu et al. 2011 ; Yang et al. 2011 ). In our configuration, both overland (steepest descent) and channel routing (differential wave gridded) were activated, with the hydrological model running at a resolution of 125 m (timestep: 10 s) and the land surface model running at 4 km (timestep: 1 h). The LSM takes as input hourly output from the WRF model, distributing surface precipitation among its four soil layers (set at 7, 28, 100, and 289 cm to match ERA-Interim) and the surface; WRF-Hydro then channels this moisture accordingly at the higher resolution. The high-resolution input files, containing important geospatial information (e.g.  slope direction, river channel mask) were created using the WRF-Hydro GIS preprocessing toolkit and the satellite-derived HydroSHEDS hydrographic dataset (Lehner et al. 2008 ; Lehner and Grill 2013 ). These modelled rivers and their basins are shown in Fig.  2 .

Because of a lack of relevant reservoir and lake data for the state of Kerala, these features were not implemented in the hydrological model; one major implication of this was that the surface water output from WRF-Hydro was inaccurate (while the natural lakes were correctly represented, the artificial reservoirs were not). Given that some of the reservoirs are substantial (the largest, created by the Idukki dam, is about \(60\,\hbox {km}^2\)  in area), we chose to run the LSM and WRF-Hydro offline (i.e. coupled to each other but not to WRF) in order to mitigate incorrect feedbacks caused by mislocated surface water.

Furthermore, the long spin-up time necessary for the hydrological model meant that a cold start in the summer of 2018 would have been inappropriate. As such, we ran WRF with the control experiment parameters from 1 June 2017 to 1 July 2018 (the start date of all experiments), using the output to force WRF-Hydro so that warm restart files were available for the study period.

2.6 Climate perturbation and experimental setup

One of the key foci of this study will be to explore how the 2018 floods would have differed in the absence of anthropogenic climate change and how it would differ in a projected future climate. To this end we use a technique commonly referred to as pseudo-global warming (PGW, e.g. Kimura and Kitoh 2007 ; Prein et al. 2017 ; Hunt et al. 2019 ). Taking an example of modifying 01-08-2018 00Z boundary conditions to reflect RCP8.5 conditions, we describe the methodology below:

For a given prognostic variable, say, temperature, compute the CMIP5 multi-model August mean for the historical experiment over the period 1980–2005. Call this \(T_0\) .

Compute the multi-model August mean for the RCP8.5 experiment over the period 2075–2100. Call this \(T_p\) .

Take the difference field, \(T_d=T_p - T_0\) , then slice and interpolate it to match the dimensions of the boundary condition. Add \(T_d\) to the boundary condition, and repeat for all boundaries for T at this time step.

Repeat for all variables (and all time steps) on both lateral and lower boundaries.

In this way, we can keep the important high-magnitude, high-frequency weather information, but see how the impacts adjust when perturbed by a low-magnitude, low-frequency climate signal.

2.7 Storage calibration

Much of this study focuses on reservoirs, and since the hydrological model used can only compute the river discharge (or reservoir inflow) for a given point, we need to be able to convert this to storage, so that it can be compared appropriately with observations. To this end, we propose a simple model to compute the storage, S , at some time \(t_1\) , given its value at \(t_0\) , the inflow rate as a function of time, \(\phi (t)\) , the evacuation rate, \(\eta\) , and some shape parameter, \(\alpha\) :

The evacuation rate represents the sum of all contributions to drainage from the reservoir—comprising artificial sinks (sluices, spillways) and natural sinks (seepage, evaporation). Strictly speaking, this should be a function of time; however, that information is not freely available for the dams studied in this work and fitting a time dependent variable using model output would be a highly underconstrained problem. Therefore, we make a simplification—separating the contributions into a constant (following the notion that reservoir output is generally intended to be kept constant), \(\eta\) and a factor proportional to the accumulated storage as a function of time (assuming that, e.g., groundwater seepage is proportional to storage, Footnote 2 ) \(\beta\) . For readability, we define \(\alpha = 1-\beta\) and call that the shape factor because it also includes the effects of having a more complex, partitioned reservoir system.

figure 2

Locations of important hydrological features in the state of Kerala, with state boundaries given in black. Major river catchment boundaries are given in green, with selected rivers labelled accordingly. Plotted river width is a function of Strahler stream order

3.1 Precipitation

figure 3

Mean precipitation [ \(\hbox {mm h}^{-1}\) ] over the inner domain for the period August 6 to August 18 inclusive. From left: the NCMRWF merged product; the control experiment; the difference between the control and pre-industrial experiments; and the difference between the RCP8.5 and control experiments. State boundaries are marked in black, with black crosses representing the major dams shown in Fig.  2

We start our analysis by looking at the primary cause of all floods: precipitation. Figure  3 shows different aspects of the rainfall occurring during and immediately before the floods, covering the period August 6 to August 18 inclusive. The leftmost panel shows the mean rainfall for this period according to the NCMRWF merged precipitation product (see Sect.  2.2 ). Rainfall is concentrated mostly along the peaks of the Western Ghats, thus the hydrological stress that triggered the flooding came about from an (approximate) amplification of the mean monsoon pattern rather than through rainfall falling in unusual locations. This pattern is in agreement with the assessment of Mishra and Shah ( 2018 ) who investigated IMD rainfall data Footnote 3 for the period. Most of the rainfall falls over land as opposed to ocean indicating the extended presence of a so-called coastal convective phase, as described by Fletcher et al. ( 2018 ). Coastal phases stand in contrast to offshore phases, and usually develop under conditions of anomalously strong and moist westerlies—in this case provided by the low pressure systems passing over the peninsula.

Second from left in Fig.  3 is the mean rainfall for our WRF control experiment for the same period (06/08–18/08), showing a broad structure very similar to observations for the period shown in the first panel. Footnote 4 Again, the rainfall is predominantly onshore, concentrated over the orography. At this resolution, though it was suggested by the observational data, we can see that the mean rainfall for this period is heaviest over—or slightly upstream of—the major dams. Upstream of Idamalayar and Parambikulam the mean rate for some areas reached more than \(15\,\hbox {mm}\,\hbox {h}^{-1}\) , amounting to an accumulation exceeding 4.5 m for period. This is in accordance with data released by the Central Water Commission, Footnote 5 as is the spatial distribution.

The remaining two panels, on the right hand side of Fig.  3 , compare the control experiment mean rainfall with that of the two perturbation experiments. We recall from the methodology that these experiments are—like the control—hindcasts, with their boundary conditions adjusted to simulate how the events leading to the flood may differ if occurring under pre-industrial or RCP8.5 climates. The first of these (second from right) shows the difference in mean rainfall for the period between the control and pre-industrial experiments. It is almost universally drier in the pre-industrial experiment—averaging a mean reduction over the inner domain of about 18% compared to the control. Let us start to unpick this by noting that historical rainfall trends show that the monsoon is drying and that that pattern is amplified over Kerala and the Western Ghats due to weakening monsoon westerlies (Krishnan et al. 2016 ). This picture is complicated somewhat by previous studies showing that extreme rainfall events embedded within the monsoon have seemingly worsened (e.g. Goswami et al. 2006b ), though spatial maps of such trends (Guhathakurta et al. 2011b ) suggest that they are very slight along the southwest coast. We will resolve this in the next section by looking at the changes from a moisture flux perspective. Finally, we compare the control and RCP8.5 experiments, as shown in the rightmost panel of Fig.  3 . The RCP8.5 perturbed scenario is almost universally wetter than the control over the inner domain (by about 36%), particularly over the southern Keralan Ghats, where the control rainfall is highest and where the major dams are situated. This is in contrast to the pre-industrial experiment which exhibited the most drying over the north of the state with a more mixed signal around the major dams. This non-linearity could indicate that different processes are responsible for the respective changes.

figure 4

Vertically-integrated moisture flux for the period 2018-08-15 00Z to 2018-08-19 00Z over the outer domain (with Kerala indicated in black). The left panels shows the mean vector field and its magnitude for the pre-industrial and control experiments respectively. The middle panels show the changes to those fields in the control and RCP8.5 experiments respectively considering only changes to specific humidity. The right panels are as the middle panels but for changes to the wind field. The right and middle panels are coloured by the effect their presence has on the total magnitude, note that the colours scales differ between the two pairs of experiments

The moisture flux that impinges upon the Western Ghats is responsible for the vast majority of the monsoon rainfall that falls over Kerala, subject to localised dynamics dependent also on the land-sea contrast (Fletcher et al. 2018 ). To first order, changes in this moisture flux can be thought of as a sum of contributions from changes to humidity and changes to the wind field, i.e.:

where q and \({\mathbf {u}}\) are the quantities in the perturbation experiment, \({\bar{q}}\) and \(\bar{{\mathbf {u}}}\) are the values in the control experiment, and \(q'\) and \({\mathbf {u}}'\) are the differences between them.

Considering the period when the monsoon depression was most active: Aug 15 to Aug 18 inclusive, we compare these terms between the control experiment and two perturbation experiments in Fig.  4 . The first of the two groups, Fig.  4 a treats the pre-industrial experiment as the base, with the control experiment acting as the perturbation. The leftmost panel, indicating mean moisture flux for the period, shows clearly the impact of the depression. It dominates the organisation of moisture over the peninsula, with high values of vertically integrated flux and flux convergence both slightly to the south of its centre and over Kerala. The middle panel shows how this pattern would change in the present day considering differences to humidity alone. As the tropical atmosphere has not moistened drastically since the pre-industrial, these changes are slight when compared to the absolute values, adding only a very small positive contribution—amounting to a few percent—to the flux magnitude over Kerala. The right-hand panel is as the middle panel, but instead looking at the contribution from the wind field alone. Immediately, one can see that the depression is surrounded by a significantly weaker circulation causing a reduction in moisture flux over almost all of India, except for a small region near the depression centre caused by track translation. This is expected: previous studies have shown that monsoon low-pressure systems become weaker and less numerous as the climate warms (Prajeesh et al. 2013 ; Cohen and Boos 2014 ; Sandeep et al. 2018 ) as low-level vorticity associated with the monsoon decreases. Despite this, the reduction in flux over Kerala is comparatively weak, though easily more than enough to override the contribution from \(q'\) . This is largely in agreement with Sørland et al. ( 2016 ) who found that, for an ensemble of ten individual storms, uniform atmospheric temperature increases of 2 K and 4 K yielded mean precipitation increases of 22% and 53% respectively.

The second set of panels, Fig.  4 b, shows the contributions to the difference in moisture flux between the control and RCP8.5 experiments. The mean vertically integrated moisture flux for the control experiment appears quite similar to that of the pre-industrial experiment, which we expect from the preceding analysis. The humidity change (middle panel) increases the moisture flux incident on Kerala by over 20% from the control experiment to the RCP8.5 experiment, as well as a universally positive contribution over the whole subcontinent. The expected further weakening of the depression (right-hand panel) is much weaker than in the pre-industrial to control case before, and nowhere near strong enough to counter the large moisture-drive contribution.

In summary, in the control (present-day) experiment, there was marginally less moisture flux over Kerala than in the pre-industrial experiment due to a marked weakening of the monsoon depression; in contrast, there is significantly increased flux over Kerala in the RCP8.5 experiment in spite of slight weakening of the depression, due to a large rise in tropospheric humidity.

3.2 Hydrology

figure 5

Modelled river discharge ( \(\hbox {m}^3\hbox {s}^{-1}\) ) for 13–18 August 2018 inclusively as: a the control experiment mean; b the ratio of the control experiment and pre-industrial experiment means; and c the ratio of the RCP8.5 experiment and control experiment means. The seven major dams shown in Fig.  2 are given here by black crosses

Precipitation is only one part of the complex hydrological cascade that leads to flooding. To work towards a more complete picture, we now use the WRF hydrological model (see Sect.  2.5 ) to explore the response of rivers to the heavy precipitation analysed in the previous section.

Figure  5 shows the mean modelled discharge over from 13-08-2018 00Z to 19-08-2018 00Z for the control experiment and how it compares to the two perturbation experiments. The control mean (Fig.  5 a) splits the discharge into decades, with green hues representing the largest rivers (flow rates exceeding \(100\,\hbox {m}^3\,\hbox {s}^{-1}\) ), red hues representing the smallest rivers (flow rates below \(10\,\hbox {m}^3\,\hbox {s}^{-1}\) ), and yellow covering those in between. All seven of the important dams (and their eponymous reservoirs) lie on major rivers or significant tributaries thereof. Given the complicated partitioning of river basins over Kerala (Fig.  2 ), these maps provide a useful overview of their response to heavy rainfall during August 2018 and how that response changes when the rainfall responds to the different climates of the pre-industrial and RCP8.5 perturbation experiments.

Figure  5 b shows the difference between the mean control discharge and that of the pre-industrial experiment. As the rainfall is generally less in the latter during this period, we see the expected pattern of almost completely reduced streamflow over the domain; the exact reduction varies considerably depending on location (and is indeed an increase in some areas) but averages 16% over the domain. In contrast, Fig.  5 c shows that streamflow almost universally increases over the domain in the RCP8.5 experiment when compared to the control. In some places, the change is quite drastic: the mean increase over the domain is 33%, the upper quartile is 77%, and the ninetieth percentile is 97%. In other words, one in ten river points in the domain would have experienced twice the discharge were this event to have happened in an RCP8.5 climate. The domain-averaged changes of −16% and 33% for pre-industrial and RCP8.5 are in strong agreement with the domain-averaged rainfall changes of −18% and 36% respectively.

figure 6

Idukki reservoir: modelled inflow (blue, grey, red lines for control, pre-industrial, RCP8.5 experiments respectively), modelled storage (orange solid, dotted, dashed lines respectively), and observed storage (black crosses). Nominal reservoir maximum capacity is marked by the dashed grey line towards the right of the figure

The story would be incomplete without some focus on the reservoir/dam system that failed in the lead up to the floods. While a complete treatment of that topic is beyond the scope of this work, we will endeavour to give a thorough analysis with the available data. We start by using the largest reservoir in the state, Idukki, as a case study. Figure  6 shows the modelled inflow and storage for all three experiments, as well as the observed storage from India-WRIS and the nominal capacity of the reservoir. As discussed in Sect.  2.7 , to convert modelled inflow to a representative storage we must integrate it over time and include both a sluicing rate and a shape factor. These are reservoir-specific unknowns that we need to fit for using a standard least-squares method. Leveraging part of the long spin up period required by the hydrological model, we calibrated using observational and (control experiment) model data from January to June 2018 inclusive; the low rainfall during the pre-monsoon being particularly useful to establish the correct sluicing rate.

The inflow rates from all three experiments are in line with what we expect from Fig.  5 : overall the control experiment is the driest, with slightly more inflow in the pre-industrial experiment and significantly more in the RCP8.5 experiment. The control experiment inflow very closely matches that given in the CWC report (see their Fig.  4 ). These project accordingly onto the modelled storages, all three of which closely follow the observations until the first LPS (Aug 6 to Aug 10). At that point, the reservoir hit capacity—denoted in Fig.  6 by the dashed horizontal grey line, and the floodgates had to be opened. Our model is not party to that information and continues to assume the constant sluicing rate from the pre- and early monsoon periods, resulting in a divergence between the three model storages and observations. The control experiment provides a useful estimate of how much additional storage would have been required: the nominal maximum capacity is \(1.45\times 10^9\,\hbox {m}^{3}\) , the control experiment modelled storage peaked at \(2.04\times 10^9\,\hbox {m}^{3}\) (41% higher), and the RCP8.5 experiment reached a storage of \(2.30\times 10^9\,\hbox {m}^{3}\) (59% higher than maximum capacity, 13% higher than the control). Making the naïve assumption that when modelled storage values exceed the maximum capacity, the difference is converted into floodwater, the control experiment yields a total excess of \(5.89\times 10^8\,\hbox {m}^{3}\) between breaching on August 11th and remission ten days later; the RCP8.5 experiment (breaching one day earlier) yields \(8.52\times 10^8\,\hbox {m}^{3}\) , an increase of 45%. It is clear, therefore, that using the dams to mitigate downstream flooding would have been largely impossible; furthermore, were such an event to happen again in an end-of-century RCP8.5 climate, it would be significantly more catastrophic.

figure 7

Comparison of modelled (orange) and observed storage rates for 2018 with the 2001–2017 climatology (mean in black, with grey swath denoting extrema) for six major reservoirs. Storage at maximum capacity for each is given by the dotted grey line. The three modelled storage values are given by solid, dashed, and dotted lines for the control, pre-industrial, and RCP8.5 experiments respectively

We now generalise this analysis to the major Keralan reservoirs. This is only possible for the six whose storage data are released by India-WRIS, without which we cannot calibrate using Eq.  1 . Observed and modelled storages, along with climatological information, are given for these six (Idamalayar, Idukki, Kakki, Kallada, Malampuzha, and Periyar Footnote 6 ) in Fig.  7 . There are two brief caveats to make before we move into the analysis. Firstly, we have assumed that the reservoir outflow is the sum of a constant sluicing rate and some additional contribution proportional to the inflow; this is a very good approximation for the larger reservoirs (which the reader is invited to verify by inspection of the CWC report) but can be poor in smaller reservoirs where the supply and demand is comparably much more variable. Secondly, as discussed in the previous section, our model has no information on floodgates, so continues to add to the storage of a reservoir even after the maximum capacity (FRL) has been passed. In each case this manifests as a large divergence between modelled and observed storage starting in mid August.

Figure  7 compares these storages for the reservoirs in question. In all cases except Periyar (and to a lesser extent, Kallada), the modelled storage from the control experiment closely follows the observed storage; in all but Kallada, the 2018 observed storage reached its FRL; and in all cases, at some point in July or August, the storage reaches its highest value since records began in 2001. Two reservoirs, Idamalayar and Malampuzha, exhibit seemingly counter-intuitive behaviour: by the end of August, the largest storage values come from the pre-industrial experiment and the smallest from RCP8.5. Inspection of Fig.  3 reveals that although nearly everywhere in the domain receives more rainfall in the RCP8.5 experiment (compared to the control), both these dams are situated downstream of small regions where the reverse is true, seemingly in part due to the absence of some rainfall-triggering event in mid July. Thus, in these unusual cases, it is possible that future climate may mitigate hydrological stress on these reservoirs. The remaining four have storage patterns that more closely reflect the general results presented earlier in this study: the highest storage values are reached in RCP8.5, followed by pre-industrial, with control at the bottom. Averaged over these four reservoirs, the peak storage in the control experiment is 34% higher than the nominal maximum capacity, rising to 43% in pre-industrial conditions and 54% in RCP8.5 conditions. Including the two anomalous reservoirs, these become 37%, 50% and 44% respectively.

figure 8

Sum of model inflow to all reservoirs (see Fig.  2 ) separated by river basin. Basins are organised by latitude, with the northernmost being shown at the left hand side. Solid, dashed, and dotted lines represent the control, pre-industrial, and RCP8.5 experiments respectively

Finally, we look at the general impact on the 62 dams/reservoirs shown in Fig.  2 , whose inflows are grouped by river basin in Fig.  8 ; for each basin, the inflow is computed as the sum of inflow to all reservoirs therein. Noting that the basins are arranged by latitude, several important contrasts emerge. Firstly, the relative impact of the first LPS (triggering the peaks between Aug 8 and Aug 10) is less among the more southerly basins; likely because as a weaker system, it would have a smaller region of influence, and thus less impact on the bulk monsoon flow. Secondly, the impact of switching to an RCP8.5 climate becomes drastically more significant in basins situated further south. Over the period Aug 14 to Aug 19 inclusive, the three smaller basins towards the north (Kuttiyadi, Bharatapuzha, and Karuvannur) have mean control inflow of \(26.2\,\hbox {m}^3\,\hbox {s}^{-1}\) , rising 25% to \(32.7\,\hbox {m}^3\,\hbox {s}^{-1}\) in the RCP8.5 experiment. For the middle three basins (Chalakkudy, Periyar, and Muvattupuzha), the mean inflow increases 32% from \(563\,\hbox {m}^3\,\hbox {s}^{-1}\) in the control to \(745\,\hbox {m}^3\,\hbox {s}^{-1}\) in RCP8.5. For the southernmost three (Meenachal, Pamba, and Kallada), this changes drastically: rising 98% from \(152\,\hbox {m}^3\,\hbox {s}^{-1}\) to \(302\,\hbox {m}^3\,\hbox {s}^{-1}\) . Revisiting Figs.  3 and  4 b, we can see why: this area has the largest fractional increase of rainfall in the RCP8.5 experiment (this can be confirmed directly by looking at a ratio map, which we do not show here). This in turn is at least partially caused by a significant increase in moisture flux and moisture flux convergence over the southernmost part of the peninsula, a pattern that is echoed in CMIP5 projections (Sharmila et al. 2015 ). This has a profound implication: the southern part of Kerala did not flood in 2018 (Mishra and Shah 2018 ), but the results here suggest that it almost certainly would do were such an event to happen again in an end-of-century RCP8.5 climate.

4 Discussion

During mid-August 2018, unprecedented and widespread flooding resulted in the deaths of over 400 people and the displacement of over a million more in the Indian state of Kerala. The flooding was preceded by several weeks of heavy rainfall over the state, caused mostly due a monsoon depression (13–17 Aug) that immediately followed a monsoon low-pressure system (6–9 Aug). In this manuscript, we explored the underlying causes and hydrological responses, as well as how they would differ under alternative climate scenarios. To achieve this, we used a two-domain setup in the Weather Research and Forecasting Model (WRF) with the outer domain (20 km resolution) covering most of the Indian peninsula and the nested inner domain (4 km resolution, explicit convection) covering its southwest, including the entire state of Kerala and a significant portion of the Arabian Sea. Alongside this, we used the companion hydrological model (WRF-Hydro) at 125 m resolution to simulate river channel response to the varying precipitation forcings. The ‘alternative’ climates (pre-industrial and RCP8.5) were simulated by perturbing the model initial and lateral boundary conditions by their projected difference from the present day, computed using CMIP5 multi-model output.

We found that the simulated rainfall from the control experiment, concentrated over the Western Ghats, closely matched observations for that period. The rainfall over this period was higher in both the perturbation experiments: by about 36% over the inner domain in the RCP8.5 experiment and by about 18% in the pre-industrial. We attributed these changes to two trends that previous studies have established as effects of climate change: the weakening of synoptic activity within the Indian monsoon and the moistening of the tropical troposphere. We found that the former was the dominant driver of moisture flux change between the pre-industrial and the present day (hence lower rainfall in the control than in the pre-industrial experiment), whereas the latter was the strongest driver of change between the present-day and RCP8.5. Given this trade-off between competing factors, we cannot safely infer how the rainfall associated with this event would change in other future climates (e.g. RCP4.5, RCP6.0), and so we leave this task for future work.

Using a high-resolution setup of WRF-Hydro, we showed that the change in domain mean rainfall projected onto approximately equivalent changes in mean river streamflow, though as expected there was substantial spatial and temporal variance: for example, the 90th percentile streamflow over the domain increased by 97% in the RCP8.5 experiment compared to the control. Because the India Water Resource Information Service (India-WRIS) only make certain data publically available (only storage data, and only for six of the largest reservoirs), we used a simple model to convert modelled inflow into reservoir storage to verify our hydrological model. For four of the six reservoirs, before reaching their full reservoir level (FRL), the Pearson correlation coefficient between the observed and modelled storage exceeded 0.99 with the remaining two both exceeding 0.9. Furthermore, inflow values for several reservoirs in the days preceding the flood published in a report by the Central Water Commission agree closely with the model output, confirming the efficacy of the hydrological model.

By comparing the modelled storage, which is not affected by FRL, with the observed storage, which is, we were able to calculate the surplus water for each of the six main reservoirs. On average, over the four reservoirs that most closely represented the rainfall trends, 34% more capacity would have been required to handle all the excess precipitation that fell during August 2018; rising to 43% in the pre-industrial and 54% in RCP8.5. It is clear, therefore, that no matter what approach was taken to opening the dams, the catastrophe was inevitable; furthermore the results presented here suggest that they would be significantly more devastating in an end-of-century RCP8.5 climate. Analysis of river streamflow at all 62 dams in the state showed that climate change would have the strongest impact in the south of the state: mean inflow for Aug 14 to Aug 19 increased 25% between the control and RCP8.5 experiments in the three northernmost river basins, rising to 98% in the three southernmost basins.

https://www.undp.org/content/dam/undp/library/Climate%20and%20Disaster%20Resilience/PDNA/PDNA_Kerala_India.pdf

This is only strictly true if reservoir cross-sectional area is constant with height. Of course it isn’t; but for the sake of simplicity, we make this approximation.

Note that the NCMRWF dataset used here is in part derived from IMD rainfall data, so a high pattern correlation is expected.

For a fairer comparison, the model output should be regridded to the resolution of the NCMRWF dataset. However we intend this particular comparison to be qualitative, not quantitative- and have thus retained the higher resolution.

Summarised in https://reliefweb.int/sites/reliefweb.int/files/resources/Rev-0.pdf

Note that in some literature, this is referred to Mullaperiyar.

Ajayamohan RS, Merryfield WJ, Kharin VV (2010) Increasing trend of synoptic activity and its relationship with extreme rain events over central india. J Clim 23(4):1004–1013

Google Scholar  

Cohen NY, Boos WR (2014) Has the number of Indian summer monsoon depressions decreased over the last 30 years? Geophys Res Lett 41:7846–7853. https://doi.org/10.1002/2014GL061895

Article   Google Scholar  

CWC (2018) Kerala floods of August 2018. Central Water Commission, New Delhi https://reliefweb.int/sites/reliefweb.int/files/resources/Rev-0.pdf

Dash SK, Kumar JR, Shekhar MS (2004) On the decreasing frequency of monsoon depressions over the Indian region. Curr Sci Bangalore 86(10):1404–1410

Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J R Meteor Soc 137(656):553–597. https://doi.org/10.1002/qj.828

Dhar O, Nandargi S (1995) On some characteristics of severe rainstorms of India. Theor Appl Climatol 50(3–4):205–212

Dominguez F, Miguez-Macho G, Hu H (2016) WRF with water vapor tracers: a study of moisture sources for the North American monsoon. J Hydrometeorol 17(7):1915–1927

Dube A, Ashrit R, Ashish A, Sharma K, Iyengar G, Rajagopal E, Basu S (2014) Forecasting the heavy rainfall during Himalayan flooding—June 2013. Weather Clim Extrem 4:22–34

Fletcher JK, Parker DJ, Turner AG, Menon A, Martin GM, Birch CE, Mitra AK, Mrudula G, Hunt KMR, Taylor CM, et al (2018) The dynamic and thermodynamic structure of the monsoon over southern India: New observations from the INCOMPASS IOP. Q J R Meteorol Soc

Gochis DJ, Chen F (2003) Hydrological enhancements to the community Noah land surface model. Tech. rep., NCAR

Gochis DJ, Yu W, Yates DN (2014) The WRF-Hydro model technical description and user’s guide, version 2.0. Tech. rep., NCAR

Goswami BN, Venugopal V, Sengupta D, Madhusoodanan M, Xavier PK (2006a) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006b) Increasing trend of extreme rain events over India in a warming environment. Science 314(5804):1442–1445

Guhathakurta P, Sreejith O, Menon P (2011a) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359

Guhathakurta P, Sreejith O, Menon P (2011b) Impact of climate change on extreme rainfall events and flood risk in India. J Earth Syst Sci 120(3):359

Hong SY, Lim JOJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). Asia-Pac J Atmos Sci 42(2):129–151

Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341

Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55. https://doi.org/10.1175/JHM560.1

Hunt KMR, Fletcher JK (2019) The relationship between Indian monsoon rainfall and low-pressure systems. Clim Dyn pp 1–13

Hunt KMR, Turner AG, Parker DE (2016) The spatiotemporal structure of precipitation in Indian monsoon depressions. Q J R Meteor Soc 142(701):3195–3210. https://doi.org/10.1002/qj.2901

Hunt KMR, Turner AG, Shaffrey LC (2019) The impacts of climate change on the winter water cycle of the western Himalaya. Clim Dyn Prep

Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res Atmos 113(D13):

Jiménez PA, Dudhia J, González-Rouco JF, Navarro J, Montávez JP, García-Bustamante E (2012) A revised scheme for the WRF surface layer formulation. Mon Weather Rev 140(3):898–918

Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181

Kimura F, Kitoh A (2007) Downscaling by pseudo-global-warming method. Final Rep ICCAP RIHN Proj 1–1:43–46

Krishnan R, Sabin TP, Vellore R, Mujumdar M, Sanjay J, Goswami BN, Hourdin F, Dufresne JL, Terray P (2016) Deciphering the desiccation trend of the South Asian monsoon hydroclimate in a warming world. Clim Dyn 47(3–4):1007–1027

Lehner B, Grill G (2013) Global river hydrography and network routing: baseline data and new approaches to study the world’s large river systems. Hydrol Processes 27(15):2171–2186

Lehner B, Verdin K, Jarvis A (2008) New global hydrography derived from spaceborne elevation data. Eos Trans Am Geophys Union 89(10):93–94

Liu J, Bray M, Han D (2012) Sensitivity of the weather research and forecasting (WRF) model to downscaling ratios and storm types in rainfall simulation. Hydrol Process 26(20):3012–3031

Martha TR, Roy P, Govindharaj KB, Kumar KV, Diwakar P, Dadhwal V (2015) Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand state, india. Landslides 12(1):135–146

Menon A, Levermann A, Schewe J (2013) Enhanced future variability during India’s rainy season. Geophys Res Lett 40(12):3242–3247

Mishra V, Shah HL (2018) Hydroclimatological perspective of the Kerala flood of 2018. J Geol Soc India 92(5):645–650

Mishra V, Aaadhar S, Shah H, Kumar R, Pattanaik DR, Tiwari AD (2018a) The Kerala flood of 2018: combined impact of extreme rainfall and reservoir storage. Hydrol Earth Syst Sci Discuss pp 1–13

Mishra V, Aaadhar S, Shah H, Kumar R, Pattanaik DR, Tiwari AD (2018b) The Kerala flood of 2018: combined impact of extreme rainfall and reservoir storage. Hydrol Earth Syst Sci Discuss pp 1–13

Mitra AK, Bohra AK, Rajeevan MN, Krishnamurti TN (2009) Daily Indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. J Meteorol Soc Japan Ser II 87:265–279

Mitra AK, Momin IM, Rajagopal EN, Basu S, Rajeevan MN, Krishnamurti TN (2013) Gridded daily Indian monsoon rainfall for 14 seasons: merged TRMM and IMD gauge analyzed values. J Earth Syst Sci 122(5):1173–1182

Mohan M, Sati AP (2016) WRF model performance analysis for a suite of simulation design. Atmos Res 169:280–291

Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E, et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res Atmos 116(D12)

Norris J, Carvalho LMV, Jones C, Cannon F, Bookhagen B, Palazzi E, Tahir AA (2017) The spatiotemporal variability of precipitation over the himalaya: evaluation of one-year wrf model simulation. Clim Dyn 49(5–6):2179–2204

Parthasarathy B, Munot AA, Kothawale D (1994) All-India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49(4):217–224

Patil R, Kumar PP (2016) WRF model sensitivity for simulating intense western disturbances over North West India. Model Earth Syst Environ 2(2):1–15

Pfahl S, O’Gorman PA, Fischer EM (2017) Understanding the regional pattern of projected future changes in extreme precipitation. Nat Clim Change 7(6):423

Prajeesh AG, Ashok K, Bhaskar Rao DV (2013) Falling monsoon depression frequency: a Gray-Sikka conditions perspective. Sci Rep 3:1–8. https://doi.org/10.1038/srep02989

Prasad AK, Singh RP (2005) Extreme rainfall event of July 25–27, 2005 over Mumbai, west coast, India. J Indian Soc Remote Sens 33(3):365–370

Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7(1):48

Rajeevan M, Bhate J, Jaswal AK (2008) Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys Res Lett 35(18):

Ramasamy S, Gunasekaran S, Rajagopal N, Saravanavel J, Kumanan C (2019) Flood 2018 and the status of reservoir-induced seismicity in Kerala, India. Nat Haz pp 1–13

Ray K, Pandey P, Pandey C, Dimri AP, Kishore K (2019) On the recent floods in india. Curr Sci 117(2):204–218

Roxy MK, Ghosh S, Pathak A, Athulya R, Mujumdar M, Murtugudde R, Terray P, Rajeevan M (2017) A threefold rise in widespread extreme rain events over central India. Nat Commun 8(1):708

Sandeep S, Ajayamohan RS, Boos WR, Sabin TP, Praveen V (2018) Decline and poleward shift in Indian summer monsoon synoptic activity in a warming climate. Proc Natl Acad Sci (USA) 115(11):2681–2686

Sharmila S, Joseph S, Sahai AK, Abhilash S, Chattopadhyay R (2015) Future projection of indian summer monsoon variability under climate change scenario: an assessment from CMIP5 climate models. Glob Planet Change 124:62–78

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W, Powers JG (2008) A description of the Advanced Research WRF version 3. NCAR Technical note -475+str

Solomon S, Qin D, Manning M, Averyt K, Marquis M (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC, vol 4. Cambridge University Press, Cambridge

Sørland SL, Sorteberg A, Liu C, Rasmussen R (2016) Precipitation response of monsoon low-pressure systems to an idealized uniform temperature increase. J Geophys Res Atmos 121(11):6258–6272

Srinivas C, Hariprasad D, Rao DVB, Anjaneyulu Y, Baskaran R, Venkatraman B (2013) Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int J Climatol 33(5):1195–1210

Sudheer K, Bhallamudi SM, Narasimhan B, Thomas J, Bindhu V, Vema V, Kurian C (2019) Role of dams on the floods of august 2018 in Periyar River Basin, kerala. Curr Sci (00113891) 116(5)

Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498

Tewari M, Chen F, Wang W, Dudhia J, LeMone MA, Mitchell K, Ek M, Gayno G, Wegiel J, Cuenca RH (2004) Implementation and verification of the unified NOAH land surface model in the WRF model. In: 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, American Meteorological Society Seattle, WA, vol 1115

Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2(8):587

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF et al (2011) The representative concentration pathways: an overview. Clim Change 109(1–2):5

Yang ZL, Niu GY, Mitchell KE, Chen F, Ek MB, Barlage M, Longuevergne L, Manning K, Niyogi D, Tewari M, et al (2011) The community Noah land surface model with multiparameterization options (Noah-MP): 2. Evaluation over global river basins. J Geophys Res Atmos 116(D12)

Download references

Acknowledgements

KMRH is funded through the Weather and Climate Science for Service Partnership (WCSSP) India, a collaborative initiative between the Met Office, supported by the UK Government’s Newton Fund, and the Indian Ministry of Earth Sciences (MoES). AM is funded by the INCOMPASS project (NERC Grant numbers NE/L01386X/1 and NE/P003117/1), a joint initiative between the UK-Natural Environment Research Council and the Indian Ministry of Earth Sciences.

Author information

Authors and affiliations.

Department of Meteorology, University of Reading, Reading, UK

Kieran M. R. Hunt & Arathy Menon

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Kieran M. R. Hunt .

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Hunt, K.M.R., Menon, A. The 2018 Kerala floods: a climate change perspective. Clim Dyn 54 , 2433–2446 (2020). https://doi.org/10.1007/s00382-020-05123-7

Download citation

Received : 02 September 2019

Accepted : 07 January 2020

Published : 18 January 2020

Issue Date : February 2020

DOI : https://doi.org/10.1007/s00382-020-05123-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Find a journal
  • Publish with us
  • Track your research
  • Current Issue
  • Arts & Culture
  • Social Issues
  • Science & Technology
  • Environment
  • World Affairs
  • Data Stories
  • Photo Essay
  • Newsletter Sign-up
  • Print Subscription
  • Digital Subscription
  • Digital Exclusive Stories

essay on climate change in malayalam

  • CONNECT WITH US

Telegram

Landslides in Kerala more frequent due to climate change, deforestation

Farmers, fisherfolk, labourers and other marginalised sections are the worst affected..

Published : Aug 28, 2022 12:30 IST

follow icon

Paddy damaged by incessant rain in Palakkad in October 2021. | Photo Credit: MUSTAFAH KK

The dry, sunny afternoon at Vellottupuram in Puthanvelikkara, a village in Kerala’s Ernakulam district, hardly gives any inkling of the fact that this place was under water just about a week ago. Except for the puddles in the marshy areas. “This time, water merely touched the floor,” says Kochu Thresia, a villager in her late 60s, standing close to a small, single-storey house. “But water came till here in 2018,” she says, pointing to patches of exposed concrete on the walls that are at the level of her head.

The residents of this low-lying hamlet close to the confluence of the Chalakkudi and Periyar rivers are mainly labourers and fishermen. They say heavy floods have become an annual affair since 2018. “The kind of floods that we saw only once in 20-30 years have become annual now,” says Lohithakshan, a 70-something resident of Vellottupuram. “We want to leave this place but can’t afford to. Nobody wants to buy our land and even if someone does, the prices have fallen to Rs.30,000-Rs 50,000 a cent since the 2018 flood. What do we do?”

Flooding and landslides

All over Kerala, the monsoon pattern has been changing. This has, in combination with the widespread deforestation and denuding of hills, resulted in heavy floods and landslides especially during the Southwest monsoon when the State receives more than two-thirds of its annual rainfall. Experts attribute the changing rainfall pattern to climate change.

“There is not much variation in the total rainfall data over the season, but rainfall is concentrated over a fewer number of days,” says S. Abhilash, Research Director at Advanced Centre for Atmospheric Radar Research in Cochin University of Science and Technology. “Spells of heavy rain, which lead to calamities like floods and landslides, are a result of climate change induced by global warming.”

A landslide triggered by heavy rainfall in Rajamala area of Idukki district in August 2022.

A landslide triggered by heavy rainfall in Rajamala area of Idukki district in August 2022. | Photo Credit: ANI

His team has found that the nature of clouds is also changing: thicker cumulonimbus clouds, which extend up to 14 km in height and could create sudden, short spells of heavy rain over smaller areas, are forming over Kerala during the Southwest monsoon. Earlier, low-hanging, thinner clouds were usually the norm.

The 2018 floods, the worst in the State’s recent history, affected a sixth of the 3.3 crore population (Census 2011) and killed 483 people. That year, in just three days in August the State received a third of its average annual rainfall. Similar monsoonal calamities in 2019 and 2020 claimed more than 100 lives. In 2021, it was the Northwest monsoon which caused landslides and took dozens of lives.

Decreasing catch

According to estimates, 14.5 per cent of the State’s land area is prone to floods, with the proportion as high as 50 per cent in certain districts. Sections such as farmers, fisherfolk and labourers bear the brunt of the extreme events. “Due to storms and other climate-related factors, the number of days a fisherman could go to sea came down to 40 in 2021, compared to 120 days in 2012,” says Charles George, president, Matsya Thozhilali Aikya Vedi.

As heavy rains in trigger high sea waves, fisherfolk move their boats away from the coast in Chellanam, near Kochi, in May 2021.

As heavy rains in trigger high sea waves, fisherfolk move their boats away from the coast in Chellanam, near Kochi, in May 2021. | Photo Credit: VIBHU H

The 1.5-lakh-strong fisherfolk community in Kerala has been witnessing a sharp drop in the sardine catch, the most sought-after fish in the State. Central Marine Fisheries Research Institute data show that last year’s catch was a meagre 3,297 tonnes, compared with 3.9 lakh tonnes in 2012. They attribute this steep drop to “unfavourable changes in ocean environment” and repeated cyclonic storms in the Arabian Sea during the monsoon.

“The Arabian Sea is warming at a high rate and with it, the possibility of severe cyclonic storms is rising. Earlier, cyclonic storms tended to form more in the Bay of Bengal than in the Arabian Sea, but that is changing,” says Abhilash. In 2017, Cyclone Ockhi killed more than 140 fishermen in Kerala during the Northeast monsoon. “For Kerala’s fisherfolk, climate change is the main cause of concern,” says George.

Also read: The next vanishing wetland?

Changing monsoonal patterns are affecting agriculture, too, in Kerala. A study by the Kozhikode-based Centre for Water Resource Development and Management between 2014 and 2019 showed that crop yields fell by up to 33 per cent in this period. Saji Joseph, a 54-year-old cardamom cultivator in Santhanpara, Idukki district, says that he lost 30 to 40 per cent of harvestable cardamom due to rot in the last two crop cycles. Incessant rain and increased humidity in the hilly areas have led to the spread of fungal disease.

Flooded Kochi in August 2022.

Flooded Kochi in August 2022. | Photo Credit: PTI

“For the last few years, heavy rain goes on for several days, causing high humidity, which leads to rot. We don’t get enough time to apply chemicals. The rain also results in the non-availability of labour during the harvest season,” says Joseph.

Cultivators of rice, the staple in the State, are in dire straits. Already adversely affected by low profitability and rising labour costs, farmers are trying hard to tackle the waterlogging and flooding during harvest time. The area under paddy cultivation in Kerala dropped from 2,75,742 hectares in 2005 to 1,91,051 hectares in 2020, while total production dropped from 6,29,987 tonnes to 5,87,078 tonnes in this period, according to  Agriculture Statistics 2005-2020  published by the Department of Economics and Statistics.

Kuttanad in peril

Kuttanad in Alappuzha district, called the rice bowl of Kerala, is reclaimed land lying below sea level and supported by fragile dikes. Frequent floods have ravaged it. “Currently we are witnessing an exodus of people from Kuttanad,” says K.G. Padmakumar, director of the Kuttanad-based International Research and Training Centre for Below Sea Level Farming. “The lands are sinking. With the rise in sea levels, there are also worries of a situation where a tidal flood from the sea and a river flood from land might hit at the same time.”

Kuttanad in Alappuzha was badly affected by the 2018 floods.

Kuttanad in Alappuzha was badly affected by the 2018 floods. | Photo Credit: AP

Bindu K., from the hilly district of Wayanad, now works as a home nurse in northern Kozhikode. She decided to move out of her village when it became clear that she could not earn enough money there. “We had black pepper and some coffee that provided us with an income. Later on, due to untimely and heavy rains, the production, especially of black pepper, came down. I had to leave. My current job allows me some savings,” she says.

Agriculture employs 22 per cent of the State’s working population and contributes 8.4 per cent to the State economy, as per Kerala’s economic survey of 2021.

Suresh Babu, professor at the Economics Department of IIT Madras, calls the impact of climate change coupled with price fluctuations for agricultural produce a “double blow” to the State’s primary sector. “Many people who are forced to move out of the sector end up in low-end service jobs. Those who can’t do this, get marginalised. Kerala’s public policy needs to look at this challenge seriously,” he says. He points to the need for creating alternative livelihoods and more value-added jobs in the service sector.

Marginalised suffer most

It is the historically marginalised who have been most affected by the changing monsoon patterns. J. Devika, professor at the Centre for Development Studies in Thiruvananthapuram, points out that it is mainly Dalits and marginalised sections who stay in the most environmentally vulnerable areas of Kerala because they did not benefit from the much-celebrated land reforms. The Rebuild Kerala Development Programme document also acknowledges this, saying that floods and landslides disproportionately affect vulnerable groups such as women, the elderly, children, persons with disabilities, Scheduled Tribes, Scheduled Castes and fisherfolk.

“The nature of clouds is also changing: thicker cumulonimbus clouds, which extend up to 14 km in height and could create sudden, short spells of heavy rain over smaller areas, are forming over Kerala during the Southwest monsoon.”

Devika is of the opinion that strengthening local government institutions is necessary to find solutions suited to each locality and create income opportunities. “Top-down technical solutions have become the fashion. That has to change,” she says.

Also read: Disquiet in the Ghats

But how aware is Kerala of such challenges?

“Media and civil society organisations need to have climate change in their active discourse. I don’t see serious debates happening in television channels or newspapers,” says Resmi P. Bhaskaran, a policy analyst who has done ground-level work in flood-affected areas as part of humanitarian response teams.

The Kerala government created the Institute for Climate Change Studies (ICCS) in 2014. It is currently being revamped as a single-window agency that supplies policymakers and administrators at various levels and departments of government with climate-related data and information. “Awareness won’t happen in a day. But we are working towards that by conducting workshops, through collaborative efforts and creating channels with different stakeholders,” says D. Sivananda Pai, Director, ICCS. “Making various stakeholders work together is challenging. It is like running a coalition government,” he adds.

Sruthin Lal is an independent journalist and co-founder of the Archival and Research Project, which works to promote Kerala’s cultural heritage .

More stories from this issue

FL9cover.jpg

‘Don’t read anything into my art’: A. Ramachandran

National award winner Nanjamma during an interview with Frontline at her home in Attapady.

Irula sensation Nanjamma shines light on tribal life with her music

Pithoro art, which serves as a living chronicle of memories for the Adivasi community in Tejgadh. 

Adivasi Academy in Tejgadh documents tribal culture of Gujarat

Dim sum, a representational image

Where you get the best Chinese food outside China

The opening hall of the (de) Coding Mumbai exhibition held at the restored Ice Factory of Ballard Estate in Mumbai.

(de)Coding Mumbai: Story of a growing city

A mother and her child with all their possessions on the road bordering Majnu ka Tilla. A 2012 photograph.

Tibetan diaries

The restored ‘big well’ with a diameter of 8.5 metres. Its historical importance went unnoticed until a realtor tried to clear the land in 2005.

Could a 12th-century well in Kerala be the clue to a kingdom long lost?

Salman Rushdie in London in 2008.

Attack on Salman Rushdie demonstrates the resilience of hate

A still from Panchayat. Director Deepak Mishra’s vision, as he has described it, is the kind world of Doordarshan shows, of Malgudi Days. And it is not just the rural set-up that he wants to replicate. Mishra captures that softness of spirit.

‘Panchayat’ recreates village life in its language of languor

FL Cover_26-07-2024.jpg

Jan ki baat: How voters humbled Modi by rejecting authoritarianism and embracing inclusive politics

Editor’s note: modi’s diminished mandate a rebuke to emperor’s robes and divine halo.

  • Bookmark stories to read later.
  • Comment on stories to start conversations.
  • Subscribe to our newsletters.
  • Get notified about discounts and offers to our products.

Terms & conditions   |   Institutional Subscriber

essay on climate change in malayalam

Comments have to be in English, and in full sentences. They cannot be abusive or personal. Please abide to our community guidelines for posting your comment

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction & Top Questions
  • Climatic variation since the last glaciation
  • The greenhouse effect
  • Radiative forcing
  • Water vapour
  • Carbon dioxide
  • Surface-level ozone and other compounds
  • Nitrous oxides and fluorinated gases
  • Land-use change
  • Stratospheric ozone depletion
  • Volcanic aerosols
  • Variations in solar output
  • Variations in Earth’s orbit
  • Water vapour feedback
  • Cloud feedbacks
  • Ice albedo feedback
  • Carbon cycle feedbacks
  • Modern observations
  • Prehistorical climate records
  • Theoretical climate models
  • Patterns of warming
  • Precipitation patterns
  • Regional predictions
  • Ice melt and sea level rise
  • Ocean circulation changes
  • Tropical cyclones
  • Environmental consequences of global warming
  • Socioeconomic consequences of global warming

Grinnell Glacier shrinkage

How does global warming work?

Where does global warming occur in the atmosphere, why is global warming a social problem, where does global warming affect polar bears.

Aerial photo from 380 km over earth from the International Space Station over Mindanao Island group, Philippines. Atmosphere, clouds weather sky, limb of the earth

global warming

Our editors will review what you’ve submitted and determine whether to revise the article.

  • U.S. Department of Transportation - Global Warming: A Science Overview
  • NOAA Climate.gov - Climate Change: Global Temperature
  • Natural Resources Defense Council - Global Warming 101
  • American Institute of Physics - The discovery of global warming
  • LiveScience - Causes of Global Warming
  • global warming - Children's Encyclopedia (Ages 8-11)
  • global warming - Student Encyclopedia (Ages 11 and up)
  • Table Of Contents

Grinnell Glacier shrinkage

Human activity affects global surface temperatures by changing Earth ’s radiative balance—the “give and take” between what comes in during the day and what Earth emits at night. Increases in greenhouse gases —i.e., trace gases such as carbon dioxide and methane that absorb heat energy emitted from Earth’s surface and reradiate it back—generated by industry and transportation cause the atmosphere to retain more heat, which increases temperatures and alters precipitation patterns.

Global warming, the phenomenon of increasing average air temperatures near Earth’s surface over the past one to two centuries, happens mostly in the troposphere , the lowest level of the atmosphere, which extends from Earth’s surface up to a height of 6–11 miles. This layer contains most of Earth’s clouds and is where living things and their habitats and weather primarily occur.

Continued global warming is expected to impact everything from energy use to water availability to crop productivity throughout the world. Poor countries and communities with limited abilities to adapt to these changes are expected to suffer disproportionately. Global warming is already being associated with increases in the incidence of severe and extreme weather, heavy flooding , and wildfires —phenomena that threaten homes, dams, transportation networks, and other facets of human infrastructure. Learn more about how the IPCC’s Sixth Assessment Report, released in 2021, describes the social impacts of global warming.

Polar bears live in the Arctic , where they use the region’s ice floes as they hunt seals and other marine mammals . Temperature increases related to global warming have been the most pronounced at the poles, where they often make the difference between frozen and melted ice. Polar bears rely on small gaps in the ice to hunt their prey. As these gaps widen because of continued melting, prey capture has become more challenging for these animals.

Recent News

global warming , the phenomenon of increasing average air temperatures near the surface of Earth over the past one to two centuries. Climate scientists have since the mid-20th century gathered detailed observations of various weather phenomena (such as temperatures, precipitation , and storms) and of related influences on climate (such as ocean currents and the atmosphere’s chemical composition). These data indicate that Earth’s climate has changed over almost every conceivable timescale since the beginning of geologic time and that human activities since at least the beginning of the Industrial Revolution have a growing influence over the pace and extent of present-day climate change .

Giving voice to a growing conviction of most of the scientific community , the Intergovernmental Panel on Climate Change (IPCC) was formed in 1988 by the World Meteorological Organization (WMO) and the United Nations Environment Program (UNEP). The IPCC’s Sixth Assessment Report (AR6), published in 2021, noted that the best estimate of the increase in global average surface temperature between 1850 and 2019 was 1.07 °C (1.9 °F). An IPCC special report produced in 2018 noted that human beings and their activities have been responsible for a worldwide average temperature increase between 0.8 and 1.2 °C (1.4 and 2.2 °F) since preindustrial times, and most of the warming over the second half of the 20th century could be attributed to human activities.

AR6 produced a series of global climate predictions based on modeling five greenhouse gas emission scenarios that accounted for future emissions, mitigation (severity reduction) measures, and uncertainties in the model projections. Some of the main uncertainties include the precise role of feedback processes and the impacts of industrial pollutants known as aerosols , which may offset some warming. The lowest-emissions scenario, which assumed steep cuts in greenhouse gas emissions beginning in 2015, predicted that the global mean surface temperature would increase between 1.0 and 1.8 °C (1.8 and 3.2 °F) by 2100 relative to the 1850–1900 average. This range stood in stark contrast to the highest-emissions scenario, which predicted that the mean surface temperature would rise between 3.3 and 5.7 °C (5.9 and 10.2 °F) by 2100 based on the assumption that greenhouse gas emissions would continue to increase throughout the 21st century. The intermediate-emissions scenario, which assumed that emissions would stabilize by 2050 before declining gradually, projected an increase of between 2.1 and 3.5 °C (3.8 and 6.3 °F) by 2100.

Many climate scientists agree that significant societal, economic, and ecological damage would result if the global average temperature rose by more than 2 °C (3.6 °F) in such a short time. Such damage would include increased extinction of many plant and animal species, shifts in patterns of agriculture , and rising sea levels. By 2015 all but a few national governments had begun the process of instituting carbon reduction plans as part of the Paris Agreement , a treaty designed to help countries keep global warming to 1.5 °C (2.7 °F) above preindustrial levels in order to avoid the worst of the predicted effects. Whereas authors of the 2018 special report noted that should carbon emissions continue at their present rate, the increase in average near-surface air temperature would reach 1.5 °C sometime between 2030 and 2052, authors of the AR6 report suggested that this threshold would be reached by 2041 at the latest.

Combination shot of Grinnell Glacier taken from the summit of Mount Gould, Glacier National Park, Montana in the years 1938, 1981, 1998 and 2006.

The AR6 report also noted that the global average sea level had risen by some 20 cm (7.9 inches) between 1901 and 2018 and that sea level rose faster in the second half of the 20th century than in the first half. It also predicted, again depending on a wide range of scenarios, that the global average sea level would rise by different amounts by 2100 relative to the 1995–2014 average. Under the report’s lowest-emission scenario, sea level would rise by 28–55 cm (11–21.7 inches), whereas, under the intermediate emissions scenario, sea level would rise by 44–76 cm (17.3–29.9 inches). The highest-emissions scenario suggested that sea level would rise by 63–101 cm (24.8–39.8 inches) by 2100.

essay on climate change in malayalam

The scenarios referred to above depend mainly on future concentrations of certain trace gases, called greenhouse gases , that have been injected into the lower atmosphere in increasing amounts through the burning of fossil fuels for industry, transportation , and residential uses. Modern global warming is the result of an increase in magnitude of the so-called greenhouse effect , a warming of Earth’s surface and lower atmosphere caused by the presence of water vapour , carbon dioxide , methane , nitrous oxides , and other greenhouse gases. In 2014 the IPCC first reported that concentrations of carbon dioxide, methane, and nitrous oxides in the atmosphere surpassed those found in ice cores dating back 800,000 years.

essay on climate change in malayalam

Of all these gases, carbon dioxide is the most important, both for its role in the greenhouse effect and for its role in the human economy. It has been estimated that, at the beginning of the industrial age in the mid-18th century, carbon dioxide concentrations in the atmosphere were roughly 280 parts per million (ppm). By the end of 2022 they had risen to 419 ppm, and, if fossil fuels continue to be burned at current rates, they are projected to reach 550 ppm by the mid-21st century—essentially, a doubling of carbon dioxide concentrations in 300 years.

What's the problem with an early spring?

A vigorous debate is in progress over the extent and seriousness of rising surface temperatures, the effects of past and future warming on human life, and the need for action to reduce future warming and deal with its consequences. This article provides an overview of the scientific background related to the subject of global warming. It considers the causes of rising near-surface air temperatures, the influencing factors, the process of climate research and forecasting, and the possible ecological and social impacts of rising temperatures. For an overview of the public policy developments related to global warming occurring since the mid-20th century, see global warming policy . For a detailed description of Earth’s climate, its processes, and the responses of living things to its changing nature, see climate . For additional background on how Earth’s climate has changed throughout geologic time , see climatic variation and change . For a full description of Earth’s gaseous envelope, within which climate change and global warming occur, see atmosphere .

Climate Change Essay for Students and Children

500+ words climate change essay.

Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ecosystem and ecology. Due to these changes, a number of species of plants and animals have gone extinct.

essay on climate change in malayalam

When Did it Start?

The climate started changing a long time ago due to human activities but we came to know about it in the last century. During the last century, we started noticing the climatic change and its effect on human life. We started researching on climate change and came to know that the earth temperature is rising due to a phenomenon called the greenhouse effect. The warming up of earth surface causes many ozone depletion, affect our agriculture , water supply, transportation, and several other problems.

Reason Of Climate Change

Although there are hundreds of reason for the climatic change we are only going to discuss the natural and manmade (human) reasons.

Get the huge list of more than 500 Essay Topics and Ideas

Natural Reasons

These include volcanic eruption , solar radiation, tectonic plate movement, orbital variations. Due to these activities, the geographical condition of an area become quite harmful for life to survive. Also, these activities raise the temperature of the earth to a great extent causing an imbalance in nature.

Human Reasons

Man due to his need and greed has done many activities that not only harm the environment but himself too. Many plant and animal species go extinct due to human activity. Human activities that harm the climate include deforestation, using fossil fuel , industrial waste , a different type of pollution and many more. All these things damage the climate and ecosystem very badly. And many species of animals and birds got extinct or on a verge of extinction due to hunting.

Effects Of Climatic Change

These climatic changes have a negative impact on the environment. The ocean level is rising, glaciers are melting, CO2 in the air is increasing, forest and wildlife are declining, and water life is also getting disturbed due to climatic changes. Apart from that, it is calculated that if this change keeps on going then many species of plants and animals will get extinct. And there will be a heavy loss to the environment.

What will be Future?

If we do not do anything and things continue to go on like right now then a day in future will come when humans will become extinct from the surface of the earth. But instead of neglecting these problems we start acting on then we can save the earth and our future.

essay on climate change in malayalam

Although humans mistake has caused great damage to the climate and ecosystem. But, it is not late to start again and try to undo what we have done until now to damage the environment. And if every human start contributing to the environment then we can be sure of our existence in the future.

{ “@context”: “https://schema.org”, “@type”: “FAQPage”, “mainEntity”: [ { “@type”: “Question”, “name”: “What is climate change and how it affects humans?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Climate change is a phenomenon that happens because of human and natural reasons. And it is one of the most serious problems that not only affect the environment but also human beings. It affects human in several ways but in simple language, we can say that it causes many diseases and disasters that destroy life on earth.” } }, { “@type”: “Question”, “name”: “Can we stop these climatic changes?”, “acceptedAnswer”: { “@type”: “Answer”, “text”: “Yes, we can stop these climatic changes but for that, every one of us has to come forward and has to adapt ways that can reduce and control our bad habits that affect the environment. We have to the initiative and make everyone aware of the climatic changes.” } } ] }

Customize your course in 30 seconds

Which class are you in.

tutor

  • Travelling Essay
  • Picnic Essay
  • Our Country Essay
  • My Parents Essay
  • Essay on Favourite Personality
  • Essay on Memorable Day of My Life
  • Essay on Knowledge is Power
  • Essay on Gurpurab
  • Essay on My Favourite Season
  • Essay on Types of Sports

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

Climate Change Essay

500+ words essay on climate change.

Climate change is a major global challenge today, and the world is becoming more vulnerable to this change. Climate change refers to the changes in Earth’s climate condition. It describes the changes in the atmosphere which have taken place over a period ranging from decades to millions of years. A recent report from the United Nations predicted that the average global temperature could increase by 6˚ Celsius at the end of the century. Climate change has an adverse effect on the environment and ecosystem. With the help of this essay, students will get to know the causes and effects of climate change and possible solutions. Also, they will be able to write essays on similar topics and can boost their writing skills.

What Causes Climate Change?

The Earth’s climate has always changed and evolved. Some of these changes have been due to natural causes such as volcanic eruptions, floods, forest fires etc., but quite a few of them are due to human activities. Human activities such as deforestation, burning fossil fuels, farming livestock etc., generate an enormous amount of greenhouse gases. This results in the greenhouse effect and global warming which are the major causes of climate change.

Effects of Climate Change

If the current situation of climate change continues in a similar manner, then it will impact all forms of life on the earth. The earth’s temperature will rise, the monsoon patterns will change, sea levels will rise, and storms, volcanic eruptions and natural disasters will occur frequently. The biological and ecological balance of the earth will get disturbed. The environment will get polluted and humans will not be able to get fresh air to breathe and fresh water to drink. Life on earth will come to an end.

Steps to be Taken to Reduce Climate Change

The Government of India has taken many measures to improve the dire situation of Climate Change. The Ministry of Environment and Forests is the nodal agency for climate change issues in India. It has initiated several climate-friendly measures, particularly in the area of renewable energy. India took several steps and policy initiatives to create awareness about climate change and help capacity building for adaptation measures. It has initiated a “Green India” programme under which various trees are planted to make the forest land more green and fertile.

We need to follow the path of sustainable development to effectively address the concerns of climate change. We need to minimise the use of fossil fuels, which is the major cause of global warming. We must adopt alternative sources of energy, such as hydropower, solar and wind energy to make a progressive transition to clean energy. Mahatma Gandhi said that “Earth provides enough to satisfy every man’s need, but not any man’s greed”. With this view, we must remodel our outlook and achieve the goal of sustainable development. By adopting clean technologies, equitable distribution of resources and addressing the issues of equity and justice, we can make our developmental process more harmonious with nature.

We hope students liked this essay on Climate Change and gathered useful information on this topic so that they can write essays in their own words. To get more study material related to the CBSE, ICSE, State Board and Competitive exams, keep visiting the BYJU’S website.

Frequently Asked Questions on climate change Essay

What are the reasons for climate change.

1. Deforestation 2. Excessive usage of fossil fuels 3. Water, Soil pollution 4. Plastic and other non-biodegradable waste 5. Wildlife and nature extinction

How can we save this climate change situation?

1. Avoid over usage of natural resources 2. Do not use or buy items made from animals 3. Avoid plastic usage and pollution

Are there any natural causes for climate change?

Yes, some of the natural causes for climate change are: 1. Solar variations 2. Volcanic eruption and tsunamis 3. Earth’s orbital changes

CBSE Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

essay on climate change in malayalam

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

  • Secondary School

Climate change essay in Malayalam

KamaldevSharma

Nowadays, people around the world has been focusing on facing climate change. Climate change is the major global challenge today, and the world is becoming more vulnerable to this change. The recent report from United Nations predicted that average global temperature could increase by 6˚ Celsius at the end of the century (Vidal 2013). Increasing temperature causes warming oceans and lead to changing on weather and rainfall pattern which threats both urban and rural population. Australian Academy of Science defines climate change as the long term change in weather pattern which causes several events such as melting of polar ice, raising sea level, and increasing intensity of natural disaster (Australian Academy of Science 2018). This essay outlines the main problems caused by climate change, and evaluate three possible strategies to address its negative impacts. The essay argues that climate change has negative impacts on human life. However, its impact could significantly be reduced by implementing three strategies, including supporting green transportation, building green city and implementing organic farming. There are various potential impacts of climate change on human life. Firstly, the rise of sea level as a result of increasing global temperature and melting of polar ice. A report from Union of Concerned Scientist points out that average global sea level has increased by 8 inches since last century (Union of Concerned Scientists 2018). This increases the risk for low laying areas from flood and threats coastal properties. Nowadays, 65% of major cities are located in low-laying coastal zones (Nordhaus 2006, cited in Hunt & Watkiss 2010). Secondly, climate change may also affect on energy demand. European Environmental Agency claims that there has been increasing trend in cooling demand during summer season and predicts 30% increase in the use of energy by 2080 due to air conditioning (Hunt & Watkiss 2010). Another impact of climate change is the effect on human health. The report from Intergovernmental Panel on Climate Change (IPCC) points out that climate change affects human health due todecreasing quality of fresh air caused by air pollution and disruption of food supplies (WHO 2007). These three impacts are the major impacts of climate change, and it would be worsened by the rapid growth of urbanisation and population. Without systematic and organised action, such effects from climate changes will be become more difficult in the future. In order to address the effects of climate change, there are three strategies that can be done. First of all by establishing green transportation. Transportation is the most important sources of emission. To sum up, climate change has negative impacts on human life. There are many problems that is caused by climate change, including increasing sea level, rising demand on energy, and threatening human health. This essay argues that three solutions including: supporting green transportation, building greener city and implementing organic farming could significantly address these problems.

bsrinivasulareddy

Explanation:

the climate change easily in Kerala because

1. the place is nearest to equator so, in summer it is so hot.

2. the western winds which come from the equator comes first in Kerala so the monsoon

is so high.

3.the place is near the sea so winters are so cool

New questions in Biology

indiatoday

Please rotate your device

We don't support landscape mode yet. Please go back to portrait mode for the best experience

The seas are coming: Faster, angrier, hotter

  • Story : Sibu Tripathi

The oceans are warming, and sea levels are rising rapidly. Driven by climate change, these changes will permanently reshape our planet.

essay on climate change in malayalam

The world's oceans are undergoing dramatic changes due to climate change, with rising sea levels and increasing temperatures reshaping marine ecosystems and posing significant challenges to coastal communities worldwide.

Sea levels have been rising at an accelerating rate, primarily driven by two factors related to global warming: the melting of land-based ice sheets and glaciers, and the thermal expansion of seawater as it warms.

Between 1901 and 2018, the average global sea level rose by 15-25 centimetres (6-10 inches), with the rate increasing to 3.7 millimetres per year by 2006.

essay on climate change in malayalam

WHY ARE OCEANS IMPORTANT?

Changes in the ocean are vital indicators of climate health and climate change.

The ocean absorbs much of the heat trapped by greenhouse gases and plays a crucial role in driving climate shifts. It also takes in some of the carbon dioxide from human activities, making seawater less alkaline.

This, combined with rising marine heat waves, harms coral reefs and the fisheries that support about one billion people.

Rising sea levels also increase the impact of storms and coastal flooding, especially in Small Island Developing States (SIDS) and along vulnerable coastlines, and can threaten freshwater supplies.

Understanding these complex interactions helps us protect ecosystems, manage the effects of climate change, and make better decisions for sustainable resource use.

THE RISING SEAS

UN Secretary General Antonio Guterres issued yet another climate SOS to the world. This time he said those initials stand for “save our seas.”

This rise is not uniform across the globe, as local factors such as land subsidence, regional ocean currents, and post-glacial rebound can influence relative sea level changes at specific locations.

For instance, sea level rise in the United States is projected to be two to three times greate r than the global average by the end of the century.

The United Nations and the World Meteorological Organisation (WMO) have issued reports on a dangerous sea level rise, turbocharged by a warming Earth and melting ice sheets and glaciers.

About 40% of the global population lives within 100 km of the coast and the global sea level has risen more than 15 cm since 1900.

Since 1980, coastal flooding in Guam has jumped from twice a year to 22 times a year. It’s gone from five times a year to 43 times a year in the Cook Islands.

essay on climate change in malayalam

CITIES UNDER THREAT

An analysis of coastal cities indicates that by 2050, one in 50 residents in two dozen U.S. coastal cities could face significant flooding.

Currently, 24 out of 32 U.S. coastal cities are sinking at a rate of more than 2 millimetres per year, with half of these cities experiencing land subsidence faster than the rate of global sea level rise. The most critical risk factor is the rising sea levels in India, which threaten to submerge 12 coastal cities by the end of the century.

According to a climate change report, these cities, including Mumbai, Chennai, Kochi, and Visakhapatnam, could be nearly three feet underwater by the end of the century.

This analysis is based on data from NASA, which utilized the IPCC report to evaluate sea-level changes worldwide.

The IPCC reported that “Coastal areas will see continued sea-level rise throughout the 21st century, contributing to more frequent and severe coastal flooding in low-lying areas and coastal erosion with extreme sea-level events that previously occurred once in 100 years could happen every year by the end of this century.”

essay on climate change in malayalam

Concurrently, ocean temperatures are rising at an alarming rate. The South West Pacific, in particular, is experiencing ocean warming at up to three times the global rate. This increase in ocean heat content is a major contributor to sea level rise through thermal expansion.

The consequences of these changes are far-reaching and potentially devastating.

Rising seas threaten to displace coastal communities, with 40% of the U.S. population and eight of the world's ten largest cities located in vulnerable coastal areas. Low-lying islands in the Caribbean and Pacific are at risk of becoming uninhabitable by the end of this century.

The WMO identified that throughout 2023, very warm ocean temperatures have helped fuel record-breaking heat in many parts of the world.

essay on climate change in malayalam

DISRUPTIONS FOR ALL

Moreover, the warming oceans are disrupting marine ecosystems, leading to coral bleaching, changes in species distribution, and potential loss of biodiversity. The increased heat is also amplifying the frequency and severity of extreme weather events , such as hurricanes and storm surges.

The impacts extend beyond the coasts, affecting global weather patterns, ocean circulation, and even the planet's rotation. As ice sheets melt, the redistribution of mass is slightly altering Earth's axis of rotation, a phenomenon that could have long-term implications for climate patterns.

Addressing these challenges requires immediate and concerted global action. Efforts to reduce greenhouse gas emissions are crucial to mitigate further warming and sea level rise.

Additionally, coastal communities must adapt through a combination of strategies, including managed retreat, accommodation of coastal changes, and protective measures like seawalls and beach nourishment.

As the seas continue to change, scientists emphasise the need for ongoing research and monitoring to better understand and predict future impacts.

The global community faces a critical juncture, where decisions made today will shape the future of our oceans and the planet as a whole.

essay on climate change in malayalam

Photo: PTI, AP, Getty, Generative AI by Rahul Gupta

Knowledge is power

essay on climate change in malayalam

Stay in the know about climate impacts and solutions. Subscribe to our newsletters.

  • Eye on the Storm News
  • Weekly News from Yale Climate Connections

Stay in the know about climate impacts and solutions. Subscribe to our weekly newsletter.

By clicking submit, you agree to share your email address with the site owner and Mailchimp to receive emails from the site owner. Use the unsubscribe link in those emails to opt out at any time.

Yale Climate Connections

Yale Climate Connections

When will climate change turn life in the U.S. upside down?

Jeff Masters

Share this:

  • Click to share on Facebook (Opens in new window)
  • Click to share on X (Opens in new window)
  • Click to share on LinkedIn (Opens in new window)

John Wesley Powell's expedition in the Grand Canyon, 1869

The words of explorer John Wesley Powell on the eve of his departure into the unexplored depths of the Grand Canyon in 1869 best describe how I see our path ahead as we brave the unknown rapids of climate change:

We are now ready to start our way down the Great Unknown. We have an unknown distance yet to run, an unknown river to explore. What falls there are, we know not; what rocks beset the channel, we know not; what walls rise over the river, we know not. Ah, well! We may conjecture many things. The men talk as cheerfully as ever; jests are bandied about freely this morning; but to me the cheer is somber and the jests are ghastly.

Powell’s expedition made it through the canyon, but the explorers endured great hardship, suffering near-drownings, the destruction of two of their four boats, and the loss of much of their supplies. In the end, only six of the nine men survived.

Likewise, we find ourselves in an ever-deepening chasm of climate change impacts, forced to run a perilous course through dangerous rapids of unknown ferocity. Our path will be fraught with great peril, and there will be tremendous suffering, great loss of life, and the destruction of much that is precious.

It is inevitable that climate change will stop being a hazy future concern and will someday turn everyday life upside down. Very hard times are coming. At the risk of causing counterproductive climate anxiety and doomism, I offer here some observations and speculations on how the planetary crisis may play out, using my 45 years of experience as a meteorologist, including four years of flying with the Hurricane Hunters and 20 years blogging about extreme weather and climate change. The scenarios that I depict as the most likely are much harsher than what other experts might choose, but I’ve seen repeatedly that uncertainty is not our friend when it comes to climate change. This will be a long and intense ride, but if you stick through the end, I promise there will be a rainbow.

By late this century, I am optimistic that we will have successfully ridden the rapids of the climate crisis, emerging into a new era of non-polluting energy with a stabilizing climate. There are too many talented and dedicated people who understand the problem and are working hard on solutions for us to fail.

Black and white photo of a group of people on a boat in a canyon river. One person is holding a sousaphone

Jump to a section of this essay

What is a dangerous level of climate change, climate change’s impacts will be highly asymmetric, an immediate u.s. climate change threat: an insurance crisis, a second potential immediate u.s. climate change threat: a global food shock, “black swan” and “gray swan” extreme weather events, a “new normal” of extreme weather has not yet arrived, longer-range concerns: global catastrophic risk events, devastating impacts from climate change are accelerating, paleolithic emotions, medieval institutions, and godlike technology, hope for the future via ‘cathedral thinking’.

YouTube video

Although there is a major climate change hurricane approaching, we’re busy throwing a hurricane party , charging up our planetary credit card to pay for the expenses, with little regard to the approaching storm that is already cutting off our escape routes. This great storm will fundamentally rip at the fabric of society, creating chaos and a crisis likely to last for many decades.

The intensifying climate change storm will soon reach a threshold I think of as a category 1 hurricane for humanity — when long-term global warming surpasses 1.5 degrees Celsius above preindustrial temperatures, a value increasingly characterized over the last decade as “dangerous” climate change .

For humanity as a whole, this amount of warming is risky, but not devastating. Global warming is currently at about 1.2-1.3 degrees Celsius above preindustrial temperatures and is likely to cross the 1.5-degree threshold in the late 2020s or early 2030s .

Assuming that we don’t work exceptionally hard to reduce emissions in the next 10 years, the world is expected to reach 2 degrees Celsius of warming between 2045 and 2051. In my estimation, that will be akin to a major category 3 hurricane for humanity — devastating, but not catastrophic.

Allowing global warming to exceed 2.5 degrees Celsius will cause category 4-level damage to civilization — approaching the catastrophic level. And warming in excess of 3 degrees Celsius will likely be a catastrophic category 5-level superstorm of destruction that will crash civilization.

We must take strong action rapidly to rein in our emissions of heat-trapping gases to avoid that outcome — and build great resilience to the extreme climate of the 21st century that we have so foolishly brought upon ourselves.

According to the Carbon Action Tracker (see tweet below), we are on track for 2.7 degrees Celsius of warming; if the nations of the world meet their targets for reducing heat-trapping climate pollution, warming will be limited to 2.1 degrees. There’s a big difference between being hit by a Cat 4 versus a Cat 3, and every tenth of a degree of warming that we prevent will be critical.

Two years on from Glasgow and our warming estimates for government action have barely moved. Governments appear oblivious to the extreme events of the past year, somehow thinking treading water will deal with the flood of impacts? https://t.co/fbM4xY9OJe pic.twitter.com/MekGIeU1Z3 — ClimateActionTracker (@climateactiontr) December 5, 2023

As climate scientist Michael Mann explains in his latest book, “ Our Fragile Moment ,” great climate science communicator Stephen Schneider once said, “The ‘end of the world’ or ‘good for you’ are the two least likely among the spectrum of potential [climate] outcomes.” So forget sci-fi depictions of planetary apocalypse. That will not be our long-term climate change fate.

But the impacts of climate change will be apocalyptic for many nations and people — particularly those that are not rich and White. People and communities with the least resources tend to be the first and hardest hit by climate change , not only because poorer people and communities are inherently more vulnerable to the impacts of any disaster, but also because the extremes induced by climate change tend to be worse in the tropics and subtropics, home to many poor nations.

In the U.S., climate change has already turned life upside down for numerous communities. For example, in North Carolina, the financially strapped, Black-majority towns of Fair Bluff and Princeville are in danger of abandonment from hurricane-related flooding (from Hurricane Floyd in 1999, Matthew in 2016, and Florence in 2018). Seven Springs, North Carolina (population 207 in 1960, now just 55) is largely abandoned.

Climate change was a key contributor to these floods; a 2021 study found that about one-third of the cost of major U.S. flood events since 1988, totaling $79 billion, could be attributed to climate change. And for the town of Paradise, California — utterly destroyed by the devastating Camp Fire of 2018, which killed 85 and caused over $16 billion in damage — climate change has been apocalyptic.

In the U.S., the most likely major economic disruption from climate change over the next few years might well be a collapse of the housing market in flood-prone and wildfire-prone states. Billion-dollar weather disasters — which cause about 76% of all weather-related damages — have steadily increased in number and expense in recent years and would be even worse were it not for improved weather forecasts and better building codes. The recent increase in weather-disaster losses has brought on an insurance crisis — especially in Florida , Louisiana , California , and Texas — which threatens one of the bedrocks of the U.S. economy, the housing and real estate market.

In California, the insurer of last resort, the FAIR plan, had only about $250 million in cash on hand as of March 2024.

“One major fire near Lake Arrowhead, where the Plan holds $8 billion in policies, would plunge the whole scheme into insolvency,” observed Harvard’s Susan Crawford, author of “Charleston: Race, Water, and the Coming Storm.”

It is widely acknowledged that higher weather disaster losses result primarily from an increase in exposure : more people with more stuff moving into vulnerable places, including those at risk of floods. Martin Bertogg, Swiss Re’s head of catastrophic peril, said in a 2022 AP interview that two-thirds, perhaps more, of the recent rise in weather-related disaster losses is the result of more people and things in harm’s way.

But this balance will likely shift in the coming decades. Increased exposure will continue to drive increased weather disaster losses, but the fractional contribution of climate change to disaster losses — at least for wildfire, hurricane, and flood disasters — is likely to increase rapidly, making the insurance crisis accelerate.

County-level property overvaluation in the U.S. from flood risk

A 2023 study (Fig. 2) drew attention to a massive real estate bubble in the U.S.: the vast number of properties whose purported value doesn’t account for the true costs of floods. The study estimated that across the U.S., residential properties are overvalued by a total of $121-$237 billion under current flood risks. This bubble will likely continue to grow as sea levels rise, storms dump heavier rains, and unwise risky development continues.

Likewise, U.S. properties at risk of wildfires are collectively overvalued by about $317 billion, according to David Burt , a financial guru who foresaw the 2008 subprime mortgage crisis. Insurers are already pulling out of the areas most at risk, threatening to make property ownership too expensive for millions and posing a serious threat to the economically critical real estate industry.

Climate futurist Alex Steffen has described the climate change-worsened real estate bubble this way:

As awareness of risk grows, the financial value of risky places drops. Where meeting that risk is more expensive than decision-makers think a place is worth, it simply won’t be defended. It will be unofficially abandoned. That will then create more problems. Bonds for big projects, loans, and mortgages, business investment, insurance, talented workers — all will grow more scarce. Then, value will crash, a phenomenon I call the Brittleness Bubble .

Something brittle is prone to a sudden, catastrophic failure and cannot easily be repaired once broken. The popping of the real estate Brittleness Bubble will potentially trigger panic selling and a housing market collapse like a miniature version of the Great Financial Crisis of 2008 but focused on the 20% of American homes in wildfire and flood risk zones. In his 2023 Congressional testimony , Burt estimated that a wildfire and flood-induced repricing of risk of the U.S. housing market could have a quarter to half the impact of the 2008 Great Financial Crisis.

However, the 2008 crisis was relatively short-lived, as fixes to the financial system and a massive federal bailout led to a rebound in property values after a few years. A climate change-induced housing crisis will likely be resistant to a similar fix because the underlying cause will worsen: Sea levels will continue to rise, flooding heavy rains will intensify, and wildfires will grow more severe, increasing risk.

Science writer Eugene Linden wrote in 2023, “as we saw in 2008, a housing crisis can quickly morph into a systemic financial crisis because banks own most of the value, and thus the risk, in housing and commercial real estate.”

Crawford of Harvard recently wrote : “Because insurance can help communities and households recover more quickly from disasters, and because so much of the U.S. economy is driven by spending on housing, the inaccessibility and unaffordability of insurance poses a threat to the stability of the entire economy.”

As Sen. Sheldon Whitehouse , a Democrat from Rhode Island, said earlier this year, “The thing about economic crises is that they come on slowly, until they come on fast.”

How the insurance crisis may play out: the “Wholly irrational and completely ad-hoc pirate capitalism” solution

In his blunt 2023 essay, “ Insurance Politics at the End of the World ,” journalist Hamilton Nolan offers these thoughts on the potential ways this climate change-induced insurance crisis could be addressed:

The rational capitalism solution here is: We accurately price your risk and that risk becomes unaffordable and people move away from areas that are stupid to live in and therefore climate adaptation is achieved. The rational socialism solution is: We collectively embrace the idea that we need to adapt to climate change and the federal government creates long-term programs that incentivize moving away from areas that are stupid to live in and disincentivize “build as much crap in South Florida flood zones as you can now to take advantage of the real estate bubble” and generally cushion the economic blow for all the people whose lives will have to change. The path we are on today, though — the path that our current political system makes likely — is the path of Wholly Irrational and Completely Ad-Hoc Pirate Capitalism: Increasing climate change-induced disasters cause panic among homeowners as a class; politicians rush to grab dollars to enable everyone to live the same as they are now for as long as possible; and eventually the whole thing crashes into the wall of reality in a way that causes uncontainable, national pain rather than just the specific, regional, temporary pain of the smarter solutions.

When will the Brittleness Bubble pop?

When might this “crash into the wall of reality” happen and the Brittleness Bubble pop? Politicians are working extremely hard to keep their jobs by delaying this day of reckoning, artificially limiting insurance rate rises and offering state-run insurance plans of last resort. This approach — the equivalent of giving a blood transfusion to the injured, without stopping the bleeding — does not fix the underlying problem and all but guarantees that the pain of the eventual national reckoning will be much larger. Insurance is designed to transfer risk, but risk is rising everywhere.

As the hurricane season is set to begin soon and wildfire risk gradually increasing, private insurers in some states are fleeing areas considered at high risk. It's leaving so-called "residual," or last resort plans, to pick up the tab. https://t.co/3sxv9m0FOS pic.twitter.com/YTkZ9OlJE3 — Axios (@axios) May 10, 2024

Crawford addressed the issue in a 2024 essay, “ Who ends up holding the bag when risky real estate markets collapse? ” Citing financial guru Burt, she concluded: “2025 or 2026 is when things give way and it becomes very difficult to offload houses and buildings in risky places where mortgages are suddenly hard to get, much less insurance.” When asked in an interview with Marketplace if the market is due for another correction, as homeowners in places with growing risk of flooding and wildfire have to pay more for insurance, Burt said:

This is actually happening right now and is probably going to happen over the next three to five years, like a full reckoning of these new costs for 15 or 20% of the homes in the U.S. … If all their equity is already gone [because of lowered property values], their costs are going up a ton, they can barely afford it, that’s when people walk away.

In the same Marketplace story, though, Ben Keys, a professor of real estate and finance at the University of Pennsylvania’s Wharton School, said, “The idea that we would expect there to be a huge wave of defaults or delinquencies feels relatively unlikely.”

But like Burt, climate change futurist Steffen predicts the real estate Brittleness Bubble will pop within five years (10 at the most).

I suspect we're less than 5 years away from a prolonged surge of value loss in real estate assets based on risk, insurability, economic brittleness and local capacities to ruggedize (or not). That kind of devaluation will echo through the whole economy. https://t.co/Qs0zyMS38g — Alex Steffen (@AlexSteffen) May 21, 2024

This reckoning could come sooner for Florida if another $100-billion hurricane hits. The Florida insurance and coastal property market did manage to withstand the $117-billion cost of Category 4 Hurricane Ian of 2022, but another blow like that might well cause a severe downward spiral in the Florida real estate market from which it might never fully recover. This vulnerability was underscored by Florida Gov. DeSantis during a 2023 radio interview with a Boston host, when DeSantis suggested homeowners should “ knock on wood ” and hope the state didn’t get hit by a hurricane in 2024.

But “knocking on wood” is not an effective climate adaptation strategy for Florida. Because of climate change, Mother Nature is now able to whip heavier bowling balls with more devastating impact down Hurricane Alley. It’s only a matter of time before she hurls a strike into a major Florida city, causing an intensified coastal real estate and insurance crisis. And the odds of such a strike are higher than average in 2024 because of record-warm ocean temperatures in the tropical Atlantic, combined with a developing La Niña event.

YouTube video

Watch out for increased coastal flooding in the mid-2030s

We may manage to avoid a coastal real estate market crash in the next 10 years if we get lucky with hurricanes and if our politicians continue to pump huge amounts of money to bail out the failing system.

But it will become increasingly difficult to keep the coastal property market propped up beginning in the mid-2030s, because of accelerating sea level rise combined with an 18.6-year wobble in the moon’s orbit. Thus, I expect that the longest we might stave off the popping of the coastal real estate Brittleness Bubble is 15 years.

Flood future of St. Petersburg, Fla.

As I wrote in my 2023 post, 30 great tools to determine your flood risk in the U.S. , beginning in 2033, the moon will be in a position favorable for bringing higher tides to locations where one high tide and low tide per day dominate. This will bring a rapid increase in high tide flooding to the coasts of the Gulf of Mexico, the Southeast, the West Coast, and Hawaii. This expected acceleration in the mid-2030s is obvious for St. Petersburg (Fig. 3), plotted using NASA’s Flooding Analysis Tool and Flooding Days Projection Tool . The rapid acceleration in coastal flooding simultaneously along a huge swathe of heavily developed U.S. coast in the mid-2030s will be sure to significantly stress the coastal housing market. And according to the Coastal Flood Resilience Project , the nation is flying blind on the possible impacts: There are no national assessments of the potential loss of major, critical infrastructure assets to coastal storms and rising seas.

Another immediate danger: a series of global extreme weather events affecting agriculture, causing global economic turmoil.

In my 2024 post, “ What are the odds that extreme weather will lead to a global food shock? ” I reviewed a 2023 report by insurance giant Lloyd’s, which modeled the odds of a globally disruptive extreme food shock event bringing simultaneous droughts in key global food-growing breadbaskets. The authors estimated that a “major” food shock scenario costing $3 trillion globally over a five-year period had a 2.3% chance of happening per year (Fig. 4). Over a 30-year period, those odds equate to about a 50% probability of occurrence — assuming the risks are not increasing each year, which, in fact, they are.

Chart of Lloyd's 2023 extreme weather leading to food and water shock scenario

Yet another concern for the U.S. is the risk of wholly unanticipated “black swan” extreme weather events that scientists didn’t see coming. As Harvard climate scientists Paul Epstein and James McCarthy wrote in a 2004 paper, “Assessing Climate Instability”: “We are already observing signs of instability within the climate system. There is no assurance that the rate of greenhouse gas buildup will not force the system to oscillate erratically and yield significant and punishing surprises.”

One example of such a punishing surprise was Superstorm Sandy of 2012, that unholy hybrid spawn of a Caribbean hurricane/extratropical storm that became the largest hurricane ever observed and one of the most damaging, costing $88 billion. And who anticipated that a siege of climate-change-intensified wildfires in western North America beginning in 2017, causing multiple summers of horrific air quality that would significantly degrade the quality of life in the West? Or the jet stream experiencing a sudden increase in unusually extreme configurations over the past 20 years, leading to prolonged periods of intense extreme weather over multiple portions of the globe simultaneously? As the late climate scientist Wally Broecker once said, “Climate is an angry beast, and we are poking at it with sticks.”

Just as concerning might be future “gray swan” events — extreme weather events that climate models anticipate could happen but exceed anything in the historical record. (“Gray swan” is an expression first coined by hurricane scientist Kerry Emanuel in his 2016 paper, “ Grey swan tropical cyclones .”) Several potential gray swan events I have written about include a $1 trillion California “ARkStorm” flood , the potential failure of the Old River Control Structure during an extreme flood that allows the Mississippi River to change course, or a storm like 2015’s Hurricane Patricia , with winds over 200 mph, hitting Miami, Galveston/Houston, Tampa, or New Orleans. The risk of gray swan events is steadily increasing.

I’m often asked if the absurdly extreme weather events we’ve been experiencing recently are the new normal. “No!” I reply. “Heat is energy, so the energy to fuel more intense extreme weather events will increase until we reach net-zero emissions. At that time, the climate will finally stabilize at a new normal with a highly dangerous level of extreme weather events.”

Barring a series of extraordinary volcanic eruptions or a major geoengineering effort, even under an optimistic “low” emissions climate scenario, the earliest the climate might stabilize is in the mid-2070s (Fig. 5); thus, the weather will grow more extreme, on average, for at least the next 50 years. Considering that CO2 emissions have not yet peaked and may be following the “Intermediate” pathway shown below, there is considerable danger that the weather will still be growing more extreme when today’s children are very old early next century. But even when net zero emissions are reached, sea level rise will continue to occur at a pace difficult to adapt to, and the climate crisis will continue to intensify.

A chart showing potential global carbon dioxide pathways, from very low to very high

The high probability that the weather will grow more extreme throughout the lifetime of everybody reading this essay means that we have to take seriously some very bad long-term threats. As I wrote in my 2022 post, “ The future of global catastrophic risk events from climate change ,” a global catastrophic risk event is defined as a catastrophe global in impact that kills over 10 million people or causes over $10 trillion (2022 USD) in damage. Since the beginning of the 20th century, there have been only three such events: World War I, World War II, and the COVID-19 pandemic. But climate change is a threat multiplier, increasing the risk of five types of global catastrophic risk events:

  • Coastal flooding from sea-level rise and land subsidence
  • Collapse of the Atlantic Meridional Overturning Circulation (AMOC), the powerful currents that circulate warm water in the tropical Atlantic Ocean to the Arctic and back (an August 2024 study gave a 59% chance of an AMOC collapse occurring before 2050)

The likeliest of these is a global catastrophic risk event from sea level rise, which is highly likely to occur by the end of the century. For example, a moderate global warming scenario will put $7.9-12.7 trillion dollars of global coastal assets at risk of flooding from sea level rise by 2100, according to a 2020 study, “ Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st century .” Although this study did not take into account assets that inevitably will be protected by new coastal defenses, neither did it consider the indirect costs of sea level rise from increased storm surge damage, mass migration away from the coast, increased saltiness of fresh water supplies, and many other factors. A 2019 report by the Global Commission on Adaptation estimated that sea level rise will lead to damages of more than $1 trillion per year globally by 2050.

Furthermore, sea level rise, combined with other stressors, might bring about megacity collapse — a frightening possibility when infrastructure destruction, salinification of freshwater resources, and a real estate collapse potentially combine to create a mass exodus of people from a major city, reducing its tax base to the point that it can no longer provide basic services. The collapse of even one megacity might have severe impacts on the global economy, creating increased chances of a cascade of global catastrophic risk events. One megacity potentially at risk of this fate is the capital of Indonesia, Jakarta, with a population of 10 million. Land subsidence of up to two inches per year and sea level rise of about an eighth of an inch per year are causing so much flooding in Jakarta that Indonesia is constructing a new capital city in Borneo.

Is the #AMOC approaching a tipping point? Here's my take after researching this topic for over 30 years. Open access, peer-reviewed, in full colour & understandable for non-experts. https://t.co/gMu6Zw5mR7 pic.twitter.com/mrgzO9NMxR — Prof. Stefan Rahmstorf 🌏 🦣 (@rahmstorf) April 11, 2024

I also expect one or more climate change-amplified global catastrophic risk events from drought will occur this century. Mexico City, with a metro area population of 22 million, has suffered record heat over the past year, is in danger of its reservoirs running dry, and is drilling ever-deeper wells to tap an overtaxed aquifer. Though the city will muddle through the crisis now that the summer rains have come this year, what is the plan for 30 years from now, when the climate is expected to be drier and much, much hotter? Although Mexico City can greatly improve its water situation by fixing a poorly maintained system that has a 40% loss rate , it is unclear how the city will be able to survive the much hotter and drier climate of 30 years from now. And at least 10 other major cities are in a similar bind.

Technology can help us adapt to a hotter climate by providing air conditioning (if you are rich enough), but technological solutions to create more water availability when the taps run dry are much more difficult to achieve. I believe water shortages will drive a partial collapse of and mass migration out of multiple major cities 20-40 years from now, significantly amplifying global political and economic turmoil. For example, a 2010 study, “ Linkages among climate change, crop yields and Mexico-US cross-border migration ,” found that a 10% reduction in crop yields in Mexico leads to an additional 2% of the population emigrating to the United States.

In his frightening 2019 book “ Food or War ,” science writer Julian Cribb documents 25 food conflicts that have led to famine, war, and the deaths of more than a million people — mostly caused by drought. Since 1960, Cribb says, 40-60% of armed conflicts have been linked to resource scarcity, and 80% of major armed conflicts occurred in vulnerable dry ecosystems. Hungry people are not peaceful people, Cribb argues.

Though climate change itself is not accelerating faster than what climate scientists and climate models predicted , devastating impacts from climate change do seem to be accelerating. That is because the new climate is crossing thresholds beyond which an infrastructure designed for the 20th century can withstand. These breaches are occurring in tandem with an increase in exposure — more people with more stuff living in harm’s way — which is the dominant cause of the sharp increase in weather-disaster losses in recent years. It’s sobering to realize that the current U.S. insurance crisis has primarily been driven by increased exposure and foolish insurance policies that promote development in risky places — not climate change — and that climate change’s relative contribution to the crisis is set to grow significantly.

Accelerating sea level rise alone is sure to cause a massive shock to the U.S. economy; according to a 2022 report from NOAA , sea level along the U.S. coastline is projected to rise, on average, 10-12 inches (0.25-0.30 meters) in the next 30 years (2020-2050), which will be as much as the rise measured over the last 100 years (1920-2020). At this level, 13.6 million homes might be at risk of flooding by 2051 , triggering a mass migration of millions of people away from the coast.

If we add to sea-level-rise-induced migration the additional migration that will result from climate change-intensified wildfires, heatwaves, and hurricanes, we are forced to acknowledge the reality that a nation-challenging Hurricane Katrina-level climate change storm has already begun in the U.S., one which has the potential to cause catastrophic damage. As I wrote in my June post, The U.S. is finally making serious efforts to adapt to climate change , there have been some encouraging efforts to prepare for the coming mass migration. But, as I argued in my follow-up post, The U.S. is nowhere near ready for climate change , we remain woefully unprepared for what is coming.

And my subsequent post, Can a colossal extreme weather event galvanize action on the climate crisis? , argues that we should not expect that any future extreme weather event or breakdown of the climate system will galvanize the type of response needed — we’ve already had at least 13 events since 1988 that should have done so, yet have not. Even if such an event did prompt strong, transformative change, it’s too late to avoid having life turned upside-down by climate change. It’s like we’ve waited until our skin started getting red before seeking shade from the sun, and we’re only now taking our first stumbling steps toward shade. Well, it’s a long hike to shade, and a blistering sunburn is unavoidable.

Given the unprecedented nature and complexity of this planetary crisis, there is huge uncertainty on how this drama may unfold; there are climate scientists who offer a more optimistic outlook than I do (for example, Hannah Ritchie , author of “Not the End of the World”), and those who are more pessimistic ( James Hansen ).

I suggest that you make the most of the current “calm before the storm” and prepare for the chaotic times ahead, which could begin at any time. I will offer my recommendations on how to do this in my next post in this series, “What should you do to prepare for the climate change storm?”

The urgency to rapidly deal with the climate crisis was succinctly summarized by the Intergovernmental Panel on Climate Change in its latest summary report: “There is a rapidly closing window of opportunity to secure a livable and sustainable future for all.”

But taking advantage of that window of opportunity is difficult because of human psychological and political realities. In climate scientist Peter Gleick’s 2023 book, “The Three Ages of Water,” he quotes Harvard’s E.O. Wilson, father of sociobiology, who perhaps said it best: “The real problem of humanity is the following: We have Paleolithic emotions, medieval institutions, and godlike technology. And it is terrifically dangerous, and it is now approaching a point of crisis overall.”

The boat of civilization has already hit multiple rocks along the rapids of climate change and is taking on water. Perilous rapids with even more dangerous rocks and waterfalls lie before us, but the course of our boat cannot be so easily altered to avoid the rocks, because of our Paleolithic emotions and medieval institutions. As a result, we may have only a few more years — or perhaps as long as 15 years — of relative normalcy in our everyday lives here in the U.S. before the approaching climate change storm ends our golden age of prosperity. But this “golden age” was made of fool’s gold, paid for with wealth plundered from future generations.

A photo of a stained glass window

Though this essay has dwelt on some grim realities, I am optimistic that we will prevent climate change from becoming a civilization-destroying category 5-level catastrophe. But we must fight extremely hard to correct the course of our boat and not allow its inertia to carry us into the rocks that stud the rapids of climate change. This is not a task that can be accomplished in our lifetimes.

Susan Joy Hassol, the climate communication veteran who served as a senior science writer on three National Climate Assessments, put it this way in an interview with Yale Climate Connections contributor Daisy Simmons: “This is the fight of our lives, and it’s a multigenerational task. We need what’s been called ‘cathedral thinking.’ That is, the people who started working on that stone foundation , they never saw the thing finished. It took generations to get these major works done. This is that kind of problem. And we have to all do our part. The more I act, the better I feel, because I know I’m part of the solution.”

Actions we take now will yield enormous future benefits, and the faster we undertake transformative actions to adapt to the new climate reality, the less suffering will occur. The Global Commission on Adaptation says that “every $1 invested in adaptation could yield up to $10 in net economic benefits, depending on the activity.” We should work to build our cathedral of the future with the thought that each action we take now will multiply by a factor of 10 in importance in the future.

An excellent @nytimes article on rapid growth of wind, solar, & EVs, including factories, in the US. Costs are below fossil and nuclear (see graphs). Reasons why, graphs with how fast, pictures of it happening. https://t.co/uglQDnE97t pic.twitter.com/oIpLmlp28v — Willett Kempton (@WillettKempton) September 5, 2023

But some of the hardest work has been done: The cornerstone of this cathedral of the future has already been laid. The clean energy revolution is here and has progressed far more rapidly than I had dared hope. Passage of the 2021 Bipartisan Infrastructure Law and 2023 Inflation Reduction Act has been instrumental in getting this cornerstone laid. Solar energy is now the cheapest source of energy in world history, and the costs of wind power and battery technology have also plummeted. Two recent reports were optimistic that climate-warming carbon dioxide emissions had finally peaked in 2023, and GDP growth has decoupled from carbon dioxide emissions in recent years, giving hope that economic growth can still occur without making the planet hotter.

At its heart, the root of the climate crisis is humanity’s spiritual inharmoniousness: We overvalue the pursuit of material wealth and we worship billionaires but undervalue growing more connected to our spiritual selves and acting to preserve and appreciate the natural systems that sustain us. Making yourself more peaceful and loving through quiet spiritual pursuits and time spent in nature will help counteract the anxiety and fear sparked by the climate crisis. But in tandem with your increased peace must come a righteous anger to “throw the money changers out of the temple” and topple the might of the fossil fuel industry and its enablers.

So put your shoulder to an oar! Help us power the boat of civilization through the rapids of climate change. All of humanity shares the same boat, and you have the opportunity to make your own unique and valuable contribution to the effort.

This is a nice way to visualize the pathway to your unique climate action. https://t.co/cjlv5XXrak — Jeff Masters (@DrJeffMasters) May 15, 2024

essay on climate change in malayalam

As promised, here is the rainbow at the end. It’s the intro image from my first and last Weather Underground blog posts, “ The 360-degree Rainbow ,” and “ So long, wunderground! ” My unique and valuable contribution to building our new cathedral has not yet reached the end of the rainbow, for a rainbow has no end — it is a full circle. One just has to fly high in a rainstorm where the sun is shining to see it.

I will continue to make my voice heard as long as climate science-denying politicians, corporations, media pundits, and wealthy individuals continue to row the boat of civilization into the rocks of climate-change catastrophe. I encourage those of you who have learned about extreme weather and climate change from me to do the same. To get started, learn from one of the best communicators in the business, climate scientist Katherine Hayhoe :

essay on climate change in malayalam

Recommended reading:

  • What should you do to prepare for the climate change storm?
  • Can a colossal extreme weather event galvanize action on the climate crisis?
  • The U.S. is nowhere near ready for climate change
  • The U.S. is finally making serious efforts to adapt to climate change
  • Book review: “On the Move” is a must-read account of U.S. climate migration
  • Book review: “The Great Displacement” is a must-read
  • Part one of my three-part sea level rise series: How fast are the seas rising?
  • Part two of my three-part sea level rise series: Eight excellent books on sea level rise risk for U.S. cities
  • Part three of my three-part sea level rise series: 30 great tools to determine your flood risk in the U.S.
  • Bubble trouble: Climate change is creating a huge and growing U.S. real estate bubble
  • Many coastal residents willing to relocate in the face of sea level rise
  • Disasterology: a book review
  • The future of global catastrophic risk events from climate change
  • With global warming of just 1.2°C, why has the weather gotten so extreme?
  • Recklessness defined: breaking 6 of 9 planetary boundaries of safety
  • Retreat From a Rising Sea: A book review
  • Quick facts on climate change, extreme weather-related events, and their impacts on society
  • Susan Crawford’s Substack feed on climate adaptation policy, Moving Day
  • Climate futurist Alex Steffen’s newsletter

Susan Joy Hassol ( @ClimateComms ) and Bob Henson ( @bhensonweather ) provided helpful edits for this post.

We help millions of people understand climate change and what to do about it. Help us reach even more people like you.

more like this

Labor Day weekend will start out restful for the Hurricane Hunters. Then what?

Labor Day weekend will start out restful for the Hurricane Hunters. Then what?

Five ingenious ways people could beat the heat without cranking the AC

Five ingenious ways people could beat the heat without cranking the AC

Gulf Coast tribe fights to rebuild three years after Hurricane Ida

Gulf Coast tribe fights to rebuild three years after Hurricane Ida

Jeff masters.

Jeff Masters, Ph.D., worked as a hurricane scientist with the NOAA Hurricane Hunters from 1986-1990. After a near-fatal flight into category 5 Hurricane Hugo, he left the Hurricane Hunters to pursue a... More by Jeff Masters

essay on climate change in malayalam

American Climate Policy Opinions

Aug. 27, 2024

Jon A. Krosnick and Bo MacInnis

Publication

Reading time

Introduction

In Climate Insights 2024: American Understanding of Climate Change, we showed that huge majorities of Americans believe that the earth has been warming, that the warming has been caused by human activity, that warming poses a significant threat to the nation and the world—especially to future generations—and that governments, businesses, and individuals should be taking steps to address it.

In this report, we turn to specific federal government opportunities to reduce future greenhouse gas emissions, often referred to as climate change mitigation. Policies to accomplish this goal fall into several categories, including:

  • Consumer incentives that reward people for taking steps that reduce their use of fossil fuels and, by extension, reduce their carbon footprint
  • Carbon pricing policies that require emitters to pay for their carbon emissions, such as a carbon tax (which would require carbon emitters to pay a tax for each ton of carbon they emit), or a cap-and-trade program (which would require businesses to have a permit for each ton of carbon they emit)
  • Regulations that require manufacturers to increase energy efficiency of their products
  • Tax incentives that encourage manufacturers to increase the energy efficiency of their products

This 2024 survey asked Americans about their opinions on a wide array of such policies, which allows us not only to assess current opinions, but to track changes in those opinions over the past two decades through comparisons with responses to comparable questions asked in earlier national surveys.

Explore the Data

Click here to explore the report's findings using our interactive data tool.

Overall emissions reduction strategies

In 2024, we asked for the first time whether Americans prefer using “carrots” to reduce emissions or “sticks.” The former entails offering incentives to reward companies for achieving desired outcomes, and the latter involves penalizing companies that fail to reach desired goals. 59 percent of Americans prefer a carrot approach in which government lowers taxes for companies that reduce emissions, and 35 percent prefer a stick approach such that government raises taxes on companies that do not reduce emissions (see Figure 1).

Overall emissions reduction principles

Over the past decades, a consistently large majority of Americans has wanted the government to reduce greenhouse gas emissions by US businesses. In 2024, 74 percent of Americans endorse this mitigation policy principle (see Figure 2). This number is not significantly different from the 77 percent seen in 2020 and is about the same as it has been since 1997 when this series of surveys was launched.

Most Popular Policies (>60 percent approval)

Taxing imported emissions.

In 2024, we asked about import taxes tied to emissions; respondents were asked whether they would favor taxing foreign companies for importing products that put out more greenhouse gases than a comparable US product. A huge majority of Americans, 84 percent , favor the special tax (see Figure 3).

Assisting with job transitions

In 2024, we asked whether the federal government should spend money to help people who lose jobs due to a transition from fossil-based electricity generation to electricity generated from renewable sources. 78 percent of Americans favor the government paying those people to learn to do other kinds of work.

Filling abandoned oil wells

In 2024, we asked whether the federal government should spend money to close off abandoned oil wells that emit greenhouse gases; 76 percent of Americans favor the government spending money to fill these old wells.

Shifting energy generation to renewable power

Huge numbers of Americans favor government effort to shift electricity generation away from fossil fuels and toward renewable energy sources.

In 2024, 72 percent of Americans believe that the US government should offer tax breaks to utilities in exchange for making more electricity from water, wind, and solar sources. However, this is a statistically significant decline from the 85 percent seen in 2020, and a record low since 2006 (see Figure 6).

13 percentage points fewer Americans believe that the US government should offer tax breaks to utilities in exchange for making more electricity from renewable sources in 2024 than 2020.

Slight changes to the question wording yielded similar results: 76 percent of Americans in 2024 favor either mandates or tax breaks for utilities to reduce greenhouse gas emissions from power plants. This number is not significantly different from the 82 percent seen in 2020 and is about the same as it has been since 2009. Before 2009, this proportion was slightly higher: 86 percent and 88 percent in 2006 and 2007, respectively (see Figure 7).

Increasing the energy efficiency of products

About two-thirds of Americans favor government efforts through tax breaks or mandates to improve the energy efficiency of various consumer products (see Figure 8).

Specifically, 62 percent of Americans in 2024 favor increasing the fuel efficiency of automobiles, a statistically significant drop from the 72 percent seen in 2020.

68 percent favor increasing the energy efficiency of appliances, similar to the 71 percent observed in 2020.

69 percent favor increasing the energy efficiency of new buildings, a statistically significant decline from the 76 percent in 2020.

Sequestering carbon

In 2024, 63 percent of Americans favor reducing emissions by sequestering (i.e., capturing and storing) carbon released by burning coal. This level of support has been steady over the past 15 years (see Figure 9).

84% of respondents favor import taxes tied to emissions, making it the most popular policy we surveyed.

Moderately Popular Policies (50–60 percent approval)

Reducing subsidies for fossil fuels.

In 2024, we asked for the first time whether the federal government should continue its long-standing practice of offering subsidies to oil and natural gas companies by reducing their taxes.

61 percent of Americans favor ending government reduction of oil companies’ taxes, and 37 percent believe these subsidies should continue.

42 percent of Americans favor ending government reduction of natural gas companies’ taxes, and 56 percent believe that these subsidies should continue.

Taxing greenhouse gases

When asked whether companies should be charged a tax for every ton of greenhouse gases they emit, 54 percent of respondents were in favor in 2024, a statistically significant decline from the 66 percent observed in 2020 (figure 10).

Creating a cap-and-trade program

Although economists generally assert that a carbon tax incentivizes companies to reduce emissions (Baumol and Oates, 1971; Climate Leadership Council, 2019; Marron and Toder, 2014; Montgomery, 1972; World Bank, 2017), a carbon tax does not guarantee that such emissions reductions will happen.

A cap-and-trade or cap-and-dividend policy, on the other hand, are alternative policies in which a government sets a limit, or ‘cap,’ on emissions. The cap is imposed by government-issued permits that limit emissions. The government gives, sells, or auctions the permits to companies, creating an opportunity to generate revenue. A cap-and-dividend program would return this revenue to consumers through a rebate.

The logic in asking this question about cap and trade is to assess whether more Americans would favor a greenhouse gas tax if assured that it would result in emissions reductions. However, we show cap-and-trade and cap-and-dividend policies are not notably more popular than straightforward taxes.

In 2024, 52 percent of Americans favor a cap-and-dividend policy, a statistically significant decline from the 63 percent observed in 2020 (see FIgure 11).

Subsidizing solar panels

In 2024, we asked respondents whether the federal government should spend money to help people install solar panels on houses and apartment buildings. Respondents were randomly assigned to be asked one of four versions of the question. Two versions asked about the government paying all of the installation costs, and the other two versions asked about the government paying some of the costs.

For half of each group (chosen randomly), the question was preceded by this introduction:

“Solar panels can generate electricity when the sun is shining, and that electricity can be stored in batteries to be used when the sun is not out. However, companies that make electricity cannot install enough solar panels to make all of the electricity needed in the country. People can put solar panels on the roofs of many houses and apartment buildings so much more of America’s electricity can be made from the sun. But it is expensive to do this, and most people cannot afford to pay that amount of money.”

Among people who did not hear the introduction, 51 percent favor the government paying some of the cost, and 42 percent favor the government paying all of the costs.

Among people who did hear the introduction, 77 percent favor the government paying some of the cost, and 74 percent favor the government paying all of the costs.

Permitting reform

In 2024, we asked whether the federal government should expedite the process of granting permits to build new power plants that make electricity from sources other than coal and petroleum. 52 percent of Americans favor expediting this process.

Least Popular Policies (<50 percent approval)

Nuclear power tax breaks.

Although nuclear power does not directly emit greenhouse gases, tax breaks for the construction of new nuclear power plants are among the least popular policies asked about in 2024. 47 percent of Americans favor this policy; however, it is notable that this is a statistically significant increase from the 37 percent observed in 2020 (see FIgure 12).

All-electric vehicle tax breaks

In 2024, 46 percent of Americans—a record low—think the government should require or give tax breaks to companies to build all-electric vehicles, a statistically significant decline from the 60 percent observed in 2015 when this question was last asked (see Figure 13).

Taxes on consumers

The least popular policies impose new taxes on consumers to incentivize them to consume less fossil fuel. Few Americans favor increasing taxes on retail gasoline and electricity purchases for this purpose. 15 percent approve increasing taxes on electricity, a statistically significant decline from the 28 percent observed in 2020. Likewise, 28 percent approve increasing taxes on gasoline, a statistically significant decline from the 41 percent observed in 2020 (see Figure 14).

Economic Effects of Mitigation Policies

Perceived effect on the economy.

Implementing many policies to reduce greenhouse gas emissions will cost consumers and companies in the short term. Implementing such policies may also increase the cost of American-made goods and services relative to the costs of those goods and services produced elsewhere. This has led some observers to urge caution about implementing greenhouse gas emissions reduction policies (e.g., Cassidy, 2023; Gross, 2021), because they may result in undesirable economic side effects.

However, this argument does not appear to have taken hold with the majority of Americans. For example, only 36 percent of Americans in 2024 believe that taking action to address global warming will hurt the US economy, about the same as was observed in 2013 (30 percent), though this is a statistically significant increase from the 29 percent observed in 2020 (see FIgure 15). Likewise, in 2024, 34 percent believed that these efforts would hurt their state economy, a statistically significant increase from the 24 percent observed in 2020.

More Americans believe that climate action will help the economy. 44 percent of Americans believe this in 2024, about the same as was observed in 2020 (48 percent) and 15 years ago (46 percent) (see Figure 15). 39 percent of Americans believe that efforts to reduce global warming will help their state economy in 2024, a statistically significant decrease from 46 percent in 2020.

Job availability

A similar picture emerged regarding beliefs about how climate action will affect job availability. Only 27 percent of Americans believe that efforts to reduce emissions will reduce the number of jobs in the nation—the same as was observed in 2020 (see Figure 16). And in 2024, 35 percent of Americans believe that climate change action will increase the number of jobs in the country, similar to the 39 percent observed in 2020.

28 percent of Americans believe that climate change action will reduce the number of jobs in their state, similar to the 23 percent observed in 2020 (see Figure 16). And 32 percent of Americans in 2024 believe that climate action will increase the number of jobs in their state, about the same as the 35 percent observed in 2020.

27 percent of Americans believe that efforts to reduce emissions will reduce the number of jobs in the nation

Personal economic impacts

In 2024, we asked respondents about the likely impact of mitigation efforts on their own personal economic situation. A majority of Americans believe that they will have the same amount of money regardless of mitigation efforts (54 percent). 36 percent believe their wealth will decrease, a statistically significant increase over the 20 percent observed in 2020 (see Figure 17). But 8 percent believe that climate change mitigation will increase their wealth, similar to the 10 percent observed in 2020.

Likewise, a majority (64 percent) believe that mitigation efforts will have no impact on their chance of getting a good-paying job. 17 percent believe that mitigation efforts will make them less likely to get a good-paying job, a statistically significant increase from the 12 percent observed in 2020 (see Figure 17). 17 percent believe that mitigation efforts will increase their ability to get a good-paying job, similar to the 16 percent observed in 2020.

Voting in the 2024 Election

Are the many policy preferences outlined in this report just talk, or do they inspire action in the voting booth? We turn to that question next and describe the findings from a test.

Respondents were read a statement by a hypothetical candidate running for a seat in the US Senate and were asked whether hearing that statement makes the respondents more likely to vote for the candidate, less likely to vote for the candidate, or has no impact.

One statement expressed “green views” that summarized opinions expressed by majorities of Americans:

“I believe that global warming has been happening for the past 100 years, mainly because we have been burning fossil fuels and putting out greenhouse gases. Now is the time for us to be using new forms of energy that are made in America and will be renewable forever. We can manufacture better cars that use less gasoline and build better appliances that use less electricity. We need to transform the outdated ways of generating energy into new ones that create jobs and entire industries and stop the damage we’ve been doing to the environment.”

The other statement proposed expanding production of energy from traditionally used fossil fuels:

“The science on global warming is a hoax and is an attempt to perpetrate a fraud on the American people. I don’t buy into the whole man-caused global warming mantra. We must spend no effort to deal with something that is not a problem at all. We should not invest in windmills and solar panels as alternative energy sources. Instead, we should continue to focus on our traditional sources of energy: coal, oil, and natural gas. We should expand energy production in our country, including continuing to mine our coal and doing more drilling for oil here at home.”

Hearing a green view makes 57 percent of Americans more likely to vote for the candidate, a statistically significant decline from the 65 percent observed in 2020 (see Figure 18). Democrats are significantly more likely to be attracted to a “green” candidate (83 percent) than are Independents (56 percent) and Republicans (23 percent) (see Figure 19).

Hearing the green statement makes only 18 percent of Americans less likely to vote for the candidate (see Figure 18).

Hearing the candidate make a “not-green” statement makes only 21 percent more likely to vote for the candidate (see Figure 18). 43 percent of Republicans are more likely to support the candidate, compared to 20 percent of Independents and 5 percent of Democrats (see Figure 19).

Hearing the “not-green” statement makes 63 percent of Americans less likely to vote for the candidate, similar to the 66 percent observed in 2020 (see FIgure 18). This proportion is greatest among Democrats (88 percent), smaller among Independents (62 percent), and still smaller among Republicans (29 percent) (see Figure 19).

Because almost all Republican citizens vote for Republican candidates and almost all Democratic citizens vote for Democratic candidates, the greatest impact of candidate statements in shaping election outcomes is among Independents. Among them, the same pattern appears that appears among all Americans: taking a “green” position helped a candidate and taking a “not-green” position hurt the candidate.

Taken together, these results point to climate change mitigation policies that may be pursued in the future with widespread public support (such as efforts to reduce emissions from power plants). Furthermore, these results also identify a few policy directions that are well received by few Americans, despite being plausible in theory and in practice (like taxes on electricity and gasoline).

For decades, one school of thought commonly followed by some scholars and policymakers is that economic growth and environmental protection are incompatible, and that any efforts to grow the economy must, of necessity, take resources away from helping the environment. Such a presumption creates an “either the economy or the environment” mindset. This mindset has been reinforced by survey questions asking Americans (e.g., Mildenberger & Leiserowitz, 2017), for example: “With which one of these statements about the environment and the economy do you most agree? ‘Protection of the environment should be given priority, even at the risk of curbing economic growth.’ Or: ‘Economic growth should be given priority, even if the environment suffers to some extent’” (Gallup, 2024).

If Americans do perceive this trade-off as inevitable, the COVID-19 pandemic and associated economic crisis a few years ago might have tilted them away from environmental protection generally and away from efforts to mitigate climate change; the subsequent recovery might have increased support for such efforts. The present study refutes that notion resoundingly. In fact, we see small changes in the opposite direction: slightly less public support for some emissions-reducing policies than four years ago.

Few people believe that taking steps to reduce emissions will hurt the national economy, their state’s economy, or their personal finances, and more Americans believe that such policies will improve these economic outcomes.

Finally, we saw that the policy positions candidates take on this issue are likely to influence the votes of many Americans. Thus, policymakers and their challengers have opportunities to use these issues to help assemble the coalitions needed to accomplish electoral victories. By taking “green” positions, candidates gain considerably more votes than they lost.

Download the Report

Click here to view the full report with citations.

PDF — 5.2 MB

Download the Technical Report

Click here to read more about the methodology and survey questions.

PDF — 716.3 KB

Click here to read the report press release.

  • Federal Climate Policy
  • Comprehensive Climate Strategies
  • Climate Insights

jonkrosnick.jpg

Jon A. Krosnick

University Fellow

Jon A. Krosnick is an RFF university fellow and Stanford University-based social psychologist who does research on attitude formation, change, and effects, on the psychology of political behavior, and on survey research methods.

bo macinnis

Bo MacInnis

Lecturer, Political Psychology Research, Stanford University

Related Content

American Understanding Cover Image (Green)

Report — Jul 15, 2024

Climate Insights 2024: American Understanding of Climate Change

This first report in the 2024 Climate Insights report series by researchers at Stanford University and RFF examines American public opinion on issues related to climate change.

shutterstock_2019044822

Policy Leadership Series — Oct 8, 2024

The Future of Environmental and Energy Justice: A Policy Leadership Series Event with Shalanda Baker

joshua-sukoff-5DDYHjk_KMU-unsplash

Media Highlight — Aug 29, 2024

Axios: “Americans’ Likes and Dislikes on Climate Policy”

Axios’s Generate newsletter covers new polling from RFF and Stanford University on American climate policy opinions.

shutterstock_659582908(2).jpg

Marketplace: “Survey Shows More Americans Worried about Cost of Fighting Climate Change”

This radio segment, which features insights from RFF University Fellow Jon Krosnick and RFF alum Leah Stokes, dives into American opinions on climate and the economy.

We use cookies to provide you with a better service. Carry on browsing if you're happy with this, or find out more.

  • Share full article

Advertisement

Supported by

Guest Essay

I Swore Off Air-Conditioning, and You Can, Too

An upright fan and a portable air-conditioner in a room.

By Stan Cox

Mr. Cox lives in Salina, Kan., and is the author of “Losing Our Cool: Uncomfortable Truths About Our Air-Conditioned World.”

Whenever people ask me how my wife and I have endured 25 Kansas summers almost entirely without air-conditioning, I like to say we do it because air-conditioning makes it too hot outside. We’re not ascetics, Luddites or misers; we just want to keep living comfortably, indoors and out.

It’s not just that air-conditioning is making our summers even hotter. (On a sweltering night in a city like Houston, the hot air that A.C. units blast out over the streets can raise outdoor temperatures up to three or four degrees.) It’s also that air-conditioning has altered the way most Americans experience heat.

Our bodies have grown so accustomed to climate-controlled indoor spaces, set at a chilly 69 degrees, that anything else can feel unbearable. And the greenhouse gases created by the roughly 90 percent of American households that own A.C. units mean that running them even in balmy temperatures is making the climate crisis worse.

Of course, I’m not suggesting that anyone switch the air off in the middle of a heat wave. Year in and year out, heat waves kill more people than any other type of natural disaster. If you live in Miami or Phoenix, you need air-conditioning to survive the summer. But if you live in the middle of the country, try leaving the air-conditioning off when it’s hot but not too hot.

Our species evolved, biologically and culturally, under wildly varying climatic conditions, and we haven’t lost that ability to adapt. Research suggests that when we spend more time in warm or hot summer weather, we can start feeling comfortable at temperatures that once felt insufferable. That’s the key to reducing dependence on air-conditioning: The less you use it, the easier it is to live without it.

When I was growing up in Georgia, my family moved into our first air-conditioned house when I was 12, and I loved it. But I left home for college in the 1970s, and I’ve lived mostly without A.C. ever since.

We are having trouble retrieving the article content.

Please enable JavaScript in your browser settings.

Thank you for your patience while we verify access. If you are in Reader mode please exit and  log into  your Times account, or  subscribe  for all of The Times.

Thank you for your patience while we verify access.

Already a subscriber?  Log in .

Want all of The Times?  Subscribe .

  • Election 2024
  • Entertainment
  • Newsletters
  • Photography
  • AP Buyline Personal Finance
  • AP Buyline Shopping
  • Press Releases
  • Israel-Hamas War
  • Russia-Ukraine War
  • Global elections
  • Asia Pacific
  • Latin America
  • Middle East
  • Election results
  • Google trends
  • AP & Elections
  • U.S. Open Tennis
  • Paralympic Games
  • College football
  • Auto Racing
  • Movie reviews
  • Book reviews
  • Financial Markets
  • Business Highlights
  • Financial wellness
  • Artificial Intelligence
  • Social Media

The worldwide catastrophe of rising seas especially imperils Pacific paradises, Guterres says

Image

FILE - Tourists watch the sun set along a popular beach in Tamuning, Guam, May 6, 2019. (AP Photo/David Goldman, File)

United Nations Secretary-General Antonio Guterres speaks at the opening of the annual Pacific Islands Forum leaders meeting in Nuku’alofa, Tonga, Monday, Aug. 26, 2024. (AP Photo/Charlotte Graham-McLay)

High school students march for climate justice as Pacific leaders meet in Nuku’alofa, Tonga, Tuesday, Aug. 27, 2024. (AP Photo/Charlotte Graham-McLay)

Vanuatu Prime Minister Charlot Salwai, from left, Niue Prime Minister Dalton Tagelagi and New Zealand Foreign Minister Winston Peters attend the opening of the annual Pacific Islands Forum leaders meeting in Nuku’alofa, Tonga, Monday, Aug. 26, 2024. (AP Photo/Charlotte Graham-McLay)

FILE - A section of land between trees is washed away due to rising seas on Nov. 6, 2015, in Majuro Atoll, Marshall Islands. (AP Photo/Rob Griffith, File)

  • Copy Link copied

NUKU’ALOFA, Tonga (AP) — Highlighting seas that are rising at an accelerating rate, especially in the far more vulnerable Pacific island nations, U.N. Secretary-General Antonio Guterres issued yet another climate SOS to the world. This time he said those initials stand for “save our seas.”

The United Nations and the World Meteorological Organization Monday issued reports on worsening sea level rise, turbocharged by a warming Earth and melting ice sheets and glaciers. They highlight how the Southwestern Pacific is not only hurt by the rising oceans, but by other climate change effects of ocean acidification and marine heat waves.

Guterres toured Samoa and Tonga and made his climate plea from Tonga’s capital on Tuesday at a meeting of the Pacific Islands Forum, whose member countries are among those most imperiled by climate change. Next month the United Nations General Assembly holds a special session to discuss rising seas .

U.N. Secretary-General Antonio Guterres issued yet another climate SOS to the world, highlighting seas that are rising at an accelerating rate, especially in the far more vulnerable Pacific island nations.

“This is a crazy situation,” Guterres said. “Rising seas are a crisis entirely of humanity’s making. A crisis that will soon swell to an almost unimaginable scale, with no lifeboat to take us back to safety.”

Image

“A worldwide catastrophe is putting this Pacific paradise in peril,” he said. “The ocean is overflowing.”

A report that Guterres’ office commissioned found that sea level lapping against Tonga’s capital Nuku’alofa had risen 21 centimeters (8.3 inches) between 1990 and 2020, twice the global average of 10 centimeters (3.9 inches). Apia, Samoa, has seen 31 centimeters (1 foot) of rising seas, while Suva-B, Fiji has had 29 centimeters (11.4 inches).

“This puts Pacific Island nations in grave danger,” Guterres said. About 90% of the region’s people live within 5 kilometers (3 miles) of the rising oceans, he said.

Since 1980, coastal flooding in Guam has jumped from twice a year to 22 times a year. It’s gone from five times a year to 43 times a year in the Cook Islands. In Pago Pago, American Samoa, coastal flooding went from zero to 102 times a year, according to the WMO State of the Climate in the South-West Pacific 2023 report.

“Because of sea level rise, the ocean is transforming from being a lifelong friend into a growing threat,” Celeste Saulo, secretary-general of the World Meteorological Organization, told reporters in Nuku’alofa on Tuesday.

While the western edges of the Pacific are seeing sea level rise about twice the global average, the central Pacific is closer to the global average, the WMO said.

Sea levels are rising faster in the western tropical Pacific because of where the melting ice from western Antarctica heads, warmer waters and ocean currents, UN officials said.

Guterres said he can see changes since the last time he was in the region in May 2019.

Image

While he met in Nuku’alofa on Tuesday with Pacific nations on the environment at their leaders’ annual summit, a hundred local high school students and activists from across the Pacific marched for climate justice a few blocks away.

One of the marchers was Itinterunga Rae of the Barnaban Human Rights Defenders Network, whose people were forced generations ago to relocate to Fiji from their Kiribati island home due to environmental degradation. Rae said abandoning Pacific islands should not be seen as a solution to rising seas.

“We promote climate mobility as a solution to be safe from your island that’s been destroyed by climate change, but it’s not the safest option,” he said. Barnabans have been cut off from the source of their culture and heritage, he said.

“The alarm is justified,” said S. Jeffress Williams, a retired U.S. Geological Survey sea level scientist. He said it’s especially bad for the Pacific islands because most of the islands are at low elevations, so people are more likely to get hurt. Three outside experts said the sea level reports accurately reflect what’s happening.

The Pacific is getting hit hard despite only producing 0.2% of heat-trapping gases causing climate change and expanding oceans, the UN said. The largest chunk of the sea rise is from melting ice sheets in Antarctica and Greenland. Melting land glaciers add to that, and warmer water also expands based on the laws of physics.

Antarctic and Greenland “melting has greatly accelerated over the past three to four decades due to high rate of warming at the poles,” Williams, who was not part of the reports, said in an email.

About 90% of the heat trapped by greenhouse gases goes into the oceans, the UN said.

Globally, sea level rise has been accelerating, the UN report said, echoing peer-reviewed studies . The rate is now the fastest it has been in 3,000 years, Guterres said.

Image

Between 1901 and 1971, the global average sea rise was 1.3 centimeters a decade, according to the UN report. Between 1971 and 2006 it jumped to 1.9 centimeters per decade, then between 2006 and 2018 it was up to 3.7 centimeters a decade. The last decade, seas have risen 4.8 centimeters (1.9 inches).

The UN report also highlighted cities in the richest 20 nations, which account for 80% of the heat-trapping gases, where rising seas are lapping at large population centers. Those cities where sea level rise in the past 30 years has been at least 50% higher than the global average include Shanghai; Perth, Australia; London; Atlantic City, New Jersey; Boston; Miami; and New Orleans.

New Orleans topped the list with 10.2 inches (26 centimeters) of sea level rise between 1990 and 2020. UN officials highlighted the flooding in New York City during 2012’s Superstorm Sandy as worsened by rising seas. A 2021 study said climate-driven sea level rise added $8 billion to the storm’s costs.

Guterres is amping up his rhetoric on what he calls “climate chaos” and urged richer nations to step up efforts to reduce carbon emissions, end fossil fuel use and help poorer nations. Yet countries’ energy plans show them producing double the amount of fossil fuels in 2030 than the amount that would limit warming to internationally agreed upon levels, a 2023 UN report found.

Image

Guterres said he expects Pacific island nations to “speak loud and clear” in the next General Assembly, and because they contribute so little to climate change, “they have a moral authority to ask those that are creating accelerating the sea level rise to reverse these trends.”

Borenstein reported from Kensington, Maryland.

Follow Seth Borenstein and Charlotte Graham-McLay on X at @borenbears and @CGrahamMcLay

Read more of AP’s climate coverage at http://www.apnews.com/climate-and-environment

The Associated Press’ climate and environmental coverage receives financial support from multiple private foundations. AP is solely responsible for all content. Find AP’s standards for working with philanthropies, a list of supporters and funded coverage areas at AP.org .

Image

San Diego Union-Tribune

Essays on climate crisis a welcome call to action

Share this:.

  • Click to share on Twitter (Opens in new window)
  • Click to share on Facebook (Opens in new window)
  • Click to print (Opens in new window)
  • Click to email a link to a friend (Opens in new window)
  • Click to share on Reddit (Opens in new window)
  • Things to do
  • Real Estate
  • Newsletters

Opinion Letters to the Editor

essay on climate change in malayalam

I encourage people to do the same thing now to address climate change. Send your elected representatives emails supporting climate initiatives. Details about bipartisan carbon fee and dividend legislation, permitting reform and upgrading our national grid can be found on the Citizens’ Climate Lobby website. This outreach takes only a few minutes and their offices will respond. We can’t risk worsening wildfires, floods and increasing food prices.

— Margaret Mann, Point Loma

Do your part on the climate crisis

Thank you for featuring three op-eds on climate change. Now everyone needs to answer Michelle Obama’s question: What are you going to do? There are simple and effective actions people can take. Volunteer for the Environmental Voter Project, which works to have people who are concerned about the environment become regular voters. Volunteer for Citizens’ Climate Lobby, the most effective organization in the country at helping Congress to pass meaningful climate legislation. It’s election season, ask candidates what they are going to do about climate change and remind them you are a climate voter. Joan Baez said “action is the antidote to despair.”  We are grateful the Union-Tribune gave so much space to this critical issue. Now it’s up to the rest of us to get to work.

— Mark Reynolds, Loma Portal

More in Opinion

Re “The coastal height limit is a reflection of San Diego’s identity” (July 22) and “State authorities should respect, follow San Diego coastal height limit” (Aug. 21): As a longtime beach resident (53 years), I find it extremely hard to believe the City Council went against the voters who passed the 30-foot height limit. I’m […]

53-year beach resident laments override of coastal height limits

Editor’s note: An essay offering another view of Proposition 35 will be posted on this website Sunday morning. I can still hear the doctor’s voice shake after he took my husband and I to a private room in the neonatal care unit and gave us the news about our daughter, Mila. “She has severe brain […]

Proposition 35 would devastate my brain-damaged daughter

Re “Pollutants were found in the warehouse that could be a giant homeless shelter. Is that a deal breaker?” (Aug. 25): After Ash Street, the city was advised to hire its own consultants and conduct its own due diligence for future real estate transactions. That’s not happening. The contaminants evaluation came from owner Douglas Hamm’s […]

Ash encore? City may not be sweating details on massive shelter

The disinterest in principled democracy held by many state leaders becomes painfully clear year after year when key details finally emerge about far-reaching bills that received little if any public scrutiny before winning legislative approval. As with the case of a 2022 bill that took a giant step toward basing payments to California’s power utilities on household income, that can take many months. This results in alarmed analysis pieces from pundits and shrugs from elected officials indifferent to criticism they’re richly earned. So what surprises will this week’s rush to wrap up the current session of the Legislature eventually produce? […]

What surprises will Legislature’s late-session votes yield this year?

IMAGES

  1. Climate Change in Malayalam/ (കാലാവസ്ഥാ വ്യതിയാനം), Kerala PSC Science

    essay on climate change in malayalam

  2. Climate Change Solution Ideas :: Sustainability

    essay on climate change in malayalam

  3. Speaker to address climate change and its effect on human health

    essay on climate change in malayalam

  4. ≫ Effects and Causes of Global Warming and Climate Change Free Essay

    essay on climate change in malayalam

  5. ≫ Climate Change Free Essay Sample on Samploon.com

    essay on climate change in malayalam

  6. โลกร้อน: คู่มืออย่างง่าย ในการเข้าใจ "การเปลี่ยนแปลงสภาพภูมิอากาศ

    essay on climate change in malayalam

VIDEO

  1. The Impact Of Climate Change On Agriculture Essay Writing

  2. Calicut University 3rd sem BA BSC മലയാലസാഹിത്യം Short essay and essay questions

  3. CGPSC Mains Essay Climate Change, COP 28, Heat Wave

  4. 2023 ജൂൺ മുതൽ ഭൂമിയിൽ ഓരോ മാസവും റെക്കോർഡ് താപനിലയെന്ന് ശാസ്ത്രജ്ഞർ Temperature Record

  5. climate change essay

  6. Write 10 lines on Climate change

COMMENTS

  1. കാലാവസ്ഥാവ്യതിയാനം

    Climate Change on In Our Time at the BBC. ക്ലൈമറ്റ് ചേഞ്ച് പെർഫോമൻസ് ഇൻഡെക്സ് 2010 Archived 2017-05-06 at the Wayback Machine. ക്ലൈമറ്റ് ലൈബ്രറി Archived 2014-09-02 at the Wayback Machine. അറ്റ് സെന്റർ ഫോർ ഓഷ്യ ...

  2. കാലാവസ്ഥാ വ്യതിയാനവും ആരോഗ്യവും,കാലാവസ്ഥാ വ്യതിയാനം ഒരു ആഗോള ആരോഗ്യ

    Intergovernmental Panel on Climate Change (IPCC)-ന്റെ ആറാം വിലയിരുത്തൽ റിപ്പോർട്ട് കാലാവസ്ഥാ വ്യതിയാനം ലോകജനതയുടെ ആരോഗ്യത്തെ എത്രത്തോളം ഗുരുതരമായി ...

  3. ആഗോളതാപനം

    Some effects of climate change, clockwise from top left: Wildfire intensified by heat and drought, bleaching of coral caused by ocean acidification and heating, and worsening droughts compromising water supplies.

  4. കാലാവസ്ഥാ വ്യതിയാനം: അന്തിമ പരിഹാരം

    The Intergovernmental Panel on Climate Change's 'Synthesis' report strengthens the line that human actions are pushing the world closer to irreversible cataclysms

  5. മഴയുണ്ടായിട്ടെന്താ,കേരളം പൊള്ളുന്നു

    പത്തനംതിട്ട ∙ കനത്ത മഴ പെയ്യുമ്പോഴും പകൽച്ചൂടും ഉഷ്ണവും ...

  6. കാലാവസ്ഥ വ്യതിയാനം

    കാലാവസ്ഥ വ്യതിയാനം. നമുക്ക് വേനല്‍ക്കാലത്ത് ചൂടും ...

  7. ഭൂമിക്ക് മരണഗന്ധം; വരുന്നത് അതിതീവ്ര മഴ, അസഹ്യ ചൂട്, കാട്ടുതീ

    ഭൂമി ആസന്നപ്രതിസന്ധിയുടെ തുരങ്കത്തിലേക്കു ...

  8. താപനം: നമ്മെ തുറിച്ചുനോക്കുന്നത് എന്ത്?

    താപനം: നമ്മെ തുറിച്ചുനോക്കുന്നത് എന്ത്? അന്തരീക്ഷ താപവര് ...

  9. സമുദ്രനിരപ്പില്‍ വര്‍ധനവ്, 2 ഡിഗ്രി കടക്കാനൊരുങ്ങി ആഗോള താപനില; വരും

    ഈ നൂറ്റാണ്ടോടെ കാലാവസ്ഥാ ലക്ഷ്യങ്ങൾ നിറവേറ്റാ ...

  10. 'കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ സുരക്ഷിതത്വം ഇനിയങ്ങോട്ട്

    നാളിതുവരെ കേരളത്തിന് കിട്ടിക്കൊണ്ടിരുന്ന കാലാവസ്ഥാ ...

  11. ആഗോളതാപനം

    ആഗോളതാപനം Global Warming. മനുഷ്യരാശി നേരിടുന്ന പാരിസ്ഥിതിക ...

  12. CLIMATE CHANGE

    The Kerala State Action Plan on Climate Change was drafted by the Directorate of Environment and Climate Change (DoECC) with relevant departments, agencies and institutes providing inputs. This was endorsed by the Government of India in 2014. Being an important vision document of the State, SAPCC places the climate change concerns at the ...

  13. Climate crisis in Kerala: An integrated approach is needed to mitigate

    04 Jan 2022, 12:31 am. Kerala has been experiencing an onslaught of heavy rains, floods, landslides and droughts over the last few years. The state has received heavy rainfall in 1924, 1961, 2018 and 2021. The carbon emitted by humans into the atmosphere since the Industrial Revolution is one of the major causes of the current climate crisis.

  14. Ravages of climate change in Kerala, Kerala Disaster

    If the sea level rises by another one meter, 169 sq km of land off the coast of Kochi will be submerged. According to a report published by the National Centre for Coastal Research (NCCR), 41% of Kerala's coastal land has been degraded and 21% expanded so far. In the future, the sea level will rise even higher.

  15. Climate Change in Kerala and Marine Livelihoods

    The Arabian Sea on the western border of Kerala is getting severely affected by climate change and global warming. From 1904 to 1994, an increase in temperature by 0.5 ° C was observed on the surface of the Arabian Sea. Since 1995, the increase has been unprecedented. There is ample evidence to show that the increase in surface-level ...

  16. Is Wayanad facing the brunt of climate change?

    Wayanad is one of the places where the impact of climate change and global warming is acutely felt. The first symptom was, of course, the change of seasons, or to put it more bluntly, the ...

  17. The 2018 Kerala floods: a climate change perspective

    In August 2018, the Indian state of Kerala received an extended period of very heavy rainfall as a result of a low-pressure system near the beginning of the month being followed several days later by a monsoon depression. The resulting floods killed over 400 people and displaced a million more. Here, a high resolution setup (4 km) of the Weather Research and Forecasting (WRF) model is used in ...

  18. Landslides in Kerala more frequent due to climate change ...

    The Kerala government created the Institute for Climate Change Studies (ICCS) in 2014. It is currently being revamped as a single-window agency that supplies policymakers and administrators at various levels and departments of government with climate-related data and information. "Awareness won't happen in a day.

  19. Global warming

    Global warming, the phenomenon of rising average air temperatures near Earth's surface over the past 100 to 200 years. Although Earth's climate has been evolving since the dawn of geologic time, human activities since the Industrial Revolution have a growing influence over the pace and extent of climate change.

  20. Climate Change Essay for Students and Children

    Climate change refers to the change in the environmental conditions of the earth. This happens due to many internal and external factors. The climatic change has become a global concern over the last few decades. Besides, these climatic changes affect life on the earth in various ways. These climatic changes are having various impacts on the ...

  21. Climate Change Essay for Students in English

    500+ Words Essay on Climate Change. Climate change is a major global challenge today, and the world is becoming more vulnerable to this change. Climate change refers to the changes in Earth's climate condition. It describes the changes in the atmosphere which have taken place over a period ranging from decades to millions of years.

  22. Climate change essay in Malayalam

    Explanation: the climate change easily in Kerala because. 1. the place is nearest to equator so, in summer it is so hot. 2. the western winds which come from the equator comes first in Kerala so the monsoon. is so high. 3.the place is near the sea so winters are so cool. Advertisement.

  23. The seas are coming: Faster, angrier, hotter

    THE RISING SEAS. UN Secretary General Antonio Guterres issued yet another climate SOS to the world. This time he said those initials stand for "save our seas." This rise is not uniform across the globe, as local factors such as land subsidence, regional ocean currents, and post-glacial rebound can influence relative sea level changes at specific locations.

  24. Climate policies that achieved major emission reductions: Global ...

    Meeting the Paris Agreement's climate objectives necessitates decisive policy action ().Although the agreement seeks to limit global average temperature increase to "well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5°C," its success critically hinges on the implementation of effective climate policies at the national level.

  25. When will climate change turn life in the U.S. upside down?

    Climate change was a key contributor to these floods; a 2021 study found that about one-third of the cost of major U.S. flood events since 1988, totaling $79 billion, could be attributed to climate change. ... Though this essay has dwelt on some grim realities, I am optimistic that we will prevent climate change from becoming a civilization ...

  26. Climate Insights 2024: American Climate Policy Opinions

    In Climate Insights 2024: American Understanding of Climate Change, we showed that huge majorities of Americans believe that the earth has been warming, that the warming has been caused by human activity, that warming poses a significant threat to the nation and the world—especially to future generations—and that governments, businesses, and individuals should be taking steps to address it.

  27. Opinion

    Mr. Cox lives in Salina, Kan., and is the author of "Losing Our Cool: Uncomfortable Truths About Our Air-Conditioned World." Whenever people ask me how my wife and I have endured 25 Kansas ...

  28. Changing Climate in Brazil: Key Vulnerabilities and Opportunities

    This paper assesses the Brazilian economy's exposure to climate change focusing on two key areas: agriculture and hydropower. While climate vulnerabilities are significant and recent patterns of land-use further amplify climate change risk, Brazil's opportunities for green growth are vast. Given geography and existing infrastructure, notably the very green energy mix, Brazil can boost its ...

  29. The worldwide catastrophe of rising seas especially imperils Pacific

    The Pacific is getting hit hard despite only producing 0.2% of heat-trapping gases causing climate change and expanding oceans, the UN said. The largest chunk of the sea rise is from melting ice sheets in Antarctica and Greenland. Melting land glaciers add to that, and warmer water also expands based on the laws of physics. ...

  30. Essays on climate crisis a welcome call to action

    Re "Equity for hardest-hit communities must be part of response to climate crisis" (Aug. 23): Thanks for publishing this and the two other articles Sunday regarding the broad effects of…